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Under a mild condition, Ryser’s Conjecture holds for every
n := 4h2 with h > 1 odd and non square-free
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Abstract. We prove, under a mild condition, that there is no circulant Hadamard matrix
H with n > 4 rows when

√
n/4 is not square-free. The proof introduces a new method to

attack Ryser’s Conjecture, that is a long-standing difficult conjecture.
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1. Introduction

A matrix of order n is a square matrix with n rows. A circulant matrix A :=
circ(a1, . . . , an) of order n is a matrix of order n, with first row [a1, . . . , an], in
which each row after the first is obtained by a cyclic shift of its predecessor by
one position. For example, the second row of A is [an, a1, . . . , an−1]. A useful
circulant matrix of order n is the matrix J with all its entries equal to 1, i.e.,
J := circ(1, . . . , 1). A Hadamard matrix H of order n is a matrix of order n
with entries in {−1, 1} such that K := H√

n
is an orthogonal matrix with ratio-

nal entries. A circulant Hadamard matrix of order n is a circulant matrix that is
Hadamard. The 10 known circulant Hadamard matrices are H1 := circ(1),H2 :=
−H1,H3 := circ(1,−1,−1,−1),H4 := −H3,H5 := circ(−1, 1,−1,−1),H6 := −H5,
H7 := circ(−1,−1, 1,−1),H8 := −H7,H9 := circ(−1,−1,−1, 1),H10 := −H9.

If H = circ(h1, . . . , hn) is a circulant Hadamard matrix of order n, then its
representer polynomial is the polynomial R(x) := h1 + h2x+ · · ·+ hnx

n−1.
Despite several deep computations (see [14]), no one has been able, to discover

any other circulant Hadamard matrix. In 1963 (see [4, p. 97], [19]), Ryser proposed
the conjecture of the non-existence of these matrices when n > 4. Ryser’s conjecture
has since attracted much attention [5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 21].

Bernhard Schmidt and collaborators [11, 12, 13] obtained the most important
and deep results on the Conjecture, by developing new algebraic tools related to cy-
clotomic fields and group rings. Let n be the order of a possible circulant Hadamard
matrix. Schmidt’s results helped Logan and Mossinghoff [14] to obtain the nice
result that up to order 4 · 1030 there are only 4489 undecided values of n.
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We are aware of only two results in which the Conjecture is proved for an infinity
of n’s. Brualdi [1] proved the conjecture in 1965 for every n providedH is symmetric,
and Turyn [21] proved the conjecture for all n’s of the form n = 4p2m, where p is an
odd prime number and m is a positive integer.

The aim of the present paper is to prove the Conjecture for all n’s for which√
n/4 is divisible by a prime power pa with a > 1, under a mild condition on the

eigenvalues of K. Our proof is based on specializing some classical results about
sums of roots of unity by Conway and Jones (see [3]).

More precisely, our main result is

Theorem 1. Let H = circ(h1, . . . , hn) be a circulant Hadamard matrix of order
n ≥ 4. Then n = 4 provided h :=

√
n/4 is not square-free and provided that some

non-real eigenvalue of K := H/
√
n is an algebraic integer.

The second condition (on an eigenvalue of K) is important in order to be able
to use the Conway and Jones’s result. The condition is mild since it concerns just
one eigenvalue of K, while it is known [2] that if all eigenvalues of K are algebraic
integers, then H is actually symmetric and Brualdi’s result above applies to prove
that n = 4. Unfortunately, we do not know how this condition depends on n or on
the prime divisors of n, thus our result cannot help to obtain new specific values of n
for which the conjecture holds. In particular, we were not able to improve, even for
one specific value of n, the results of Schmidt and collaborators mentioned above.

The necessary tools for the proof of the theorem are given in Section 2. The
proof of Theorem 1 is presented in Section 3. For the n-th root of unity γ, by o(γ)
we denote its multiplicative order, i.e. the minimal positive integer m such that
γm = 1. For a matrix M with complex entries, by M∗ we denote the transpose
conjugate matrix of M and diag(d1, . . . , dn) denotes a diagonal matrix of order n.

2. Tools

The following is well known. See, e.g., [10, p. 1193], [16, p. 234], [21, pp. 329-330].

Lemma 1. Let H be a regular Hadamard matrix of order n ≥ 4, i.e., a Hadamard
matrix whose row and column sums are all equal. Then n = 4h2 for some positive
integer h. Moreover, the row and column sums are all equal to ±2h and each row
has 2h2 ± h positive entries and 2h2 ∓ h negative entries. Finally, if H is circulant
then, h is odd.

Lemma 2. Let H be a circulant Hadamard matrix of order n, let w = exp(2πi/n)
and let R(x) be its representer polynomial. Then all the eigenvalues R(v) of H,
where v ∈ {1, w, w2, . . . , wn−1}, satisfy

|R(v)| =
√
n.

In more detail (see [4]), one has

Lemma 3. Let C = circ(c1, . . . , cn) be a circulant matrix of order n > 0 with rep-
resenter polynomial P (t) = c1 + c2t + . . . + cnt

n−1. Let w be the primitive complex
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n-th root of unity with a smaller positive argument. Then C is diagonalizable and
C = F ∗∆F , where ∆ = diag(P (1), P (w), . . . , P (wn−1) is a diagonal matrix con-

taining the eigenvalues of C and F ∗ = (w
(i−1)(j−1)

n1/2 ) is the transpose conjugate of the
Fourier matrix. Moreover, F is unitary.

The following lemma follows from Lemma 2, but it is more useful. We give a
short proof below.

Lemma 4. Let H be a circulant Hadamard matrix of order n, let w = exp(2πi/n)
and let R(x) be its representer polynomial. Let M := (H + J)/2 and let S(x) be
its representer polynomial. Then 2S(x) = R(x) + 1 + x + · · ·xn−1 and all non-real
eigenvalues S(v) of M , where v ∈ {1, w, w2, . . . , wn−1}, satisfy

|S(v)| =
√
n/4.

Proof. The first statement is trivial. In order to prove the second, observe that by
Lemma 1 one has n = 4h2 for some odd positive integer h. Observe that HH∗ =
4h2I, HJ = JH∗ = 2hJ and J2 = nJ . Thus

MM∗ = HH∗/4 + (HJ + JH∗)/4 + J2/4 = h2I + (h+ h2)J. (1)

Diagonalizing both sides of (1), it follows from Lemma 3 that

µ · µ = h2, (2)

where µ is a non-real eigenvalue ofM , i.e., µ = S(v) for some v ∈ {1, w, w2, . . . , wn−1},
since the diagonal matrix (with the notations of Lemma 3),

∆ := FMF ∗ = diag(S(1), S(w), . . . , S(wn−1) = diag(2h2+h,R(w)/2, . . . , R(wn−1)/2),
(3)

and |R(wj)| = 2h. Equation (3) holds since FJF ∗ = diag(n, 0, . . . , 0).

We also need the classical result of Kronecker (see e.g., [17, pp. 97-98]) and its
special case of cyclotomic extensions (see e.g., [17, Theorem 8.1.10 a)]).

Lemma 5. (a) The only algebraic integers whose all conjugates lie on the unit
circle are the roots of unity.

(b) Let n > 0 be an even positive integer. Let L := Q(w), where w is a primitive
n-th root of 1, be a cyclotomic extension of the rational numbers. The only
algebraic integers in L whose all conjugates lie on the unit circle belong to
{1, w, . . . , wn−1}.

The next lemma (see [20, Lemma 8.6]) is frequently used in the theory of group
representations. Here, it is useful to finish the proof of Theorem 1.

Lemma 6. Let c1, . . . , cℓ be ℓ complex numbers of absolute value 1. If

|c1 + · · ·+ cℓ| = ℓ, then c1 = · · · = cℓ.
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We require a special version of [3, Theorem 1]. In order to state it, we need the
following definition and lemma.

Definition 1. Let α, β be n-th roots of unity in C, we say that α and β are equivalent,
and write α ∼ β, if o(αβ ) is square-free, where o(t) is the multiplicative order of the
n-th root of unity t.

In the following lemma we give a detailed proof of a particular case of two asser-
tions of Conway and Jones [3], the first (that appears just before the statement of
their Theorem 1) is about the above definition, and the second (it is at the begin-
ning of the proof of the same theorem) is about a characterization of the equivalence,
crucial for the proof of the theorem. Although these are simple facts, and part (b)
of Lemma 7 is not directly used in our proof, they are important as a background
in our special case.

Lemma 7. Let h > 1 be an odd number, let n := 4h2, let a := rad(n) be the greatest
square-free divisor of n, let w = exp(2πi/n) and let Ω := wa. Then

(a) The relation ∼ defined in Definition 1 is an equivalence relation.

(b) The Q-linear map σ : Q(w) → Q(w) defined by σ(1) = 1 and σ(w) := wΩ is
an automorphism of Q(w) that has the following property: Given two integers
k, ℓ there exists an integer c such that

σ(wk) = Ωcwk, σ(wℓ) = Ωcwℓ (4)

is equivalent to
wk ∼ wℓ.

Proof. In order to prove (a), observe that for an n-th root of unity α, α ∼ α holds
since it is equivalent to: 1 = o(1) is square-free. If for two n-th roots of unity α, β
one has α ∼ β, then (α/β)k = 1 for some divisor k of a. Thus (β/α)k = 1, so that
β ∼ α. If α, β, γ are n-th roots of unity such that α ∼ β and β ∼ γ, then we can
assume, without loss of generality, that

o(α/β) = P1P2 (5)

and that
o(β/γ) = P1P3, (6)

where P1, P2, P3 are divisors of a with gcd(P1, P2) = 1 = gcd(P1, P3) and gcd(P2, P3) =
1. Compute now (using (5) and (6))

(α/γ)P1P2P3 = (α/β · β/γ)P1P2P3 = ((α/β)P1P2)P3 · ((β/γ)P1P3)P2 = 1 · 1 = 1. (7)

It follows from (7) that α ∼ γ, thereby proving part (a) of the lemma. We now
prove part (b). Since σ(w) = wa+1 and gcd(a + 1, n) = 1, one sees that σ is an
automorphism of Q(w). This implies that for any integer d one has

σ(wd) = wdΩd. (8)
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Assume now the existence of an integer c such that (4) holds. It follows then from
(8) that Ωk = Ωℓ = Ωc. Thus k = ℓ + t0n/(a + 1) for some integer t0. But,
gcd(a + 1, n) = 1 so that t0 = t(a + 1) for an integer t. In other words, one has
k− ℓ = tn so that wk−ℓ = 1. This proves that wk ∼ wℓ. Assume now that wk ∼ wℓ.
Thus

w(k−ℓ)a = 1. (9)

Define b := n/a. Since w has order n = ab, one gets from (9) that ab | (k − ℓ)a. In
other words, we have

b | k − ℓ. (10)

But o(Ω) = b, so that Ωk−ℓ = 1. This proves that (4) holds for c := k. This proves
part (b) and finishes the proof of the lemma.

The following special case of the result of Conway and Jones [3, Theorem 1] that
follows from Lemma 7 is crucial.

Lemma 8. Any vanishing sum S of n-th roots of unity also vanishes when restricted
to any equivalent class of the relation ∼ defined in Definition 1, i.e., the partial sum
of just those terms of S from the given equivalence class vanishes.

Given a positive integer n by rad(n) we denote the product of all distinct prime
divisors of n.

Lemma 9. Let h > 1 be an odd positive integer. Let n := 4h2. Then the following
two statements are equivalent.

(i)

rad(n) >
√
n/4 + 1, (11)

(ii) h is square-free

Proof. First of all, observe that (11) is equivalent to

h+ 1 < 2 · rad(h). (12)

Assume (ii). Then rad(h) = h. Thus (12) holds since (12) is equivalent to h > 1.
Thus (i) holds. Assume now (i) so that (12) holds. Since rad(h) divides h, we can
write h = α · rad(h) for some positive odd integer α. We claim that α = 1. Assume,
on the contrary, that α > 1. Then

h+ 1 = α · rad(h) + 1 ≥ 3 · rad(h) + 1 > 2 · rad(h). (13)

We see that (13) contradicts (12) . This proves the claim, so that (ii) holds.

3. Proof of Theorem 1

Proof. Assume that n > 4. Put w := exp(2πi/n). Observe that H is regular since
H is circulant. In particular, Lemma 1 implies that n = 4h2 for some positive
odd integer h > 1. Write H = circ(h1, . . . , hn) and let R(x) be the representer
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polynomial of H. Put M := (H + J)/2 and let S(x) be the representer polynomial
of M . Observe that H and 2M have the same non-real eigenvalues, since 0 with
multiplicity n − 1 is eigenvalue of J . Thus by hypothesis and by Lemma 4 there
exists a non-real eigenvalue α of M/h that belongs to Z[w], the ring of integers of
the cyclotomic field Q(w), and to the complex unit circle. By Lemma 5 this means
that α is a power of w.

Therefore, by Lemma 4 one has that S(α) = hα is an eigenvalue of M , where α
is a power of w. In other words, we have for some c ∈ {1, . . . , n − 1}, some subset
W of {1, . . . , n} and some permutation τ : {1, . . . , n} → {1, . . . , n}

hwc =
∑
j∈W

hτ(j)ω
τ(j)−1. (14)

Dividing both sides of (14) by −wc = wn/2+c we get for some t with 1 ≤ t ≤ n and
some integral exponents 0 ≤ e1 < · · · < et ≤ n− 1

−h = we1 + · · ·+ wet (15)

since hτ(j) belong to {−1, 1} and we can replace any negative coefficient by a positive

one using again −1 = wn/2.
There are four cases:

(a) One has that e1 = 0, and for some j one has ej = n/2. It follows that
we1 +wej = 0. Thus in (15) −h is a sum of t−2 powers of w with no exponent
equal to 0 or to n/2

(b) One has that e1 = 0, and for no j one has ej = n/2. Thus we get from (15)
that −h − 1 is a sum of t − 1 powers of w with no exponent equal to 0 or to
n/2.

(c) One has that e1 ̸= 0, and for some j one has ej = n/2. Thus we get from (15)
that −h + 1 is a sum of t − 1 powers of w with no exponent equal to 0 or to
n/2.

(d) One has that e1 ̸= 0, and for no j one has ej = n/2. In other words, already
in (15) one has that −h is a sum of t powers of w with no exponent equal to
0 or to n/2.

Write n = a · b with a := rad(n).
Now in each of the cases we apply Lemma 8 to the corresponding vanishing sum

restricted to the equivalent class in which each term wk is equivalent to 1, i.e., we
keep only the terms wk with wk ∼ 1. In other words, the terms wk for which
the multiplicative order o(wk) of wk = wk/1 is square-free. This gives a reduced
vanishing sum of the form

0 = ψ(h)wn + wk1 + · · ·+ wks , (16)

where s+ 1 ≤ a, since a is the biggest divisor of n that is square-free, and with b a
divisor of the gcd(k1, . . . , ks). One has 1 < k1 < · · · < ks < n and no kj is equal to
n/2.

The value of ψ(h) in terms of h depends on the cases and is as follows.
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(1) In cases (a) and (d), ψ(h) = h. It follows from (16) that we have

h = | − h| = |wk1 + · · ·+ wks | ≤ s ≤ a− 1 (17)

But, h > 1 is not square-free, thus Lemma 9 says that a − 1 ≤ h. It follows
then from (17) that s = h so that

|wk1 + · · ·+ wks | = s. (18)

It follows then from (18) and by Lemma 6 that all wkj are equal. This is
impossible. This contradiction shows that n = 4.

(2) In case (b), one has ψ(h) = h+ 1. It follows then from (16) that now we have

h+ 1 = | − h− 1| = |wk1 + · · ·+ wks | ≤ s ≤ a− 1. (19)

As before, we have a − 1 ≤ h. Thus, we get that h + 1 ≤ h from (19). This
contradiction proves that n = 4.

(3) In case (c), one has ψ(h) = h− 1. It follows then from (16) that now we have

h− 1 = | − h+ 1| = |wk1 + · · ·+ wks | ≤ s ≤ a− 1. (20)

Observe that h−1 is even, while a−1 is odd. Thus the inequality h−1 ≤ a−1
that comes from (20) is indeed equivalent to the inequality h− 1 ≤ a− 2, i.e.,
to h ≤ a − 1. But, as before, we have that a − 1 ≤ h. Thus, we get that
h = a − 1. But this is impossible since a = 2 rad(h) and rad(h) is a divisor
of h. This contradiction proves that n = 4. This finishes the proof of the
theorem.
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