
  

Abstract—In this paper, we have developed and implemented 

Minimum Mean Square Channel Estimation with Compressive 

Sensing (MMSE-CS) algorithm in MIMO-OFDM systems. The 

performance of this algorithm is analyzed by comparing it with 

Least Square channel estimation with compressive sensing (LS-

CS), Least Square (LS) and Minimum Mean Square Estimation 

(MMSE) algorithms. It is observed that the performance of 

MMSE-CS in terms of Bit Error Rate (BER) metric is definitely 

better than LS-CS and LS algorithms and it is at par with MMSE 

algorithm. Moreover the role of compressive sensing theory in 

channel estimation is accentuated by the fact that in MMSE-CS 

algorithm only a very small number of channel coefficients are 

sensed to recreate the transmitted data faithfully as compared to 

MMSE algorithm. 

 
Index Terms—Compressive sensing, LS, MMSE, channel 

estimation, MIMO, OFDM. 

 

I. INTRODUCTION 

MIMO-OFDM technology offers high spectral efficiency, 

high reliability, high data rate, mitigation of multipath fading 

effect, etc. Hence MIMO-OFDM technology has become the 

basis of Long Term Evolution (LTE) systems and wireless 

broadband communication systems [1-5]. Faithful and speedy 

recovery of the transmitted signal at the receiver side with 

minimum overhead in terms estimating the Channel State 

Information (CSI) is very crucial in any communication system. 

Abundant amount of work has already been done in exploring 

classical channel estimation techniques such as Least Square 

(LS) and Bayesian channel estimation techniques like 

Minimum Mean Square (MMSE). LS channel estimation 

technique is popular due to its simplicity in implementation. 

Also, it does not require any prior information of channel 

statistics. Although MMSE channel estimation requires prior 

information of the channel statistics and is more complex than 

the LS channel estimation technique, its performance in terms  
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of metrics like Bit Error Rate (BER) and Mean Square Error 

(MSE) is much better than LS channel estimation technique [6-

10]. Based on the theory that the transmission channel is sparse 

with only few major channel coefficients, compressive sensing 

based channel estimation algorithms are also gaining popularity  

[11-18]. As claimed by the compressive sensing theory, if the 

signal is sparse in its known basis, then fewer measurements of 

the signal may be needed to represent the signal in its 

compressed form [19-21]. Moreover, an appropriate recovery 

algorithm will be able to recreate the original signal from its 

compressed structure. In [22], LS-CS channel estimation 

technique is implemented in SISO and MIMO OFDM system 

which takes into account sparsity of the channel and explores 

the effectiveness of compressive sensing theory in channel 

estimation . In [23], the effect of varying Fast Fourier 

Transform (FFT) size in OFDM on the performance of LS-CS 

channel estimation algorithm is observed. In [24], performance 

of LS-CS is analyzed based on the recovery of transmitted audio 

signal over a sparse noisy channel. It is observed that with LS-

CS channel estimation technique, an appropriate reconstruction 

of transmitted data is possible at the receiver by just sensing a 

few channel coefficients in a very noisy channel, by selecting 

the optimum FFT size.  

In this paper, we have developed and implemented MMSE-

CS channel estimation algorithm. We have compared the 

performance of MMSE-CS algorithm with LS-CS algorithm 

implemented in [22] and its performance to recover audio data 

was analyzed in [24]. To accentuate the importance of 

compressive sensing in channel estimation, we have also 

compared the performance of MMSE-CS in terms of BER with 

classical LS and MMSE channel estimation algorithms.   

 In section II we briefly describe the design and 

implementation of LS-CS channel estimation algorithm that 

was implemented in [22], followed by implementation of  

MMSE-CS channel estimation algorithm. Section III gives the 

simulation results of LS, MMSE, LS-CS and MMSE-CS 

channel estimation techniques and its analysis, followed by 

conclusion in section IV. 

II. SYSTEM MODEL 

A. LS and MMSE Channel Estimation Algorithms 

When the information signal is transmitted from transmitter
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to the receiver, it gets distorted due to channel characteristics. 

With the aid of an appropriate channel estimation algorithm, it 

is possible to recover the transmitted signal faithfully at the 

receiver with minimum error. In pilot aided channel estimation 

techniques, the channel characteristics or the CSI is estimated 

by transmitting a pilot signal which is also know to the receiver. 

LS and MMSE techniques are the most widely used and popular 

techniques to estimate the CSI [2],[25],[26] . 

Consider the following equation  

 

𝑌 = 𝑋𝐻 + 𝑉, (1) 

 

here 𝑌 is the received signal vector corresponding to the 

transmitted pilot signal vector 𝑋, CSI is denoted by  𝐻 and 𝑉 is 

the noise vector.  Then according to the LS channel estimation 

technique, the estimate of channel 𝐻, denoted by 𝐻̂𝐿𝑆 is given 

by  

 

𝐻̂𝐿𝑆 = 𝑌𝑋𝑇(𝑋𝑋𝑇)−1. (2) 

 

This estimated CSI is further used to reconstruct the 

transmitted signal at the receiver side.  As mentioned in [2], for 

MMSE channel estimation technique, the unknown channel 

statistics is estimated based on prior knowledge obtained from 

LS estimation as  

 

𝐻̂𝑀𝑀𝑆𝐸 = 𝑊𝐻̂𝐿𝑆, (3) 

 

where 𝑊 is known as the weight matrix given by  

  

𝑊 = 𝑅𝐻𝐿𝑆𝐻̂𝐿𝑆
𝑅𝐻̂𝐿𝑆𝐻̂𝐿𝑆

,    (4) 

 

where 𝑅𝐻𝐿𝑆𝐻̂𝐿𝑆
 is the cross correlation matrix between the  

true channel vector and temporary channel estimated 

vector. 𝑅𝐻̂𝐿𝑆𝐻̂𝐿𝑆 is the autocorrelation matrix. 

B. Compressive Sensing Theorem in Channel Estimation 

Algorithm 

Consider a signal of length 𝑁, which is sparse with 𝑀 

significant channel coefficients, where 𝑀 ≪ 𝑁. According to 

compressive sensing theory, it is possible to reconstruct the 

original signal back even if only 𝐾 coefficients out of the total 

𝑁 coefficients are sensed randomly by using appropriate 

measurement matrix and reconstruction algorithm [21],[27-30].  

Here 𝐾 ≪ 𝑁 and is given by  

 

𝐾 ≥ 𝐶𝑀 𝑙𝑛 (
𝑁

𝑀
), 

(5) 

where 𝐶 > 0 is a constant. 

Bernoulli matrix or Gaussian random matrix can be taken as 

measurement matrix 𝐴 of size 𝐾𝑋𝑁.  Hence the compressive 

sensing problem could be stated in two parts where first we have 

to develop a good measurement matrix to sense the sparse 

signal and then use an appropriate recovery algorithm, to 

reconstruct the original signal.  

It is observed that classical channel estimation  techniques 

such as LS and MMSE, together with multicarrier modulation 

systems can considerably enhance the system performance 

[7],[31]. Taking into account sparsity of the channel with only 

few significant channel coefficients, we can apply the 

compressive sensing theory in sparse channel estimation, 

thereby reducing the percentage of total channel coefficients 

sensed which in turn reduce the mathematical complexity and 

processing time required to recover all the channel coefficients.  

In the next subsection, implementation of LS-CS and MMSE-

CS channel estimation algorithms is detailed. 

 

 

 
 

Fig. 1. LS-CS Channel Estimation Algorithm Block Diagram 
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C. Design and Implementation of LS-CS estimation Technique 

Fig. 1. shows the block diagram of LS-CS estimation 

technique which was implemented in [22] and Table I shows its 

algorithm.  

The channel model considered in this implementation 

follows Rayleigh’s distribution. The presented Clarke’s model 

given in [32] is made sparse using a post processing algorithm. 

A block of pilot vector X is transmitted to obtain the received 

vector 𝑌 in SISO-OFDM system. The received vector is given 

by equation (6)  

 

𝑌𝑝𝑖𝑙𝑜𝑡 = (𝐴ℎ𝑠𝑝𝑎𝑟𝑠𝑒) ∗ 𝑋𝑝𝑖𝑙𝑜𝑡 + 𝑉, (6) 

 

here 𝐴 is a 𝐾𝑋𝑁 Gaussian random matrix, ℎ𝑠𝑝𝑎𝑟𝑠𝑒  is the sparse 

channel coefficient vector and 𝑉 is the noise vector. Here 

number of rows, 𝐾  of the matrix 𝐴 stands for the number of 

channel coefficients sensed and is calculated using equation (5) 

and 𝑁 is the total number of channel coefficients in the given 

channel.  

Let ℎ𝑐𝑜𝑚 = 𝐴ℎ𝑠𝑝𝑎𝑟𝑠𝑒 , be the compressed channel vector then 

equation (6) can be written as follows 

 

𝑌𝑝𝑖𝑙𝑜𝑡 = ℎ𝑐𝑜𝑚 ∗ 𝑋𝑝𝑖𝑙𝑜𝑡 + 𝑉. (7) 

 

Here the compressed channel vector ℎ𝑐𝑜𝑚  has only non-zero 

major channel coefficients. ℎ𝑐𝑜𝑚 is estimated using LS 

estimation technique given by equation (2) to obtain ℎ̂𝑐𝑜𝑚. The 

estimate of sparse channel ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒  is then obtained using from  

ℎ̂𝑐𝑜𝑚 using 𝑙1 magic Basis Pursuit algorithm. 

According to this algorithm, we obtain ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒 such that error 

of |ℎ̂𝑐𝑜𝑚 −  ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒| is minimum. The estimated channel 

ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒 is then used to reconstruct the transmitted data. The 

same logic can be further extended to estimate the channels in  

MIMO-OFDM systems.  

D. Design and Implementation of MMSE-CS Channel 

Estimation Algorithm 

In this section, we have implemented compressive sensing 

algorithm in MMSE channel estimation. We have constructed a 

sparse channel model using Clarke’s prototype of Rayleigh 

channel. The compressed channel vector ℎ𝑐𝑜𝑚 of equation (7) 

is obtained by using equation (2) and  ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆  is obtained 

using 𝑙1 magic algorithm as done in LS-CS implementation. 

Then we obtain ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝑀𝑀𝑆𝐸, which is the estimated channel 

using MMSE-CS technique, derived from  ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆 which is 

estimated using LS-CS technique.  

TABLE I 

LS-CS CHANNEL ESTIMATION ALGORITHM 

Algorithm: LS-CS channel estimation 

Input: 𝑋𝑝𝑖𝑙𝑜𝑡, 𝑌𝑝𝑖𝑙𝑜𝑡, 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 

Output: ℎ̂𝑐𝑜𝑚, ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒 

Steps: 

1. Iterate for SNR in range 𝑘 = 𝑚𝑖𝑛 𝑡𝑜 𝑚𝑎𝑥 value 

a. Obtain the compressed channel vector 𝐻̂𝑐𝑜𝑚 = 𝑌𝑝𝑖𝑙𝑜𝑡 ∗

𝑋𝑝𝑖𝑙𝑜𝑡
−1  

b. Iterate till 𝜀𝑚𝑖𝑛 is obtained 

i. 𝜀 = |ℎ̂𝑐𝑜𝑚 − 𝐴ℎ𝑠𝑝𝑎𝑟𝑠𝑒| 

ii. If  𝜀<𝜀𝑚𝑖𝑛 

• 𝑡𝑒𝑚𝑝 ←  ℎ𝑠𝑝𝑎𝑟𝑠𝑒 

iii. ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒(𝑘) ← 𝑡𝑒𝑚𝑝 

c. If  𝑘 < 𝑚𝑎𝑥 

Go to step 1.a. 

Else 

Exit 

 

 
 

Fig. 2. MMSE-CS Channel Estimation Algorithm Block Diagram 
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Hence, 

 

ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝑀𝑀𝑆𝐸 = 𝑊 ∗  ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆, (8) 

where 𝑊 is the weight matrixgiven by equation (4). For 

MMSE–CS, the corresponding weight matrix W will be, 

 

𝑊 = (𝑅ℎ𝑠𝑝𝑎𝑟𝑠𝑒ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆
)

∗ (𝑅ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆
), 

(9) 

 

where 𝑅ℎ𝑠𝑝𝑎𝑟𝑠𝑒ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆
 is the cross-correlation matrix between 

true channel vector and estimated LS channel vector obtained. 

 𝑅ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆
 is the auto correlation matrix of the 

estimated LS channel vector.   

Fig. 2. shows the block diagram of the MMSE-CS channel 

estimation technique implementation. It is seen from the block 

diagram that the process of MMSE-CS channel estimation is 

similar to LS-CS channel estimation; however, MMSE-CS 

obtains a better estimate of the channel due to the refined weight 

matrix. Here the channel coefficient vector using LS channel 

estimation ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆 is estimated using  𝑙1 magic algorithm. 

According to this algorithm, that value of ℎ𝑠𝑝𝑎𝑟𝑠𝑒  which gives 

minimum value for |ℎ̂𝑐𝑜𝑚 − 𝐴ℎ𝑠𝑝𝑎𝑟𝑠𝑒| is taken as ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆. 

Table II gives the algorithm of MMSE-CS channel estimation 

algorithm. 

 

III. SIMULATION RESULTS AND DISCUSSION 

In this section, the simulation results of LS, MMSE, LS-CS 

and MMSE-CS are presented. Performance of the 

aforementioned techniques are analyzed and compared taking 

into consideration various parameters like number of channel 

coefficients, sparsity of the channel, percentage of the total 

channel coefficients sensed and the FFT size. 

A. Performance Analysis of LS, LS-CS, MMSE, MMSE-CS in 

SISO OFDM Systems 

For this analysis, an image is transmitted over a sparse 

Rayleigh channel in SISO-OFDM system. The image is 

reconstructed at the receiver side by individually applying LS, 

MMSE, LS-CS and MMSE-CS channel estimation algorithms. 

The specifications used for the image transmission are given in 

Table III.  

BER obtained for each channel estimation algorithm when 

the image is transmitted in a sparse channel with sparsity in the 

range of 6-11% for various SNRs is specified in Table IV.  

It is seen that all the channel estimation algorithms are capable 

of reconstructing the image at the receiver side faithfully with 

almost zero BER for all SNR equal to and above 5dB.  For LS 

and MMSE all the 150 channel coefficients are sensed.  

 

 

However, for LS-CS and MMSE-CS, only 18-24% of the total 

150 channel coefficients are sensed, thereby reducing the 

overhead of estimating all the channel coefficients. For 2dB 

SNR, the BERs for MMSE and MMSE-CS are less than LS and 

LS-CS. Fig 3, 4, 5 and 6 show the reconstructed image using 

LS, LS-CS, MMSE and MMSE-CS channel estimation 

technique at 2dB SNR respectively. 

TABLE II 

MMSE-CS CHANNEL ESTIMATION ALGORITHM 

Algorithm: MMSE-CS  channel estimation 

Input: 𝑋𝑝𝑖𝑙𝑜𝑡, 𝑌𝑝𝑖𝑙𝑜𝑡, 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑀𝑎𝑡𝑟𝑖𝑥 𝐴 

Output: ℎ̂𝑐𝑜𝑚, ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝑀𝑀𝑆𝐸(𝑘) 

Steps: 

1. Iterate for SNR in range 𝑘 = 𝑚𝑖𝑛 𝑡𝑜 𝑚𝑎𝑥 value 

a. Obtain the compressed channel vector ℎ̂𝑐𝑜𝑚 = 𝑌𝑝𝑖𝑙𝑜𝑡 ∗ 𝑋𝑝𝑖𝑙𝑜𝑡
−1  

b. Iterate till 𝜀𝑚𝑖𝑛 is obtained 

i. 𝜀 = |ℎ̂𝑐𝑜𝑚 − 𝐴ℎ𝑠𝑝𝑎𝑟𝑠𝑒| 

ii. If  𝜀<𝜀𝑚𝑖𝑛 

• then 𝑡𝑒𝑚𝑝 ←  ℎ𝑠𝑝𝑎𝑟𝑠𝑒 

iii. ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆(𝑘) ← 𝑡𝑒𝑚𝑝 

iv. 𝑊 = (𝑅ℎ𝑠𝑝𝑎𝑟𝑠𝑒ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆
) ∗ (𝑅ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆

) 

v. ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝑀𝑀𝑆𝐸
(𝑘) = 𝑊 ∗  ℎ̂𝑠𝑝𝑎𝑟𝑠𝑒_𝐿𝑆

(𝑘) 

c. If  𝑘 < 𝑚𝑎𝑥 

Go to step 1.a. 

Else 

Exit 

 

TABLE III 

SYSTEM SPECIFICATIONS FOR SISO-OFDM SYSTEM  

Specification Values 

Information  size 256*256*8 bits 

Number of subcarriers 64 

Total channel coefficients in 

Rayleigh channel (N) 

150 

Sparsity of channel (%M) 6-11% 

Percentage of channel 
coefficients sensed (%K) in case 

of LS-CS and MMSE-CS 

18-24% 

 

TABLE IV 
BER COMPARISON FOR LS, LS-CS, MMSE, MMSE-CS CHANNEL 

ESTIMATION ALGORITHM 

SNR BER 

 LS LS-CS MMSE MMSE-CS 

8 0 0 0 0 

5 0 0 0 0 

2 0.0018 0.0028 0.0015 0.0016 

0 0.0022 0.0031 0.0020 0.0021 

 

 
Fig. 3. Recovered image by employing LS estimation technique for 

SNR=2dB 

Image recovered with LS estimation
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It is observed that recovery of image using MMSE and 

MMSE-CS is better than LS and LS-CS. Nonetheless, the major 

advantage of MMSE-CS is that only 18-24 % of the total 150 

channel coefficients are sensed to recreate the image at the 

receiver.  

B. Performance Analysis of LS, LS-CS, MMSE, MMSE-CS in 

2X2 MIMO OFDM Systems 

Here, a scenario is considered where all the four channels of 

2X2 MIMO have different sparsity levels. Here, along with the 

performance analysis of LS, MMSE, LS-CS and MMSE-CS 

channel estimation techniques, effect of sparsity on the 

performance with respect to BER metric is also analyzed. 

At first, an image is transmitted over uncorrelated Rayleigh 

channels with different sparsity, at a given SNR of 2dB, in a 

2X2 MIMO–OFDM system. The specifications used for the 

simulation are detailed in Table V. Table VI shows the values 

of BER obtained when the image through all the four channels 

is reconstructed using LS, LS-CS, MMSE and MMSE-CS 

channel estimation techniques.  

From Table VI, it is observed that the performance of 

MMSE and MMSE-CS is better than LS and LS-CS at any 

sparsity level. Moreover, we also deduce that the MMSE-CS 

gives a performance similar to MMSE, however by sensing 

just a small percentage of the total channel coefficients. For 

both MMSE-CS and LS-CS techniques, only some percentage 

of the total channel coefficients is sensed. For example, in case 

of channel 1, where the sparsity of the channel is only 7%, only 

19% of the total channel coefficients are sensed for both LS-

CS and MMSE-CS.  However, MMSE-CS outperforms LS-CS 

by 48% in terms of BER. In addition, it is also noted that 

performance of all the channel estimation is better if the sparsity 

level is between 6-11% of the total channel coefficients. 

Further a comparison of MMSE and MMSE-CS channel 

estimation is done in a 2X2 MIMO-OFDM system with four 

channels of different sparsity level over a SNR range of 0 to 

10dB. The specifications used for simulation are given in Table 

VII below. The sparsity level of each channel and the number 

of channel coefficients sensed are given in Table VIII.  

TABLE VI 

BER COMPARISON FOR LS, LS-CS, MMSE, MMSE-CS CHANNEL ESTIMATION ALGORITHM 

Channel 

number 

Sparsity of channel 

(%M) 

Channel coefficients sensed 

(%K) 

BER % improvement of 

MMSE 

   LS LS-CS MMSE MMSE-CS  

1 7% 19% 0.0421 0.0163 0.0082 0.00833 48% 

2 12% 26% 0.1112 0.0911 0.0245 0.0249 72% 

3 11% 24% 0.0147 0.0096 0.0027 0.0039 59% 

4 15% 28% 0.0381 0.0254 0.0063 0.0067 73% 

 

 
Fig. 5. Recovered image by employing MMSE estimation technique for 

SNR=2dB 
 

 

Image recovered with MMSE estimation
TABLE V 

SYSTEM SPECIFICATIONS FOR MIMO OFDM  

Specification Values 

System 2x2 MIMO 

Information size 217 bits 

Number of subcarriers 64 

SNR  2dB 

Total channel coefficients in 

Rayleigh channel  (N) 

150 

 

 
Fig. 4. Recovered image by employing LS-CS estimation technique for 

SNR=2dB 

 

 

Image recovered with LS estimation

 
Fig. 6. Recovered image by employing MMSE-CS estimation 

technique for SNR=2dB 

 
 

 

Image recovered with MMSE-CS estimation
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Fig. 7. portrays the SNR versus BER curve for all the four 

channels with different sparsity levels using MMSE and 

MMSE-CS channel estimation algorithm. 

On analyzing Table VIII and Fig 7, the fact that sparser 

channel gives better performance in terms of BER established 

in [22] is affirmed. Channel 3 is the sparsest with only 10% 

significant non-zero channel coefficients. BER versus SNR 

curve for this channel is better than the other channels for both 

MMSE as well as MMSE-CS channel estimation technique. It 

is also observed that BER MMSE-CS is almost the same as 

MMSE. However, at 5 dB SNR, the BER for MMSE and 

MMSE-CS is 10-5.2 and 10-4.2 respectively. But at the same time, 

in MMSE-CS channel estimation technique, only 23% of the 

total channel coefficients are sensed to recover the transmitted 

data, whereas in MMSE channel estimation technique, all the 

channels coefficients are to be sensed to faithfully recreate the 

transmitted data.  

IV. CONCLUSION 

The results obtained by implementing compressive sensing 

based MMSE-CS channel estimation algorithm are 

demonstrated in this paper. The result analysis indicates that the 

performance of MMSE-CS in terms of BER metric is definitely 

better than LS and LS-CS algorithms. It is also noted that 

MMSE-CS performance is at par with MMSE by sensing 

considerably lesser number of channel coefficients. The 

importance of compressive sensing theory in channel 

estimation is accentuated by the fact that LS-CS and MMSE-

CS can faithfully recreate the transmitted data by sensing just a 

small number of channel coefficients, whereas in case of LS and 

MMSE, all the channel coefficients are sensed. In this paper it 

is also affirmed that sparser channel enhances the performance 

of channel estimation algorithm employing compressive 

sensing. Moreover, optimum performance of LS-CS and 

MMSE-CS channel estimation algorithm is attained when the 

channel sparsity is in the range of 6-11% by sensing just 18-

24% of the total channel coefficients. 
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