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EXERGY ANALYSIS OF AN AIR CONDITIONING PROCESS 

Summary 

The exergy analysis of an air conditioning process in wintertime is presented in this 
paper. This process consists of mixing outdoor air with conditioned air, heating, humidifying, 
and reheating the air mixture. The air is heated in the heat exchangers by warm water at a 
temperature of 80/60C and humidified by spraying water at a temperature of 12 C. The ratio 
of the mass flow rates of outdoor and conditioned air is varied, and it is upon this variable that 
the exergy analysis is performed. The five cases are analyzed with different outdoor air 
temperature values. It is shown that the heat transfer rate in the heat exchangers is the smallest 
at the ratio of mass flow rates of outdoor and conditioned air g1 = 0.45. The greatest exergy 
destruction is apparent in the heat exchangers, and the maximum exergy efficiency of the 
whole process ex = 0.71 is achieved at the ratio g1 = 0.45. According to the exergy criterion, 
this air conditioning is a relatively efficient process. 
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1. Introduction 

Heating, ventilating, and air conditioning (HVAC) systems provide thermal comfort and 
acceptable air quality in offices and homes. These systems currently account for 
approximately 20% of total energy consumption [1]; effective use of energy is an important 
goal in many countries worldwide. Psychrometrics is defined as the study of moist air, which 
is a mixture of dry air and moisture. It is used not only in heating and cooling processes to 
ensure the comfort of buildings’ occupants but also in building insulation and roofing of 
properties, and it ensures the stability, deformation, and fire resistance of building materials 
[2]. Exergy represents quantitatively useful energy or the possibility of performing or 
receiving the work of different streams (mass, heat, work) flowing through the system [3]. 
Exergy analysis is used to detect and quantify the causes of the thermodynamic imperfection 
of the process being considered and points to the possibility of its thermodynamic 
improvement [4]. The application of exergy methods to technologies of heating, refrigerating, 
and air conditioning can provide a better understanding of their behaviors and enhanced tools 
for improving them. 
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Today, exergy analysis of psychrometric processes can be found in the relevant 
literature. For example, Qureshi et al. [5] presented a parametric study of various HVAC 
processes by applying exergy analysis and defined second-law efficiency of the processes to 
quantify the irreversible losses. They demonstrated that these processes should be 
performed as they are because the measures to reduce exergy destruction are not 
economically feasible. Ratlamwala and Dincer [6] studied five key psychometric processes, 
including heating or cooling, heating with humidification, cooling with dehumidification, 
evaporative cooling, and adiabatic mixing. They proposed two definitions of energy and 
exergy efficiencies and compared these efficiencies with the third definition taken from the 
literature. They showed that different definitions of efficiencies give varying results that are 
far removed from each other. 

Franconi and Brandemuehl [7] used exergy analysis to compare the exergy 
performance of two types of air conditioning systems: constant air volume (CAV) systems 
and variable air volume (VAV) systems. They showed that the latter has advantages over 
the former because of the reduced exergy destruction in cooling coils, reheat coils, and fans. 
Ghazikhani et al. [8] compared the two methods of humidification, constant enthalpy 
humidification (CEH) and constant temperature humidification (CTH), in an HVAC system. 
They quantified the difference between the amount of exergy consumption and exergy loss 
with these methods, concluding that exergy consumption in an HVAC obtained by CEH is 
less than in one obtained by CHT. Caliskan et al. [9] applied energy and exergy analyses 
and sustainability assessment to one novel and three conventional types of air-cooling 
systems located in the same building. They showed that at the dead-state temperatures of 
higher than 23°C (comfort temperature), exergy efficiency and sustainability of the novel 
system, which is based on the novel Maisotsenko cycle, are higher than those of the 
conventional systems. Sakulpipatsin et al. [10] demonstrated the pertinence of the exergy 
concept for the design of buildings and HVAC systems so that the concept can be applied in 
these areas properly. Although they did not perform exergy research on integration between 
buildings and HVAC systems, they concluded that this would be an interesting topic for 
further research.  

In this study, the first and second laws of thermodynamics are applied to the air 
conditioning process. The heat transfer rate and exergy destructions are observed according to 
the process parameter, namely the ratio of the mass flow rate of outdoor air to the total mass 
flow rate of moist air, for the five cases in which the outdoor air temperature values differ.  

2. Mathematical model 

The air conditioning process under investigation consists of the following: 1–2 adiabatic 
mixing of outdoor with conditioned air in specified ratios, 3–4 heating of the air mixture to a 
state suitable for humidification, 4–5 adiabatic humidification by spraying water, and 5–6 
reheating of the air mixture to the state in which it is inserted into the air-conditioned space. 
The entire process is shown in the Mollier h,x diagram in Figure 1. As can be seen, all states 
of the moist air are placed in the unsaturated region. The water vapor in the moist air is 
superheated; the partial pressure of water vapor in the moist air is less than the saturation 
pressure. 
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Molar humidity is defined thus: 

ߢ ൌ
݊୴
݊ୟ

ൌ
ୱሺܶሻ݌߮

݌ െ ୱሺܶሻ݌߮
. (4)

The vapor pressure of water in saturated moist air (in Pa) is expressed by the following 
equation [11]: 

ୱሺܶሻ݌ ൌ expሺܥଵ/ܶ ൅ ଶܥ ൅ ଷܶܥ ൅ ସܶଶܥ ൅ ହܶଷܥ ൅ ଺ܥ ln ܶሻ, 
ଵܥ ൌ െ5.8002206 כ 10ଷ, 
ଶܥ ൌ 1.3914993, 
ଷܥ ൌ െ4.8640239 כ 10ିଶ, 
ସܥ ൌ 4.1764768 כ 10ିହ, 
ହܥ ൌ െ1.4452093 כ 10ି଼, 
଺ܥ ൌ 6.5459673. 

(5)

in which the temperature should be inserted in K.  
Specific exergy of water used for humidification or heating the moist air is defined by: 

୵ݔ݁ ൌ ܿ୵ ൬ ୵ܶ െ ଴ܶ െ ଴ܶ ln
୵ܶ

଴ܶ
൰ (6)

Equation (3) shows that the mass of the water vapor in the moist air is reduced to the 
mass of dry air because the latter is constant here, as is the case in most psychometric 
processes. Other given quantities, expressed by equations (1) and (2), are also reduced to a 
kilogram of dry air.  

Equation (2), which expresses the specific exergy of the moist air, consists of three 
terms that represent three potentials: thermal, mechanical, and chemical. The first term 
represents the exergy contribution of dry air and superheated vapor due to the different 
temperature of moist air in relation to the environment, the second term represents exergy 
contribution due to differing pressure of moist air in relation to the environment, while the 
third term represents the contribution caused by the different chemical composition of moist 
air and environmental air. 

2.1 Mass energy analysis  
Mass energy analysis of the process takes into account the laws of conservation of mass 

and conservation of energy. The mass flow rate of dry air, in the considered process of air 
conditioning, is constant and is determined using the quantities given for state 6. From the 
equation of mixing the outdoor air with conditioned air, we follow the ratio of mass flow rate 
of outdoor air to the total mass flow rate of moist air: 

ଵ݃ ൌ
୫ଵݍ
୫ݍ

ൌ
୫ଵݍ

୫ଵݍ ൅ ୫ଶݍ
. (7)

The specific enthalpy of the air mixture follows from the energy conservation law 
applied to the adiabatic mixing chamber and is equal to: 

ሺℎଵା୶ሻଷ ൌ ଵ݃ሺℎଵା୶ሻଵ ൅ ሺ1 െ ଵ݃ሻሺℎଵା୶ሻଶ. (8)

Specific humidity in the air in state 3 follows from the mass conservation law and is 
equal to: 

ଷݔ ൌ ଵ݃ݔଵ ൅ ሺ1 െ ଵ݃ሻݔଶ. (9)
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3. Results 

The equations of the mathematical model are implemented using Matlab software and 
results are shown in diagrams. 

Figure 6 shows the relationship between the mass flow rate of water for humidification 
 .୫୵ and the ratio of mass flow rate of outdoor air to the total mass flow rate of moist air ଵ݃ݍ
The mass flow rate of water increases linearly with the increase in ratio ଵ݃ and reaches 
maximum at ଵ݃ ൌ 1.0 (there is no mixing). In this case, the difference in specific humidity 
values ሺݔହ െ   .ସሻ is maximal, as is the mass flow rate of water for humidificationݔ

 
Fig. 6  Mass flow rate of water for humidification versus the ratio of mass flow rate of outdoor air to the total 

mass flow rate of moist air 

Figure 7 shows the relationship between the heat transfer rate of both heat exchangers 
 HEଶ and the ratio of mass flow rate of outdoor air to the total mass flow rate ofߔ HEଵ andߔ
moist air ଵ݃. The heat transfer rate of the second heat exchanger is constant because the mass 
flow rate of the air in the process is also constant and the states of the air at 5 and 6 are 
predetermined. The heat transfer rate of the first heat exchanger ߔHEଵ increases linearly with 
the increase in the ratio ଵ݃ from 1.01 kW for ଵ݃ ൌ 0.45 to 7.39 kW for ଵ݃ ൌ 1. This is 
because, with the increase in the mass flow rate of the outdoor air ଵ݃, the temperature of the 
air mixture or its enthalpy decreases, making it necessary to heat it to a state suitable for 
humidification.  

 
Fig. 7  Heat transfer rate of the first and second heat exchanger versus the ratio of mass flow rate of outdoor air 

to the total mass flow rate of moist air 
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The diagram in Figure 8 shows the relationships between the exergy destructions in the 
mixing process of outdoor and conditioned air ∆Ex1-2 and in the humidification process ∆Ex4-5 
and the ratio of the mass flow rate of outdoor air to the total mass flow rate of moist air g1. 
The values of the exergy destructions are very small, less than 0.15 kW. Exergy destruction in 
the mixing process reaches maximum at ଵ݃ = 0.5 and decreases to zero at ଵ݃ = 1. Exergy 
destruction in the humidification process continuously increases because, with the increase of 
the ratio of outdoor air, the exergy of water for humidification and the exergy of air at state 4 
increases, but the exergy of air at state 5 is not changed. 

 
Fig. 8  Exergy destructions in the mixing and humidification processes versus the ratio of mass flow rate of 

outdoor air to the total mass flow rate of moist air  

Figure 9 shows the relationships between the exergy destructions in the first ∆Ex3-4 and 
in the second ∆Ex5-6 heat exchanger and the ratio of mass flow rate of outdoor air to the total 
mass flow rate of moist air g1. As can be seen, the values of these destructions are 
considerably greater than in the previous two cases. The exergy destruction in the first heat 
exchanger increases due to the increase of the heat transfer rate in the first heat exchanger, 
and in the second it is constant because the heat transfer rate of the second heat exchanger is 
constant.   

 
Fig. 9  Exergy destructions in the first and second heat exchanger and the total exergy destruction versus the 

ratio of mass flow rate of outdoor air to the total mass flow rate of moist air  
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Figure 10 shows the fraction of certain exergy destruction in the total exergy 
destruction. Clearly, the exergy destructions in the mixing and humidification processes do 
not have an important effect on the total exergy destruction, while the exergy destructions in 
the first and second heat exchangers do have such an effect.  

 
Fig. 10  Fraction of certain exergy destruction in the total exergy destruction versus the ratio of mass flow rate of 

outdoor air to the total mass flow rate of moist air 

Figure 11 shows the relationship between exergy efficiency of the process and the ratio 
of mass flow rate of outdoor air to the total mass flow rate of moist air g1. The exergy 
efficiency decreases with the increase of ratio g1 from value 0.7 to 0.66. These values are 
relatively high, indicating that this air conditioning process, from the viewpoint of the second 
law of thermodynamics, is relatively efficient. 

 
Fig. 11  Exergy efficiency versus the ratio of mass flow rate of outdoor air to the total mass flow rate of moist air 

The results shown above are given for the temperature of outdoor air, 0 °C. As in real 
life, the temperature of the outdoor air is variable; the following is an overview of the results 
of the considered process for different outdoor air temperature values while other parameters 
of the analysis remain the same. The outdoor air temperature varies from -5 °C to 5 °C in 
increments of 2.5 °C. 
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Fig. 12  Exergy destruction in mixing and humidification processes  versus the ratio of mass flow rate of outdoor 

air to the total mass flow rate of moist air for different values of the temperature of outdoor air 

Figure 12 shows exergy destructions of adiabatic mixing and humidification processes 
for certain outdoor air temperature values. Curves of the exergy destructions in the mixing 
process as well as the humidification process have a similar flow for all outdoor air 
temperature values. Exergy destructions in the mixing process have maxima at the ratios of 
mass flow rate of outdoor air to the total mass flow rate of most air from ଵ݃=0.51 to ଵ݃=0.525 
and continue to fall to value ∆ݔܧଵଶ ൌ 0 kW for ଵ݃=1. The values of exergy destruction in the 
mixing process, for the same value of ratio of mass flow rate of outdoor air to the total mass 
flow rate of most air, are higher at the lower values of temperature of outdoor values. The 
reasons are that the state of the air in the room in all cases is unchanged and that adiabatic 
mixing of that air with the outdoor air at lower temperature generates greater exergy 
destruction. Differences in the values of the exergy destruction of mixing and humidification 
processes are higher at lower values of the ratio ଵ݃ because in these cases, the contribution of 
the irreversibility of the mixing is more pronounced than the contribution of the irreversibility 
of the humidification process. Exergy destructions of the humidification process show a 
steady increase and are higher at lower temperatures and higher values of the ratio ଵ݃ because 
the growth of ଵ݃ and the temperature drop increase the total exergy of water for 
humidification and the total exergy of the air at state 4 (the state before humidification), while 
the total exergy of the air at state 5 does not change.  
Figure 13 shows total exergy destructions for different outdoor air temperature values. The 
total exergy destructions increase with the increase of the ratio of mass flow rate of outdoor 
air to the total mass flow rate of moist air and with the drop in outdoor air temperature. 
Accordingly, exergy efficiencies decrease with the increase of the ratio of mass flow rate of 
outdoor air to the total mass flow rate of moist air and with the temperature drop, as Figure 14 
shows. 
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Fig. 13  Total exergy destruction versus the ratio of mass flow rate of outdoor air to the total mass flow rate of 

moist air for different values of the temperature of outdoor air 

 
Fig. 14  Exergy efficiency versus the ratio of mass flow rate of outdoor air to the total mass flow rate of moist air 

for different values of the temperature of outdoor air 

4. Conclusion 

The study focused on analyzing the energy and exergy of an air conditioning process in 
wintertime. It showed that the mass flow rate of water for humidification and the heat transfer 
rate of the first heat exchanger are dependent on the ratio of mass flow rate of outdoor air to 
the total mass flow rate of moist air. The heat transfer in heat exchangers had a much greater 
effect on the total exergy destruction than did the mixing and humidification process. This air 
conditioning process, from the viewpoint of the second law of thermodynamics, is relatively 
efficient. Exergy efficiency of the process was maximal at the ratio of mass flow rate of 
outdoor air to the total mass flow rate of moist air 0.45, and its value was 0.71 for the 
temperature of outdoor air 0 °C. The process generates the least exergy destruction and 
consumes the least energy and water for humidification at the ratio of mass flow rate of 
outdoor air to the mass flow rate of moist air g1 = 0.45.  

Nomenclature 
 ଵା୶ J/kg specific exergy of moist airݔ݁
 ୵ J/kg specific exergy of waterݔ݁
 ݔܧ W  exergy  

ଵ݃  kg/kg 
ratio of mass flow rate of outdoor air to the total 
mass flow rate of moist air 
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ℎଵା୶ J/kg specific enthalpy of moist air  
  ୱ Pa partial pressure of water vapor in saturated air݌
 ୫ kg/s mass flow rate of airݍ
 ୫୵ kg/s mass flow rate of waterݍ

T K thermodynamic temperature 
 kg/kg specific humidity ݔ
 ݔܧ∆ W  exergy destruction 
 ୶ୣߝ െ  exergy efficiency 
 C temperature° ߴ
 kmol/kmol molar humidity ߢ
 W heat flow rate ߔ
߮ mol/mol relative humidity 
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