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Non-Newtonian flow from a wedge constitutes a fundamental problem in chemical 
engineering systems and is relevant to processing of polymers, coating systems, etc. Mo-
tivated by such applications, the homotopy analysis method (HAM) was employed to 
obtain semi-analytical solutions for thermal convection boundary layer flow of incom-
pressible micropolar fluid from a two-dimensional body (wedge). Viscous dissipation 
and heat sink effects were included. The non-dimensional boundary value problem 
emerges as a system of nonlinear coupled ordinary differential equations, by virtue of 
suitable coordinate transformations. The so-called Falkner-Skan flow cases are elaborat-
ed. Validation of the HAM solutions was achieved with earlier simpler models, as well 
as with a Nakamura finite difference method for the general model. The micropolar mod-
el employed simulates certain polymeric solutions quite accurately, and features rotary 
motions of micro-elements. Primary and secondary shear stress, wall couple stress, Nus-
selt number, microrotation velocity, and temperature were computed for the effect of 
vortex viscosity parameter (micropolar rheological), Eckert number (viscous dissipation), 
Falkner-Skan (pressure gradient) parameter, micro-inertia density, and heat sink parame-
ter. The special cases of Blasius and stagnation flow were also addressed. It was ob-
served from the study that the temperature and thermal boundary layer thickness are both 
suppressed with increasing wedge parameter and wall heat sink effect, which is benefi-
cial to temperature regulation in polymer coating dynamics. Further, strong reverse spin 
was generated in the microrotation with increasing vortex viscosity, which resulted in 
increase in angular momentum boundary layer thickness. Also, both primary and second-
ary skin friction components were reduced with increasing wedge parameter. Nusselt 
number was also enhanced substantially with greater wedge parameter.
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Introduction

The flow from a two-dimensional wedge is a 
classical problem in viscous fluid mechanics and 
boundary layer theory, often referred to as Falk-
ner-Skan flow1. It has been extensively studied in 
industrial fluid dynamics, aerodynamics, applied 
mathematics, and chemical engineering transport 
phenomena, since it provides a good framework for 
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examining a variety of interesting flow cases, in-
cluding flat plate (Blasius) flows, stagnation point 
flows, etc. It also features in certain polymer pro-
cessing operations. The complex rheological char-
acteristics (non-linear) of polymeric liquids general-
ly lead to mathematical formulations which feature 
strongly coupled, multiple order differential equa-
tion systems. Considerable interest in computation-
al and theoretical modelling of non-Newtonian 
wedge flows with and without heat transfer has 
emerged over the past two decades, following an 
early study by Peddieson2, who used a Reiner-Rivlin 
differential viscoelastic model. Yacob et al.3 simu-
lated steady nanofluid flow from a static or a mov-
ing wedge using Keller’s box method and DO2HAF 
shooting routines. Hsu et al.4 employed a series ex-
pansion method to derive asymptotic solutions in 
terms of gamma functions, for viscoelastic Oldroyd 
fluid flow from a wedge of 90 degrees. Billingham 
and King5 employed asymptotic methods to study 
surface-tension driven flow from a slender wedge-
shaped void. Su et al.6 used the differential transfor-
mation and base functions method (DTM-BF) to 
examine radiative flux and Joule dissipation effects 
on mixed magneto-convection from a stretching 
permeable wedge. Abbasbandy et al.7 studied the 
Falkner-Skan flow of magnetohydrodynamic (MHD) 
Maxwell fluids from a wedge, demonstrating that 
viscoelasticity exerts a strong influence on bound-
ary layer thickness. Slip effects in Newtonian heat 
transfer flow from a wedge were investigated by 
Martin and Boyd8, for a range of Knudsen numbers. 
Bég et al.9 employed Nakamura’s difference scheme 
to study non-similar viscoelastic convection from a 
wedge embedded in porous media (extending the 
Peddieson model2), elaborating in detail the influ-
ence of wedge geometry and buoyancy on thermal 
boundary layer characteristics. Hossain et al.10 used 
a local similarity numerical method to analyze the 
non-isothermal transient mixed convection from a 
sharp wedge, also presenting perturbation solutions 
for small and large dimensionless times. Kim11 used 
the Ostwald-DeWaele power law model and shoot-
ing quadrature to investigate rheological flow in a 
porous medium, observing that for constant wedge 
angle and power-law rheological index, surface 
shear stress is lower for dilatant fluids compared 
with pseudo-plastic or Newtonian fluids. Rashidi et 
al.12 used numerical shooting and homotopy meth-
ods to elaborate the effects of pressure-gradient pa-
rameter and viscoelasticity on heat transfer charac-
teristics in third grade differential fluid flow from a 
non-isothermal wedge. Gorla13 considered the un-
steady power-law non-Newtonian laminar thermal 
boundary layer flow over a wedge, addressing step 
changes in surface temperature and a large range of 
Prandtl numbers. Zueco et al.14 employed the elec-

tro-thermal network code, PSPICE, to investigate 
magnetic field and porous drag force effects on 
Nusselt number and skin friction in electrically-con-
ducting gas convection over a wedge in permeable 
materials.

The aforementioned studies generally ignored 
the influence of heat sink (absorption) or viscous 
heating effects. In the manufacture of modern poly-
mers, which are generally thermal insulators, heat 
sinks are frequently deployed on the body surface 
adjacent to the polymer to remove excess heat gen-
erated in viscous dissipation15. Heat sink perfor-
mance is a function of material thermal conductivity. 
Utilizing heat sinks can counteract viscous heating 
effects and this can lead to thermally more stable 
plastics, and influences the efficiency of these mate-
rials in drawing heat away from potential applica-
tion systems, e.g., electronic devices in servers, au-
tomobiles, high-brightness LEDs, aircraft wings, 
etc. In this regard, novel thermal interface materials 
are being introduced to mitigate reliability problems 
in the field, which may be caused by differential 
expansion in other thermally conductive polymeric 
materials16. A number of researchers have explored 
the influence of introducing heat sinks (or sources) 
on thermal convection boundary layer flows. Cheng 
and Huang17 reported numerical finite difference 
solutions for transient two-dimensional thermal 
convection from an accelerating surface with suc-
tion or blowing with heat generation (source) or ab-
sorption (sink) effects, considering both power-law 
surface temperature (PLST) and power-law heat 
flux (PLHF) boundaries. Kumar18 analyzed thermal 
radiation and heat sink effects on hydromagnetic 
stretching flow, using a confluent hypergeometric 
function (Kummer’s function) for prescribed pow-
er-law wall temperature. Hassan et al.19 used finite 
volume computational software to model viscous 
dissipation effects on the temperature distribution 
throughout a rectangular channel for different poly-
mers in mould injection, observing that in the case 
of low injection temperature, the viscous dissipation 
more strongly influences polystyrene than polypro-
pylene, and causes a more pronounced non-uniform 
distribution of temperature through the polymer pri-
or to the fluid achieving a thermally fully developed 
state. Further studies include Aydin20 for forced 
convection pipe flow, Ahmad and Khan21 for inter-
nal heat generation/absorption in dissipative heat 
transfer from a porous moving wedge, Munir et al.22 
for heat transfer in Sisko rheological dissipative 
flow from a wedge with variable free stream veloc-
ity, Bég et al.23 for transient Hartmann–Couette 
magnetized convection. All these studies confirmed 
the strong influence of heat sinks and viscous dissi-
pation (usually via the Eckert number) on thermo-
fluid characteristics.
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Although in many of the aforementioned arti-
cles, relatively comprehensive constitutive models 
have been implemented for non-Newtonian flu-
ids24–27, these models provide no insight into micro-
structural features. In many polymers, the suspen-
sions significantly alter the viscosity characteristics. 
Eringen28 introduced a robust mathematical frame-
work for simulating such effects, namely, microcon-
tinuum fluid mechanics. A simple example of the 
microfluid models is the micropolar model, which 
has also been modified by Eringen to include ther-
mal effects29. This model introduces angular mo-
mentum effects which have been shown to simu-
late30 quite accurately numerous industrial, medical, 
and environmental flows, including liquid crystals, 
hemodynamics, air-borne pollutants, polymer melts, 
foodstuffs, and sediment transport in river beds. 
The theory of micropolar fluids simplifies the gen-
eral micromorphic theory by restricting the form of 
the gyration tensor and physically represents sus-
pensions comprising small, rigid cylindrical ele-
ments, such as large dumbbell-shaped molecules. 
These substructure particles can sustain rotary mo-
tions (microrotation) and support surface and body 
couples. Micropolar fluid dynamics has been an ac-
tive area of research for almost five decades and 
continues to explore new applications. Bég et al.31 
examined steady heat and mass transfer of microp-
olar boundary layer flow from a spherical body 
with Soret/Dufour effects. The Keller box numeri-
cal results showed that the micropolar vortex vis-
cosity parameter reduces the flow near sphere. Gup-
ta et al.32 employed a variational finite element 
method to evaluate the evolution of Sherwood num-
ber, Nusselt number, and wall couple stress func-
tions with time, and buoyancy in unsteady convec-
tive heat and mass transfer in micropolar flow from 
a permeable extending wall. Prasad et al.33 em-
ployed a Keller box numerical method to analyze 
the steady axisymmetric double-diffusive flow of a 

micropolar nanofluid from a cylinder, calculating 
the influence of Brownian motion, thermophoresis, 
micro-inertial density, and Grashof number on an-
gular velocity distributions. Recently, in the studies 
of micropolar transport phenomena, PaŢanin and 
Suarez-Grau34 addressed thin micropolar films, and 
Bég et al.35 considered magnetohydrodynamic grav-
ity-driven thin film micropolar flows.

In the present study, HAM, presently a very 
popular method in computational engineering sci-
ences36, was employed to develop solutions for the 
nonlinear, dissipative thermal convection boundary 
layer flow from a wedge with heat absorption ef-
fects. The influence of Eckert number, micropolar 
material viscosity, wedge angle, Prandtl number 
and heat sink parameter on angular velocity, tem-
perature, linear velocity, and other characteristics 
was computed. Validation of HAM solutions with a 
tri-diagonal finite difference method due to Na-
kamura37 is also presented. The current work is rel-
evant to thermal polymeric processing and coating 
dynamics in chemical engineering technologies.

Mathematical model

Consider steady, two-dimensional, viscous, in-
compressible, forced convective heat transfer of a 
micropolar fluid from a wedge. It is assumed that 
the external velocity is in the form of U=cxm, where 
c is a positive constant, m = β*/(2 – β*) is the Har-
tree pressure gradient parameter which corresponds 
to β* = Ω/π for an angle Ω of the wedge. The sche-
matic diagram of the problem is shown in Fig. 1. 
The wedge lies in the x-y plane, with the x-coordi-
nate orientated along the wedge front edge surface. 
The z-axis is orthogonal to the x-y plane.

Micropolar fluids are a special sub-class of 
simple microfluids28. These fluids exhibit behaviour 
and properties which are influenced by the local 
motions of the material particles contained in each 

F i g .  1  – Physical model and coordinate system



260	 O. A. Bég et al., Homotopy Simulation of Dissipative Micropolar Flow…, Chem. Biochem. Eng. Q., 34 (4) 257–275 (2020)

of the volume elements, i.e., microelements. They 
possess local inertia. Micropolar fluids have volume 
elements containing rigid particles (non-deform-
able) which can spin about the centre of the volume 
element, and are defined by a microrotation vector. 
This local rotation of the particles is supplementary 
to the conventional rigid body motion of the entire 
volume element which defines Navier-Stokes flu-
ids. In micropolar fluid mechanics, the classical 
continuum laws are therefore augmented with addi-
tional equations that account for the conservation of 
micro-inertia moments, and the balance of first 
stress moments which arise due to the consideration 
of microstructure in a fluid. Hence, new kinematic 
variables (gyration tensor, micro-inertia moment 
tensor), and concepts of body moments, stress mo-
ments and microstress are amalgamated with classi-
cal continuum fluid dynamics theory. The field 
equations for micropolar fluids in generalized form 
can be stated as28,30:

conservation of mass
 
	 ( ) 0

t
r r∂
+∇ ⋅ =

∂
V 	 (1)

conservation of translational momentum

	 (l + 2m + k)∇ × ∇· V – (m + k)∇ × ∇ × V + 	
	 + k∇ × G – ∇P + rf = rV

.
	

(2)

conservation of angular momentum (microrotation)

	 (a + b + g) ∇ × ∇· G – g∇ × ∇ × G + k∇ ×  	  
	  × V – 2kG + rl = rjG

.
	 (3)

where r denotes the mass density of micropolar flu-
id, V

.
 is translational velocity vector, G

.
 is angular 

velocity (microrotation or gyration) vector, j is mi-
cro-inertia density, f is the body force per unit mass 
vector, l is the body couple per unit mass vector, P 
is the thermodynamic pressure, m is the Newtonian 
dynamic viscosity, l is the Eringen second order 
viscosity coefficient, k is the vortex viscosity coef-
ficient, and a, b and g are spin gradient viscosity 
coefficients for micropolar fluids. In the micropolar 
model theory, we are only concerned with two inde-
pendent kinematical vector fields; namely, the ve-
locity vector field (familiar from Navier-Stokes the-
ory), and the axial vector field which simulates the 
spin or the microrotations of the micropolar fluid 
particles, these being assumed non-deformable, i.e., 
rigid. We note that in micropolar fluid theory, for 
the case where the fluid has constant physical prop-
erties, no external body forces exist, and for steady-
state flow, the conservation equations can be greatly 
simplified. Additionally, for the case where k = a = 
b = g = 0 and with vanishing l and f, the gyration 
vector disappears and equation (3) vanishes. Equa-

tion (2) also reduces in this special case to the clas-
sical Navier-Stokes equations (Newtonian viscous 
flow model). We also note that, for the case of zero 
vortex viscosity only, the velocity vector V and the 
microrotation G are decoupled and the global mo-
tion is unaffected by the microrotations. This model 
was applied to the axisymmetric wedge scenario 
with a constant heat flux applied at the wedge sur-
face. T∞ of the ambient fluid (free stream) is as-
sumed to be constant. Assuming constant spin gra-
dient viscosity of the micropolar fluid, neglecting 
momentum and thermal variations in the z-direc-
tion1,5 and assuming that the micro-elements are 
non-deformable, the equations for mass continuity, 
momentum, and energy can be written as follows:

mass conservation

	 0,u v
x y
∂ ∂

+ =
∂ ∂ 	 (4)

x-direction linear (translational) momentum conser-
vation:

2

2

d( )
d

u u u N Uu v U
x y y y x

r m k k r
  ∂ ∂ ∂ ∂

+ = + + +  ∂ ∂ ∂ ∂     
(5)

z-direction linear (translational) momentum conser-
vation:

	

2

2( )w w wu v
x y y

r m k
  ∂ ∂ ∂

+ = +   ∂ ∂ ∂   
	 (6)

angular momentum (microrotation) conservation:

 

	

2

2 2 ,N N N uu v N
x y j y j y

g kr
    ∂ ∂ ∂ ∂

+ = − +    ∂ ∂ ∂ ∂    
	

(7)

energy (heat) conservation:

 

 

 

 

 

	

2

2

2 2

( ) ( )

p
T T Tc u v k
x y y

u w Q T T
y y

r

m k ∞

  ∂ ∂ ∂
+ = +  ∂ ∂ ∂   

    ∂ ∂ + + + + −    ∂ ∂     	

(8)

where u denotes translational velocity along the 
x-direction, v is the translational velocity along the 
y-direction, N is the angular velocity (microrota-
tion) component in the x-y plane, g = (m+k/2) j is 
the Eringen spin gradient viscosity, T is fluid tem-
perature, cp denotes specific heat at constant pres-
sure (isobaric), k is thermal conductivity of the mi-
cropolar fluid, and Q is the heat sink parameter 
(negative). The appropriate boundary conditions31,66 
are prescribed at the wedge surface and the edge of 
the boundary layer regime on the wall (far from the 
wedge), and take the form:
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At 0 : 0, 0, 0, , w

u Ty u v w N n q k
y y
∂ ∂

= = = = = − =−
∂ ∂ 	

(9a)

	 At : ; 0, 0,y u U c w N T T∞→∞ → = → → →mx 	 (9b)

In Eq. (9b), the parameter m has several im-
portant values corresponding to classical flow con-
figurations. Four cases are noteworthy:

Case 1: Generalized two-dimensional wedge 
flow for which 0 < β* < 2 i.e. m > 0.

Case II: Flow past a semi-infinite horizontal 
surface (flat plate) when β* → 0 for which m = 0.

Case III: Forward stagnation point flow adja-
cent to a vertical surface (this case also amounts to 
linear free stream velocity variation with axial dis-
tance) when β* → 1 for which m = 1.

Case IV: Rear stagnation-point flow when  
β* → –1 for which m = –1/3.

The first three cases are most relevant to poly-
meric coating processes. These cases are also en-
tirely valid when heat transfer is considered. Details 
of the microrotation boundary conditions, controlled 
by the parameter n in (9), allow a variety of physi-
cal scenarios to be considered. Here we elect the 
case with n = 0.5 which corresponds to weak con-

centration of micro-elements at the wall. The cases 
n = 0 and n = 1 are associated, respectively, with 
strong near-wall concentrations and turbulent flows, 
neither of which are relevant in the present analysis. 
The micropolar fluid model therefore introduces 
both a separate angular momentum balance as well 
as supplementary boundary conditions. Inspection 
of equations (5) and (7) also reveals that there is a 
strong coupling between the angular velocity and 
primary translational velocity fields, although there 
are no mixed derivatives, as encountered in certain 
viscoelastic models. The parabolic partial differen-
tial equations (4)–(8) are still very challenging to 
solve. It is possible therefore to transform the 
boundary value problem to yield more amenable 
numerical solutions. We therefore define the follow-
ing scaling transformations and non-dimensional 
variables, and introduce a stream function ψ, de- 
 fined by u

y
ψ∂

=
∂  and v

x
ψ∂

= −
∂ , which automatical-

ly satisfies the mass conservation:

	

( )
( ) ( ) ( ) ( ) ( )

1/21/2 1/2
1 12, , , ,

2 1 2
m U m UxUy F w UG N UH

x m x
νh ψ h h h

ν ν
  +   + 

= = = =     +    

 	 ( ) ( ) ( ) ( )

( )

1/2 2

2

1 2
, , ,

2w p

p

k T T m U xQ x ReK I
Uq x c U j

c T T

k νθ h F
ν r m

∞

∞

 −  + 
= = = =       

−

	 (10)

where η is the pseudo-similarity coordinate in the 
y-direction, F is dimensionless stream function, G is 
dimensionless secondary velocity, H is dimension-
less angular velocity (microrotation), θ is dimen-
sionless temperature function, Φ is heat sink param-
eter (negative), K is the vortex viscosity parameter, 
I is the dimensionless micro-inertia density parame-

ter, Ec is the Eckert (viscous dissipation) number, 
and Re is Reynolds number. Equations (4) – (8) are 
thereby reduced to the following ninth order system 
of coupled, non-linear ordinary differential equa-
tions, describing the dimensionless linear and angu-
lar velocity fields and temperature field:

primary momentum

	

23 2

3 2

d d 2 d d(1 ) 1 0
d d 1 d d

F F m F HK F K
mh h h h

  
 + + − − + =  +    	

(11)

secondary momentum

	

2

2

d d 2 d(1 ) 0
d d 1 d

G G m FK F G
mh h h

+ + − =
+ 	

(12)

angular momentum

	

2 2

2 2

d 3 1 d d 2 d(1 ) 2 0
d 1 d d 1 d

H m F H KI FK H F H
m mh h h h

  − + − − − + =   + +     	
(13)

energy

	

2 22 2

2 2

1 d d d d d( 1) (1 ) ( 1)
Pr d d d d d

F F Gm K Ec m Fθ θF θ
h h h h h

    + − + + + + + −      	
(14)
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Homotopy Analysis Method (HAM) solution

The transformed non-dimensional boundary 
value problem defined by Eqs. (11)–(14) with 
boundary conditions (15), (16) is of ninth order, 
multi-degree, strongly non-linear and coupled. 
Many different techniques are available for the 
solution of this system. Here, the homotopy analy-
sis method (HAM) was selected, which is an excep-
tionally accurate and robust semi-analytic method 
developed originally by Liao36 and has been used by 
many mathematicians and researchers in numerous 
different fields of engineering science, including vi-
bration, fluid dynamics, medicine, and energy sys-
tems. Recent applications include coating nanofluid 
dynamics on a sphere38, viscoplastic magnetic bio-

convection stretching sheet flow39, biological pro-
pulsion40, structural dynamics of functional plates41, 
thin film rheological nanofluid flow42 and external 
nanofluid convection boundary layers43. A modern 
perspective HAM has also been given by Liao44. 
Liao and Chwang45 have applied HAM to simulate 
non-linear oscillations in structural dynamics. Jan-
gili and Bég46 deployed HAM to compute the entro-
py generation in electromagnetic micropolar con-
vection flow in a vertical duct. Arafa et al.47 used 
HAM to analyse the transient behaviour of a bio-
chemical reaction model. Recently, Ray et al.48 used 
HAM in order to obtain non-similar solution to the 
mixed convective flow of non-Newtonian Ey-
ring-Powell fluid due to convectively heated verti-
cal plate. Shukla et al.49 simulated the hydromag-

The corresponding transformed boundary conditions are specified as:

 

	

2

2

d (0) d (0) d (0)At 0 : (0) 0; 0; (0) 0; (0) 0.5 ; 1
d d d
F FF G H θh
h h h

= = = = = − = −
	

(15)

	

dAs : ( ) 1; ( ) ( ) ( ) 0
d
F G Hh θ
h

→∞ ∞ → ∞ = ∞ = ∞ →
	

(16)

In engineering simulations, we are interested not only in the velocity, microrotation, and temperature 
functions, but also certain gradient functions of these variables. The non-dimensional primary and secondary 
wall shear stress, i.e., skin friction, are defined thus:

	

1/2 2

, 02 2 2

2 2 2( 1) d (0)( ) 1
Re 2 d

x
fx p y

u m K FC N
U U y
t

m k k
r r h=

 ∂ +   = = + + = +     ∂     
	 (17)

	 ( )
1/2

, 02 2

2 2 2( 1) d (0)( ) 1
Re d

w
fx s y

w m GC K
U U y
t

m k
r r h=

 ∂ + = = + = +   ∂   
	 (18)

Dimensionless wall couple stress is computed from:

 

 

	

1/20

2 2

2( 1) d (0)
Re d

y
w

w

N
m m HyM
U L U L

g

r r h

=

∂
+∂  = = =  

  	

(19)

The dimensionless local Nusselt number (wedge surface heat transfer rate) is given by:

 

	

1/20 ( 1)Re d (0)Nu
( ) ( ) 2 d

y
w

Tx
xq my

k T T T T
θ
h

=

∞ ∞

∂
−

+∂  = = = − − −   	 (20)

where tx is the primary dimensional wall shear stress, tz is the secondary dimensional wall shear stress, mw is 
the dimensional wall couple stress, U is the characteristic velocity, and L is an arbitrary scale length. We note 
that skin friction, wall couple stress, and wall heat transfer rate can be in fact studied by simply computing  
 
the gradients 

2

2

d (0)
d
F
h

,
d (0)

d
G
h

,
d (0)

d
H
h  and 

d (0)
d
θ
h . The set of ordinary differential equations (11)–(14) are  

 
highly nonlinear and analytical solutions are intractable. We therefore developed semi-numerical solutions 
using the homotopy analysis method (HAM). The methodology is described further herein. Several important 
special cases of the present flow model may be retrieved. The flow model describes Newtonian convection as 
K → 0. When Ec = 0 viscous heating is negated and when F = 0 heat sink vanishes. For m = 0 the wedge 
flow becomes Blasius flow from a flat plate. With m = 1, we retrieve the case of flow in the vicinity of a 
stagnation point on an infinite plate.
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netic slip free and forced convection coating flow 
of a nanoliquid on an upright cylindrical body, also 
conducting a second law thermodynamic analysis. 
Ray et al.50 and Vasu and Ray51 have also imple-
mented HAM to study the flow of non-Newtonian 

fluid over a plate with oscillating motion. All these 
studies have confirmed the impressive versatility of 
HAM. For the current problem, implementing 
HAM, the following initial approximations of F, G, 
H and θ are defined:

	 0 1F e hh −= − + , 
2

0G e e
h

h
−

−= − ,  0 0.5H e h−= − and 0 e hθ −= 	 (21)

The following linear operators are chosen:

	 1L ( )F F F′′′ ′= − , 2 ( )L G G G′′= − ,  3 ( )L H H H′′= −  and 4 ( )L θ θ θ′′= − 	 (22)

These satisfy the properties:

	 11 2 3( )L 0c c e c eh h−+ + = , 42 5( )L 0c e c eh h−+ = ,  63 7( )L 0c e c eh h−+ =  and 84 9( )L 0c e c eh h−+ = 	 (23)

Here ci (1 ≤ i ≤ 5) are arbitrary constants. If 0 ≤ p ≤ 1 is the embedding parameter and 1h , 2h , 3h   
and 4h  are respective convergence control parameters, then we can construct the zeroth-order deformation 
equations as
	 1 0 1 1(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; )]L Np F p F ph F p G p H p ph h h h h θ h− − = 	 (24)

	 2 0 2 2(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; )]L Np G p G ph F p G p H p ph h h h h θ h− − = 	 (25)

	 3 0 3 3(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; )]L Np H p H p h F p G p H p ph h h h h θ h− − = 	 (26)

	 4 0 4 4(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; )L , ( )]N ;p p ph F p G p H p pθ h θ h h h h θ h− − = 	 (27)

The boundary conditions (15), (16) take the form:

 
	

2

2

d (0; ) d (0; ) d (0; )(0; ) 0; 0; (0; ) 0; (0; ) 0.5 ; 1
d d d

F p F p pF p G p H p θ
h h h

= = = = − = −

	

d ( ; ) 1; ( ; ) ( ; ) ( ; ) 0
d

F p G p H p pθ
h
∞

→ ∞ = ∞ = ∞ →
 	

(28)

Depending upon Eqs. (11)–(16), the nonlinear homotopy operators are next defined:

		

(29)
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2 d ( ; ) d ( ; )1

N

1 d d
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d d
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h h hh h h θ h h h
h h h
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(30)
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d 1 d
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d d
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1

H p m F pF p G p H p p K H p
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h h
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1 d ( ; ) d ( ; )( ; ), ( ; ), ( ; ), ( ; ) ( 1)
Pr d d

d ( ; ) d ( ; ) d ( ; )(1 ) (

N
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d d d

p F pF p G p H p p m

F p G p pK Ec p m F p

θ h hh h h θ h
h h

h h θ hF θ h h
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
= + −


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(32)
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For p = 0 and p = 1, we have:

	 0( ;0) ( ) ( ;1) ( )F F F Fh h h h= = 	

	 0( ;0) ( ) ( ;1) ( )G G G Gh h h h= = 	 (33)
	 0( ;0) ( ) ( ;1) ( )H H H Hh h h h= = 	

	 0( ;0) ( ) ( ;1) ( )θ h θ h θ h θ h= = 	

It is noted that, as p rises from 0 to 1, then F(η; p), G(η; p), H(η; p) and θ(η; p) vary from the initial 
guesses, F0(η), G0(η), H0(η) and θ0(η) to the exact solutions F(η), G(η), H(η) and θ(η) respectively.

Now expanding F(η; p), G(η; p), H(η; p) and θ(η; p) in Taylor series with respect to p, we have:
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(37)

If the initial guess, auxiliary linear operators and convergence control parameter are judiciously selected 
such that the series defined in Eqs. (34)–(37) are convergent at p=1, then:
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F F Fh h h
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=

= +∑
	

(38)

	
( ) ( ) ( )0
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=
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(40)

	
( ) ( ) ( )0

1
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∞

=

= +∑q h q h q h
	

(41)

The corresponding general series solution can be written as:

              1 2 3( ) * ( )m mF F c c e c eh hh h −= + + + ,         4 5( ) * ( )m mG G c e c eh hh h −= + +  

              6 7( ) * ( )m mH H c e c eh hh h −= + + 	     and     8 9( ) * ( )m m c e c eh hθ h θ h −= + + 	
(42)

Here F*
m(η), G*

m(η), H*
m(η) and θ*

m(η) are spe-
cial solutions. Within Mathematica symbolic soft-
ware, HAM is employed in order to solve the Eqs. 
(11)–(16) with the correctly specified quantities 
which are critical to this method, i.e., initial guesses 
(21), auxiliary linear operators (22), and non-linear 
operators (29)–(32). After the proper selection of 
initial guess and operators, the range of non-zeroes 
auxiliary parameter is obtained, and this is visual-
ized in Fig. 2(a) and Fig. 2(b). A crucial feature of 
HAM is convergence. HAM exhibits considerable 
sensitivity to the auxiliary parameter h , Fig. 2 ((a) 
and (b)) show the h -curves for the range of h 1, h 2, 

h 3 and h 4 for F, G, H and θ, respectively. After 
proper selection of the initial guess and operators, 
the range of non-zero auxiliary parameter is ob-
tained. The ranges for the non-zero parameters h 1, 
h 2 and h 3  are 11 0.23h− < < − , 20.6 0.15h− < < − , 

30.7 0.1h− < < −  and all values of h 4 (using Eq. 
(19)) with 10th order of approximation when 
Pr = 100, K = 0.5, I = 0.5, Φ = –0.5, m = 0.3, Ec = 0.2. 
Table 1 shows that negligible variation is observed 
for orders of approximation higher than the 10th 
order. Hence, we have taken the 10th order of ap-
proximation for all computations.
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Validation with Nakamura Tridiagonal Method 
(NTM)

The present study is novel and therefore no 
comparable studies exist in the literature for verify-
ing the HAM computations. Therefore, to validate 
the present HAM solutions, an efficient finite dif-
ference procedure of the implicit type, originally 
developed by Nakamura37, was utilized to solve the 
entire ninth order boundary value problem defined 
by Eqs. (11)–(14) under boundary conditions (15, 
16). As with other finite difference schemes, a re-
duction of the higher order differential equations 
arising is intrinsic also to the Nakamura tridiagonal 
method (NTM). NTM is also particularly accurate 
at simulating parabolic problems as exemplified by 
boundary layer flows. Applications of NTM include 
elastic stability of nanostructures52, bioconvection53, 
magnetohydrodynamic nanofluid flow54. Further 
details are documented in the extensive review by 
Bég55 and the article by Nakamura56. NTM works 
well for both one-dimensional (ordinary differential 
equation systems) and two-dimensional (partial dif-
ferential) non-similar flows. NTM entails a combi-
nation of the following aspects.

(i) The flow domain for the convection field is 
discretized using an equi-spaced finite difference 
mesh in the η-direction.

(ii) The ordinary derivatives for F, G, H, θ with 
respect to η are evaluated by central difference ap-
proximations.

(iii) A single iteration loop based on the meth-
od of successive substitution is utilized due to the 
high nonlinearity of the primary/secondary momen-
tum, angular momentum, and energy conservation 
equations.

(iv) The finite difference discretized equations 
are solved as a linear second order boundary value 
problem of the ordinary differential equation type 
on the η-domain.

All the conservation equations, except the pri-
mary linear momentum Eq. (11), are second order 
equations, and for these Eqs., i.e., (12), (13), (14), 
only a direct substitution is needed. Setting:

	 P = F /	 (43)

	 Q = G	 (44)

	 R= H	 (45)

	 S = q	 (46)

Eqs. (11)–(14) then assume the form:

Nakamura primary momentum equation:

	 A1P
//+ B1P

/+C1P = S1	 (47)

Nakamura secondary momentum equation:

	 A2Q
//+ B2Q

/+C2Q = S2	 (48)

Nakamura angular momentum equation:

	 A3R
//+ B3R

/+C3R = S3	 (49)

Nakamura energy equation:

	 A4S
//+ B4S

/+C4S = S4	 (50)

where Ai=1…4, Bi=1…4, Ci=1...4 are the Nakamura matrix 
coefficients, Si=1…4 are the Nakamura source terms 
containing a mixture of variables and derivatives 
associated with the variables. The Nakamura Eqs. 
(47)–(50) are transformed to finite difference equa-

F i g .  2  – (a) h-curve; (b) h-curve

(a) (b)

Ta b l e  1 	–	Convergence of HAM series solution

Order F’’(0) G’(0) H’(0) θ(0)

4 0.4154055 –0.180111 0.123112 –1

5 0.38686 –0.179081 0.119438 –1

6 0.36723787 –0.178815 0.117465 –1

8 0.34263235 –0.178030 0.115332 –1

9 0.3349536 –0.182061 0.114917 –1

10 0.32786463 –0.171249 0.11408 –1

11 0.32532043 –0.177313 0.115215 –1

12 0.32377995 –0.179062 0.110351 –1
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tions and these are orchestrated to form a tridiago-
nal system which is solved iteratively. Mesh inde-
pendence testing was conducted and after some 
experimentation, 150 cells (steps) were selected 
since denser grids failed to modify the solution tan-
gibly. The benchmarks with HAM solutions for  
Pr = 100 (polymer coating) are documented in Ta- 
 
bles 2–5, for 

2

2

d (0)
d
F
h  

(primary shear stress), 
d (0)

d
G
h

  
 
(secondary shear stress), 

d (0)
d
H
h

 (wall couple stress),  
 
and 

d (0)
d
θ
h

 (Nusselt number function), respectively.  
 
The default data for these tables is F = – 0.5 (heat 
sink), Pr =100 (weak polymers) with Ec = 0.2 (dis-
sipation present).

Inspection of Tables 2–5 confirms excellent 
agreement between the HAM and NTM codes. 
Confidence in the MATLAB HAM solutions is 
therefore justifiably high. Further interpretation of 
these Tables will be provided in due course.

HAM results and discussion

Extensive computations were conducted. These 
are plotted in Figs. 3–13, and illustrate the impact 
of 5 thermophysical parameters (K, Ec, F, m, I) on 
the microrotation (angular velocity), H, tempera-
ture, q, and primary velocity (dF/dh). Prandtl num-
ber is constrained at Pr = 100 which corresponds to 
low eight polymers (coatings), as noted in Incropera 
and Dewitt57.

Fig. 3 shows that increasing values of the mi-
cro-inertia density parameter, I, induce a substantial 
decrease in angular velocity of micro-elements, i.e., 
increasingly negative values. This corresponds to a 
reversal in spin of micro-elements. The surface con-
dition imposed at the wedge wall implies weak mi-
cro-element rotation (n = 0.5, for which the anti-
symmetric component of the stress tensor vanishes, 
as noted by Eringen29), since gyratory motions are 
still largely inhibited by the boundary. The parame- 
 
ter 

( )

2

2
2

p

ReI
UjU

c T T

ν

∞

=

−

 is embedded in the micro-

Ta b l e  2 	–	Effect of parameters on primary skin friction, 
(Re)1/2 Cfx p

Parameters HAM NTM

m = 0 0.844946 0.844901

m = 0.1 0.591388 0.591372

m = 0.3 0.018006 0.017943

k = 0 0.02575 0.025684

k = 0.2 0.025556 0.025581

k = 0.5 0.018006 0.018034

I = 0 0.030319 0.030296

I = 0.1 0.027331 0.027352

I = 0.5 0.018006 0.018013

Ta b l e  3 	–	Effect of parameters on secondary skin friction, 
(Re)1/2 Cfx s

Parameters HAM NTM

m = 0 –0.07726 –0.07703

m = 0.1 –0.07303 –0.07295

m = 0.3 –0.08337 –0.08312

k = 0 –0.11008 –0.11014

k = 0.2 –0.09812 –0.09823

k = 0.5 –0.08337 –0.08317

I = 0 –0.08339 –0.08328

I = 0.1 –0.08338 –0.08319

I = 0.5 –0.08337 –0.08324

Ta b l e  4 	–	Effect of parameters on dimensionless wall couple 
stress, (Re)1/2 Mw

Parameters HAM NTM

m = 0 0.018126 0.01813

m = 0.1 –0.0231 –0.02322

m = 0.3 –0.16241 –0.16249

k = 0 –0.112 –0.11207

k = 0.2 –0.14302 –0.14314

k = 0.5 –0.16241 –0.16253

I = 0 –0.09822 –0.09798

I = 0.1 –0.11437 –0.11421

I = 0.5 –0.16241 –0.16244

Ta b l e  5 	–	Effect of parameters on Nusselt number,  
(Re)–1/2 Nu

Parameters HAM NTM

m = 0 0.707107 0.707122

m = 0.1 0.74162 0.741633

m = 0.3 0.806226 0.806234

k = 0 0.806226 0.806234

k = 0.2 0.806226 0.806234

k = 0.5 0.806226 0.806234

I = 0 0.806226 0.806234

I = 0.1 0.806226 0.806234

I = 0.5 0.806226 0.806234
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rotation conservation Eq. (13) in the term,  
 
 

2

2

2 d2
1 d

KI FH
m h

 
− + +  

.

 

This acts as a negative body 
 

force, and the direct proportionality to I implies that 

larger values of I impede the rotation of micro-ele-
ments. The effect is prominent enough to induce 
counter-rotation of micro-elements, i.e., reverse 
spin. Asymptotically smooth profiles were comput-
ed in the free stream for which microrotation van-
ishes, confirming the imposition of an adequately 
large infinity boundary condition. The trends con-
cur with earlier studies by Hassanien and Salama58, 
Mostafa et al.59 and Nath60. It is also noteworthy 
that the case I = 0 does not correspond to a 
Newtonian fluid as incorrectly implied in several 
studies), but to the case where micro-inertia den- 
sity has no contribution to the microrotation  
field, and supplementary terms vanish in Eq.  
(13), which contracts to the simpler case  
  
of 
  

( )
2

2

d 3 1 d d1 0
d 1 d d

H m F HK H F
mh h h

 − + − − =  +  
,
 

as 

studied analytically by Willson61.
Fig. 4 depicts the temperature (q) response to 

viscous heating parameter, i.e., Eckert number,  Ec = 
u²/cΔT. Viscous heating is a significant effect in 
polymer coating flows. When a highly viscous liq-
uid (e.g., polycarbonate suspension) is deformed in 
a flow field, some of the work of deformation is 
converted into heat by internal friction, as observed 
by Winter62. The Prandtl number assumed is high 
(Pr = 100). The momentum diffusivity is therefore 
much lower than thermal diffusivity in the flow and 
the thermal conductivity is also very low. In other 
words, heat is convected much slower than momen-
tum. This results in amplifying the contribution of 
the primary and secondary shear rates, as simulated  
 
in the term, ( )

22 2

2

d d1
d d

F GK Ec
h h

  + + 
  

, in the  
 
thermal boundary layer Eq. (14). When Ec = 0, vis-
cous dissipation effects are negated, and tempera-
tures are minimized. The implication is that omis-
sion of viscous heating leads to an under-prediction 
in temperature field. Increasing values of Eckert 
number (which relates the kinetic energy dissipated 
in the flow to the boundary layer enthalpy difference) 
leads to a rise in thermal boundary layer thickness. 
A further point of note is that, in the present analy-
sis, both primary and secondary contributions to 
viscous dissipation are included, whereas in the vast 
majority of studies in the literature, only primary 
velocity contribution is incorporated in models.

Fig. 5 visualizes the evolution in temperature 
with F (heat sink), for the case of m= 0.3 (general 
wedge flow). This wedge case corresponds to a 
wedge angle of approximately 83 degrees, i.e., a 
steep wedge configuration). In all profiles, the max-
imum temperature is computed at the wedge surface 
(wall) and for F > –1, monotonic decays into the 
free stream are observed. For the case F = –2, a 

F i g .  3 	–	 H (angular velocity) versus h for K = 0.5, Ec = 0.2, 
F = –0.5 (heat sink), Pr =100 (weak polymers), m = 0.3 (gen-
eral wedge flow) with micro-inertia density parameter (I)

F i g .  4 	–	 q (temperature) versus h for K = 0.5, I = 0.5, F = 
–0.5 (heat sink), Pr = 100 (weak polymers), m= 0.3 (general 
wedge flow) with Eckert number

F i g .  5 	–	 q (temperature) versus h for K= 0.5, I = 0.5, Ec = 
0.2, Pr =100 (weak polymers), m = 0.3 (general wedge flow) 
with F = 0 (no heat sink), –0.3, –0.7, –2.0

q
q

I = 0

I = 0.5

I = 1

I = 2

Ec = 0

Ec = 0.2

Ec = 0.4

Φ = 0

Φ = 0.3

Φ = 0.7

Φ = 2

η

η

η
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kink appears in the near-wall region, and thereafter 
a weak ascent ensues to the free stream. Stronger 
heat sink implies greater removal of heat from the 
boundary layer via the wall. This technique, as not-
ed earlier, is used in polymer fabrication processes 
to circumvent the supplementary heat build-up as-
sociated with viscous dissipation. A more homoge-
neous thermal diffusion is therefore produced in 
manufactured products, and thermal boundary layer 
thickness is significantly decreased with greater 
heat sink effect. The absence of a heat sink (F) 
would clearly result in higher temperatures, which 
are undesirable in materials processing opera-
tions16,17. A heat source (F > 0) is also unsuitable 
for thermal control in such flows, and is therefore 
not considered here.

Fig. 6 illustrates the impact of pressure gradient 
parameter (wedge angle parameter, m) on primary 
velocity distribution, dF/dh. As noted earlier, with 
m = 0, Case II is retrieved, i.e., flow past a semi-in-
finite horizontal surface (flat plate) also known as 
Blasius flow). For m = 1.0, Case III is obtained, i.e., 
forward stagnation point flow (wedge angle is 180 
degrees) adjacent to a vertical surface. The interme-
diate cases, i.e., m = 0.3 (wedge), 0.7 (wedge), cor-
respond to wedge angles of 83 degrees and 148 de-
grees, respectively. The latter case therefore implies 
extremely steep wedge geometry. Increasing wedge 
parameter clearly significantly reduces temperatures 
and cools the regime. Thermal boundary layer 
thickness is also depleted. The classical monotonic 
ascent for Blasius flow (m = 0) is increasingly 
warped with greater wedge parameter. However, for 
m = 0.3, positive values of primary velocity are still 
sustained. Negative velocities, i.e., flow reversal in 
the boundary layer is only induced, in close proxim-
ity to the wedge surface for m = 0.7, and further 
amplified for the vertical plate case. Again, asymp-
totically smooth profiles are computed in the free 
stream confirming the specification of a sufficiently 
large infinity boundary condition in the free stream 
(edge of the boundary layer).

Fig. 7 illustrates the variation in secondary ve-
locity, G, with wedge parameter, m. It is evident 
that an oscillatory topology is present for the Bla-
sius flow case (m = 0), which is progressively 
damped with increasing wedge parameter values. 
Increasing m also serves to strongly suppress sec-
ondary velocity values, i.e., decelerate the second-
ary flow. However, very strong reverse flow is in-
duced for the wider wedge angle case (m = 0.7), 
and further exacerbated for the stagnation flow case 
(m = 1.0). Maximum secondary velocity is comput-
ed for the Blasius case at intermediate distance from 
the wedge surface. Minimum secondary velocity is 
generated very close to the wedge surface for the 
stagnation flow case. The wedge parameter m fea-

tures in the secondary momentum, Eq. (12) via the  
 
coupled term, 

2 d
1 d

m FG
m h

−
+ .. As such, secondary  

 
velocity distribution is clearly very sensitive to 
modification in wedge parameter, i.e., the geometry 
of the flow. Instability is clearly maximized for the 
vertical plate scenario (stagnation case).

Fig. 8 shows the impact of wedge parameter, 
m, on angular velocity, H. It is evident that a much 
more controlled response is computed compared 
with the secondary velocity. Peak values of micro-
rotation, H, arise n oscillatory topology present in 
the Blasius flow case (m = 0), which is progressive-
ly damped with increasing wedge parameter values. 
Positive microrotation arises at the wedge surface 
(h = 0) only for the wide (obtuse) wedge case  

F i g .  6 	–	 dF/dh (primary velocity) versus h for K = 0.5, I = 
0.5, F = –0.5 (heat sink), Pr = 100 (weak polymers), Ec = 0.2, 
with m = 0 (Blasius flow), 0.3 (wedge), 0.7 (wedge), 1.0 (stag-
nation flow)

F i g .  7 	–	 G (secondary velocity) versus h for K = 0.5, I = 0.5, 
F = –0.5 (heat sink), Pr = 100 (weak polymers), Ec = 0.2, with 
m = 0 (Blasius flow), 0.3 (wedge), 0.7 (wedge), 1.0 (stagnation 
flow)
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(m = 0.7), and the forward stagnation case (m = 1). 
For the acute wedge case, (m = 0.3), and Blasius 
case, (m = 0), weakly negative and strongly nega-
tive microrotation (i.e., reverse spin of the micro-
elements), respectively, are observed at the wedge 
surface (wall). For m < 1, smooth decays are com-
puted from the wall to the free stream. However, for 
m = 1, a distinct monotonic growth arises. In all cases, 
asymptotically smooth profiles converge at h ~ 6. 
In the near-wall zone, significant reduction in mi-
crorotation is witnessed. However, further from the 
wall into the boundary layer, there is a slight upsurge 
in microrotation for the Blasius case. The wedge pa-
rameter (also known as the Falkner-Skan power-law 
parameter) features extensively in several terms in 
the angular momentum boundary layer, Eq. (13),  

3 1 d d
1 d d

m F HH F
h h

  − −  
  

 and 

2

2

2 d2
1 d

KI FH
m h

 
− + +    

The wedge parameter therefore exerts a marked in-
fluence on rotary motions of the micro-elements. 
Generally, the increase in wedge parameter, howev-
er, produces significant deceleration in angular ve-
locity and reduces angular momentum boundary 
layer thickness. This trend has also been observed 
by Ishak et al.63 although with no physical interpre-
tation and with a greater focus on multiple solutions 
of purely mathematical interest.

Fig. 9 shows the influence of wedge parameter, 
m, on temperature, q, again for the dissipative poly-
mer flow case (Ec = 0.2, Pr = 100). Increasing m 
clearly decreases temperatures weakly, with the 
greatest modification at some distance from the 
wedge surface. Thermal boundary layer thickness is 
therefore marginally reduced with larger wedge pa-
rameters. A slightly cooler regime is produced for 
the forward stagnation flow case (m = 1) compared 
with the Blasius flat plate case (m = 0), with wedge 
cases falling in between these extremes. Although 
m does arise in the energy (thermal) boundary layer,  
 
Eq. (14) via the terms ( ) d1

d
Fm
h

− , ( ) d1
d

m F
h

−
q ,  

 
since m is a function of Hartree pressure gradient 
parameter (b*), the dominant impact is on linear 
(primary, secondary) velocity fields and angular ve-
locity, rather than the temperature field. With regard 
to polymer coating systems, enhanced temperature 
control (improved cooling) is clearly achieved via 
the forward stagnation scenario rather than any oth-
er geometrical case, although, as noted earlier, (Fig. 
5), heat sink (F) has a much more profound impact 
and induces much stronger cooling.

Figs. 10–12 illustrate the influence of Eringen 
micropolar, i.e., vortex viscosity parameter (K) on 
primary velocity, secondary velocity, angular veloc-
ity, and temperature, respectively, again for the dis-
sipative polymer acute wedge case. A strong decel-
eration in primary flow, (Fig. 10), is induced which 
is contrary to the conventional response in flat plate 
boundary layer flows, as noted by Hayat et al.31, 
Gupta et al.32 and Nath60, among others. The cus-
tomary drag-reduction effect of micropolar fluids in 
flat plate flows is therefore not achieved for wedge 
flows, since the primary velocity, dF/dh, is reduced. 
However, at any value of Eringen parameter, back-
flow is not induced and consistently smooth ascents 
from the wedge surface to the free stream are com-
puted for primary velocity. The Newtonian fluid 
case (K = 0) achieves maximum acceleration, and 
the strongly micropolar case, (K = 2), the greatest 
deceleration. Evidently, the modified shear term,  
 
i.e., ( )

3

3

d1
d

FK
h

+  and coupling term, d
d
HK
h

+ ,  
 
which feature the Eringen micropolar parameter, 

F i g .  8 	–	 H (angular velocity) versus h for K = 0.5, I = 0.5, 
F = –0.5 (heat sink), Pr = 100 (weak polymers), Ec = 0.2, with 
m = 0 (Blasius flow), 0.3 (wedge), 0.7 (wedge), 1.0 (stagnation 
flow)

F i g .  9 	–	 q (temperature) versus h for K = 0.5, I = 0.5, F = 
–0.5 (heat sink), Pr = 100 (weak polymers), Ec = 0.2, with m = 
0 (Blasius flow), 0.3 (wedge), 0.7 (wedge), 1.0 (stagnation 
flow)
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produce considerable modifications in the primary 
velocity field. Primary momentum boundary layer 
thickness is therefore increased with micropolar 
vortex viscosity, i.e., higher values of K. Converse-
ly, a strong enhancement in secondary velocity, G, 
is computed at higher values of Eringen micropolar 
parameter, K, as observed in Fig. 11. This behaviour 
is most evident near the wedge surface. The micro-
polarity effect is imparted to the secondary flow  
 
field via the term, ( )

2

2

d 1
d

GK
h

+ , in Eq. (12). The  
 
reverse effect is generated away from the wall with 
a progressive suppression in secondary velocity. 
This switch in response is not sustained in the pri-
mary flow for which a consistent deceleration in 
primary flow is observed throughout the boundary 
layer (Fig. 10). Fig. 12 shows that a weak increase 
in angular velocity is produced near the wall with 
increasing Eringen micropolar parameter. However 

quickly this pattern is altered and a short distance 
into the boundary layer transverse to the wedge sur-
face, substantial reversal in angular velocity is in-
duced with increasing vortex viscosity (higher K 
values), and this is maintained into the freestream. 
Generally, angular momentum boundary layer 
thickness is therefore elevated for strongly microp-
olar fluids. Finally, in Fig. 13, a distinct and consis-
tent reduction in temperature is produced with in-
creasing K values. Increasing vortex viscosity 
relative to the Newtonian dynamic viscosity (K de-
fines the ratio of these two viscosities) results in a 
cooling of the regime and diminishing in thermal 
boundary layer thickness. This cooling effect has 
also been computed for flat plate micropolar con-
vection flows31,32 and is achieved also for the wedge 
flow case (m = 0.3).

Tables 2–5, as noted earlier, provide the influ-
ence of wedge parameter (m), Eringen vortex

F i g .  1 0 	 –	 dF/dh (primary velocity) versus h for I = 0.5, F = 
–0.5 (heat sink), Pr = 100 (weak polymers), m = 0.3 (general 
wedge flow), Ec = 0.2, with K = 0 (Newtonian), 0.5, 1, 2, 5

F i g .  11 	 –	 G (secondary velocity) versus h for I = 0.5, F = 
–0.5 (heat sink), Pr = 100 (weak polymers), m = 0.3 (general 
wedge flow), Ec = 0.2, with K = 4, 5, 7, 8

F i g .  1 2 	 –	 H (angular velocity) versus h for I = 0.5, F = –0.5 
(heat sink), Pr = 100 (weak polymers), m = 0.3 (general wedge 
flow), Ec = 0.2, with K = 0 (Newtonian), 0.5, 1, 2, 5

F i g .  1 3 	 –	 q (temperature) versus h for I = 0.5, F = –0.5 
(heat sink), Pr = 100 (weak polymers), m = 0.3 (general wedge 
flow), Ec = 0.2, with K = 0 (Newtonian), 0.5, 1, 2, 5
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viscosity parameter (K), and micro-inertia density

parameter (I) on 
2

2

d (0)
d
F
h , i.e., (Re)1/2Cfxp (primary  

 
shear stress), 

d (0)
d
G
h

, i.e., (Re)1/2Cfxs (secondary  
 
shear stress), d (0)

d
H
h

, i.e., (Re)1/2Mw (wall couple  
 
stress) and d (0)

d
θ
h

, i.e., (Re)–1/2Nu (Nusselt number 

function), respectively. Table 2 shows that with in-
creasing m, K, I, primary skin friction is consistent-
ly decreased, i.e., flow deceleration is induced. This 
concurs with the primary velocity graph described 
earlier, and shows that drag-reduction is not 
achieved with wedge configurations (m = 0.1, 0.3), 
whereas it is attained with flat plate Blasius flow  
(m = 0). Table 3 demonstrates that secondary skin 
friction is also decreased (flow retardation) with in-
creasing wedge parameter (m), whereas it is in-
creased with Eringen vortex viscosity parameter 
(K), and also very weakly increased with micro-
inertia density parameter (I). Table 4 reveals that 
dimensionless wall couple stress, i.e., angular velocity 
gradient at the wedge surface (wall), is significantly 
reduced with increasing wedge parameter (m), Erin-
gen vortex viscosity parameter (K), and micro-iner-
tia density parameter (I). Maximum wall couple 
stress is therefore associated always with the Bla-
sius flow scenario, (m = 0). Finally, a significant 
enhancement in Nusselt number is observed in 
Table 5, with elevation in wedge parameter (m), 
whereas no tangible modification is produced with 
increase in Eringen vortex viscosity parameter (K) 
or micro-inertia density parameter (I). Heat transfer 
to the wall is therefore assisted with greater pres-
sure gradient effect, implying a cooling in the 
boundary layer. Microstructural non-Newtonian ef-
fects are found to have no marked influence on con-
vection of heat to the wall, i.e., they do not notice-
ably alter the relative contribution of convection to 
conduction heat transfer at the wedge surface.

Conclusion

Motivated by applications in thermal polymer 
coating processes, a mathematical model for ax-
isymmetric micropolar convection boundary layer 
flow from a two-dimensional wedge with heat sink 
and viscous dissipation effects has been presented. 
Blasius flow and forward stagnation flow have also 
been considered as special cases of the general 
wedge (Falkner-Skan) flow. The non-dimensional-
ized ordinary differential boundary value problem 
has been solved with the semi-analytical/numerical 

homotopy analysis method (HAM). A full and rig-
orous validation of HAM solutions has also been 
conducted with the Nakamura tridiagonal method 
(NTM). A 10th order of HAM approximation has 
been employed which achieves rapidly convergent 
and highly accurate solutions. Primary and second-
ary velocity, angular velocity, and temperature re-
sponse to a variation in micropolar rheological (vor-
tex viscosity) parameter, Eckert number (viscous 
dissipation), Falkner-Skan pressure gradient (i.e., 
wedge power law) parameter, and heat sink param-
eter at a high Prandtl number of 100, representative 
of polymers, have been computed and visualized 
graphically. Primary and secondary skin friction, 
micropolar wall couple stress, and Nusselt number 
distributions have also been tabulated for selected 
parameters. The influence of these parameters on 
momentum and thermal boundary layer thicknesses 
has also been addressed. The present study has 
shown that:

(i) Primary skin friction and wall couple stress 
are both reduced with increasing wedge parameter 
(m), Eringen vortex viscosity parameter (K), and 
micro-inertia density parameter (I).

(ii) Secondary skin friction is decreased with 
increasing wedge parameter (m), whereas it is ele-
vated with Eringen vortex viscosity parameter (K), 
and also slightly enhanced with greater micro-iner-
tia density parameter (I).

(iii) Nusselt number is enhanced substantially 
with greater wedge parameter (m), whereas it is not 
modified with either Eringen vortex viscosity pa-
rameter (K) or micro-inertia density parameter (I).

(iv) Temperature and thermal boundary layer 
thickness are both suppressed with increasing 
wedge parameter (they are maximized for the Bla-
sius flow case of vanishing wedge parameter).

(v) Temperature and thermal boundary layer 
thickness is strongly depleted with increasing wall 
heat sink effect, i.e., the regime is cooled, which is 
beneficial to temperature regulation in polymer 
coating dynamics.

(vi) Strong reverse spin is generated in the mi-
crorotation with increasing vortex viscosity (higher 
K values), and angular momentum boundary layer 
thickness is increased.

(vii) Temperature is reduced (as is thermal 
boundary layer thickness) with increasing K values, 
confirming the cooling characteristics of micropolar 
fluids, which may be exploited in thermal regula-
tion of polymer coating systems.

HAM has been shown to be a very versatile 
and accurate analytical tool for simulating nonlinear 
multiphysical micropolar coating flow problems. 
The current study has however been confined to 
isothermal flow, and has also neglected slip effects 
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which may arise in polymeric hydrophobic near-
wall phenomena. Future investigations will exam-
ine time-dependent micropolar flows64 and multiple 
wall slip (hydrodynamic and thermal slip), and mass 
diffusion effects65, and will be reported imminently.

N o m e n c l a t u r e

Ai=1...4	 –	 Nakamura matrix coefficients, –
Bi=1...4, 	 –  Nakamura matrix coefficients, – 
Ci=1...4	
c	 –	 Positive constant, –
ci	 –	 Arbitrary constants, –
cp	 –	 Specific heat at constant pressure (isobaric), 

J kg–1 K–1

Cfx,p	 –	 Dimensionless primary skin friction, –
Cfx,s	 –	 Dimensionless secondary skin friction, –
Ec	 –	 Eckert number, –
f	 –	 Body force per unit mass vector, N kg–1

F(η)	 –	 Dimensionless stream function, –
F0(η)	 –	 Initial guess of, –
F*m(η)	 –	 Solution of mth order deformation equation 

for F(η, ξ), –
G
.
	 –	 Angular velocity (microrotation or gyration) 

vector, radians s–1

G (η)	 –	 Dimensionless secondary velocity, –
G0(η)	 –	 Initial guess of G(η, ξ) (–)
G*m(η)	 –	 Solution of mth order deformation equation 

for G(η, ξ), –
H(η)	 –	 Dimensionless angular velocity (microrota-

tion), –
H0(η)	 –	 Initial guess of H(η, ξ), –
H*m(η)	 –	 Solution of mth order deformation equation 

for H(η, ξ), –
h 	 –	 Control parameter for F, G, H and θ, –
I	 –	 Micro-inertia density dimensionless parame-

ter, –
j	 –	 Micro–inertia density, m–1

k	 –	 Thermal conductivity of the micropolar fluid, 
W m–1 K–1

K	 –	 Vortex viscosity parameter, kg m–1 s–1

l	 –	 Body couple per unit mass vector, N m kg–1

L	 –	 Arbitrary scale length, m
Li	 –	 Auxiliary linear operator, –
m = β*/(2–β*)	 –  Hartree pressure gradient parameter, –
mw	 –	 Dimensional wall couple stress, –
N	 –	 Angular velocity (microrotation) component 

in the x–y plane, radians s–1

Nu	 –	 Local Nusselt number, –
Ni	 –	 Auxiliary non–linear operator, –
P	 –	 Thermodynamic pressure, Pa
p	 –	 Embedding parameter, –

Pr	 –	 Prandtl number, –
Q	 –	 Heat sink parameter, –
q*w	 –	 Rate of heat transfer, W m–2

Re	 –	 Reynolds number, –
Si=1...4	 –	 Nakamura source terms, –
T	 –	 Fluid temperature, K
T∞	 –	 Ambient fluid (free stream), K
u	 –	 Translational velocity along the x-direction, 

m s–1

U=cxm	 –	 External velocity, m s–1

v	 –	 Translational velocity along the y-direction, 
m s–1

V
.
	 –	 Translational velocity vector, m s–1

x,y,z	 –	 Cartesian coordinates, m

G r e e k  s y m b o l s

a, b	 –	 Spin gradient viscosity coefficients for 
micropolar fluids, kg m–1 s–1

γ=(μ+κ/2)j	 –	 Eringen spin gradient viscosity, kg m–1 s–1

μ	 –	 Dynamic viscosity, m2 s–1

λ	 –	 Eringen second order viscosity coeffi-
cient, kg m–1 s–1

ρ	 –	 Mass density of micropolar fluid, kg m–3

κ	 –	 Vortex viscosity coefficient, kg m–1 s–1

θ(η)	 –	 Dimensionless temperature function, –
θ0(η)	 –	 Initial guess of θ(η,ξ), –
θ*m(η)	 –	 Solution of mth order deformation equa-

tion for θ(η,ξ), –
η	 –	 Pseudosimilarity coordinate in the y-di-

rection, –
τx	 –	 Primary dimensional wall shear stress,  

N m–2

τz	 –	 Secondary dimensional wall shear stress, 
N m–2

Φ	 –	 Heat sink parameter (negative), –
Ω=πβ*	 –	 Total angle of the wedge, radians

S u b s c r i p t s

w	 –  Wall conditions
∞	 –  Ambient condition

S u p e r s c r i p t s

'	 –  Prime denotes the derivative with respect to η
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