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On mappings that preserve Fermat-Torricelli points
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Abstract. Let ∆ be the set of all triple points {A,B,C} in Rn such that the largest
angle of the triangle ABC is less than 2π

3
. In this paper, we proved that if a mapping

f : Rn → Rn preserves the Fermat-Torricelli points of the triangles in ∆, then f is an affine
transformation.
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1. Introduction

A mapping f : Rn → Rm is called an affine transformation provided it can be
expressed by

f(x) = g(x) + a,

where g : Rn → Rm is a linear transformation and a is a point in Rm. The affine
transformations are well known and fundamental in Euclidean geometry and they
have many beautiful properties as follows:

� Any affine transformation is uniquely expressible as f(x) = g(x) + a, where
a ∈ Rm and g : Rn → Rm is a linear transformation.

� Any affine transformation f(x) = g(x) + a is bijective if and only if the linear
transformation g : Rn → Rm is bijective.

� A bijective affine transformation is an affine isomorphism.

� If an affine transformation is invertible, then its inverse is also an affine trans-
formation.

� If f1 and f2 are two affine transformations, then every linear combination
c1f1 + c2f2, where c1, c2 ∈ R, is an affine transformation.

� The composition of any two affine transformations is also an affine transfor-
mation.
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There are many geometric features that remain invariant under affine transfor-
mations. For example, points are mapped to points, lines are mapped to lines (line
segments are mapped to line segments), and planes are mapped to planes (hyper-
planes are mapped to hyperplanes) under affine transformations. A nice consequence
of this fact is that one can calculate the image of a polygon by simply computing
the images of its vertices. In addition to these features, parallelism of lines and
ratios is preserved under affine transformations. Geometric contraction, expansion,
dilation, reflection, rotation, shear, similarity transformations, spiral similarities,
and translation are all affine transformations, as are their combinations. In general,
an affine transformation is a composition of rotations, translations, dilations, and
shears. However, it should be noted that distances and angles may not be preserved
under affine transformations. For more details about affine transformations, we refer
the readers to [6].

In literature, there are many characterizations of affine transformation as follows:

Theorem 1 (see [1]). Suppose that f : Rn → Rn (n > 1) is a bijection and that it
preserves lines, and suppose that the images of any two parallel lines under f are
still parallel lines. Then f is an affine transformation.

Here, f is said to preserve lines if the image of each line is still a line.

Theorem 2 (see [3]). Suppose that f : Rn → Rn (n > 1) is a bijection and that it
preserves lines. Then f is an affine transformation.

Theorem 3 (see [2]). Suppose that f : Rn → Rn (n > 1) is surjective and line-to-
line. Then f is an affine transformation.

Here, f is said to be line-to-line if the image of each line in Rn is contained in a
line of Rn.

Theorem 4 (see [4]). Suppose that f : Rn → Rn (n > 1) preserves lines. Then f
is an affine transformation if and only if it is non-degenerate, that is, the image of
the whole space under f is more than a line or geodesic.

Theorem 5 (see [5]). Suppose that f : Rn → Rn (n > 1) is a bijection. Then f is
an affine transformation if and only if f is triangle domain preserving.

Theorem 6 (see [5]). Suppose that f : Rn → Rn (n > 1) is a bijection. Then f is
an affine transformation if and only if f is triangle preserving.

In this paper, we try to present a new characterization of affine transformations
by use of Fermat-Torricelli points of triangles. In geometry, the Fermat-Torricelli
point of a triangle, also called the Fermat point or Torricelli point, is a point such
that the total distance from the three vertices of the triangle to the point is as
minimal as possible. It is named so because this problem was first raised by Fermat
in a private letter to Evangelista Torricelli, who solved it. Let ABC be a triangle in
the Euclidean plane R2. If the measure of the largest angle reaches 2π

3 radians or
more, then the vertex at the largest angle is the solution to Fermat’s problem. If the
measure of the largest angle is less than 2π

3 , then the solution to Fermat’s problem
is an inner point of the triangular domain bounded by the sides of the triangle. To
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find this point, one approach is to construct equilateral triangles on each side of the
triangle (it is enough to draw two of them) and draw the segments connecting the
opposite vertices of the original triangle and the newly created equilateral vertices.
They meet at a point which is the solution to Fermat’s problem. If P is the solution
to Fermat’s problem for ABC, where ABC is an arbitrary triangle that the measure
of the largest angle is less than 2π

3 , then ∠APB = ∠BPC = ∠CPA = 2π
3 . This

feature of the Fermat-Torricelli points will play an important role in our proofs.

2. Main results

Let ∆ be the set of all triple points {A,B,C} in R2 such that the largest angle of
the triangle ABC is less than 2π

3 . Throughout the paper, we denote by A′ the image
of A under f , by [A,B] the line segment between points A and B, and by AB the
line through points A and B, by |AB| the Euclidean distance between A and B.

The assertion f : R2 → R2 preserves the Fermat-Torricelli points of all triangles
in ∆, meaning that if {A,B,C} is an element of ∆ with the Fermat-Torricelli point
P (i.e. P is the Fermat-Torricelli point of the triangle ABC), then {A′, B′, C ′} is
an element of ∆ with the Fermat-Torricelli point P ′ (i.e. P ′ is the Fermat-Torricelli
point of the triangle A′B′C ′).

Lemma 1. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f is injective.

Proof. Let A and B be two distinct points in R2. Now take a point in R2, say C,
such that ABC ∈ ∆, and denote it’s Fermat-Torricelli point by P . By the property
of f , we get that P ′ is the Fermat-Torricelli point of A′B′C ′, which implies A′ ̸= B′.
Hence f is injective.

Lemma 2. Let f : R2 → R2 preserve the Fermat-Torricelli points of all triangles
in ∆. If ABC is a triangle with ∠CAB = 2π

3 , then A′B′C ′ is a triangle with
∠C ′A′B′ = 2π

3 .

Proof. Let gAB be the symmetry function with respect to AB and let us denote the
image of C by D under gAB . Clearly, CBD is an isosceles triangle with ∠DAC =
∠CAB = ∠DAB = 2π

3 , and this implies ∠ABC = ∠ABD < π
3 , ∠ACD = ∠ADC <

π
3 . Moreover, A is the Fermat-Torricelli point of CBD. It is easy to see that BCD is
an element of ∆ and since f preserves the Fermat-Torricelli points of all triangles in
∆, one can get that A′ is the Fermat-Torricelli point of C ′B′D′. Therefore, A′B′C ′

is a triangle with ∠C ′A′B′ = 2π
3 .

Lemma 3. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves collinearity.

Proof. Let G,C,D be collinear points in R2 satisfying |GD| = |GC| + |CD|, and
let A be a point in R2 such that ∠AGC = 2π

3 and |AG| = |GC|. Now construct a
triangle ABC, where B is the symmetry of A with respect toGC. Clearly, ABC is an
equilateral triangle in ∆. By Lemma 2, we have ∠A′G′C ′ = ∠A′G′B′ = ∠B′G′C ′ =
2π
3 since ∠AGC = ∠AGB = ∠BGC = 2π

3 . Observing ∠AGD = ∠BGD = 2π
3 , we



24 O.Demirel

get ∠A′G′D′ = ∠B′G′D′ = 2π
3 . One can easily see that D′ must lie on either G′C ′

or G′B′ since there are two lines (G′C ′ and G′B′) in R2 such that the measure of the
angle between A′G′ is 2π

3 . Since BGD is a triangle with ∠BGD = 2π
3 , by Lemma 2,

we obtain that B′G′D′ is a triangle with ∠B′G′D′ = 2π
3 . Thus the points D′, G′, B′

are definitely not on the same line, and this implies that D′ must lie on G′C ′.

Lemma 4. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves betweenness, that is, if A,C,E are three distinct points in R2

with |AE| = |AC|+ |CE|, then |A′E′| = |A′C ′|+ |C ′E′| holds.

Proof. Let A,C,E be three distinct points in R2 with |AE| = |AC| + |CE|. Let
us assume |A′C ′| = |A′E′| + |E′C ′|. Now take a point, say D, in R2 such that
|AC| = |CD| and ∠ACD = 2π

3 . Let B be the reflection of D with respect to C.
By Lemma 2, we have A′C ′D′ = ∠B′C ′E′ = 2π

3 , and by Lemma 3, we get that the
points B′, C ′, D′ are collinear. Now take a point on [B,E], say Y (B ̸= Y ̸= E),
such that ∠ACY = 2π

3 . Since B, Y,E are collinear points, thus we get that the
points B′, Y ′, E′ are collinear by Lemma 3. Moreover, ∠A′C ′Y ′ = 2π

3 holds by
Lemma 2. This implies Y ′ = B′, which contradicts injectivity of f . Hence we get
|A′E′| = |A′C ′|+ |C ′E′|.

Lemma 5. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves the equilateral triangles.

Proof. Let ABC be an equilateral triangle in R2 and K a point on AC with |CK| =
|AC| + |AK|. By Lemma 2, Lemma 3 and Lemma 4, we get that K ′, A′, C ′ are
collinear points with ∠B′A′K ′ = 2π

3 and |C ′K ′| = |A′C ′| + |A′K ′|. Clearly, we
obtain ∠B′A′C ′ = π

3 . Following the same way, one can easily prove that ∠A′B′C ′ =
∠B′C ′A′ = π

3 , which implies that A′B′C ′ is an equilateral triangle.

Lemma 6. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves the midpoints.

Proof. Let A and B be two distinct points in R2 and denote the midpoint of [A,B]
byM . Now construct a regular hexagon A1 · · ·A6, whose centroid isM with A1 = A
and A4 = B. Since f preserves the equilateral triangles by Lemma 5, we get that
A′

1 · · ·A′
6 is also a regular hexagon whose centroid is M ′. Thus we get that M ′ is

the midpoint of [A′, B′].

Lemma 7. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves the isosceles triangles of ∆.

Proof. Let ABC be an isosceles triangle in ∆ with |AB| = |AC|. Obviously, there
exist two points in R2 that form an equilateral triangle with B,C. Let D be the
closest of these two points to A. Let us denote the centroid of BCD by M and the
midpoint of [B,C] by E. Since M is the Fermat-Torricelli point of BCD, observing
|AB| = |AC|, M must be the Fermat-Torricelli point of ABC. Moreover, by Lemma
3, the points A′, D′, E′ are collinear since the points A,D,E are collinear. By
Lemma 5, B′C ′D′ is an equilateral triangle. Since M ′ is the Fermat-Torricelli point
of B′C ′D′ and A′B′C ′, it follows that A′B′C ′ must be an isosceles triangle in ∆
with |A′B′| = |A′C ′|.
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Lemma 8. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f is continuous.

Proof. Let X be a point in R2 and denote the open ball and the circle centered
at X with radius ϵ by B(X, ϵ) and C(X, ϵ), respectively. We want to prove that
f is continuous at X. It is well known that the sets BX = {B(X, ϵ) : ϵ ∈ R+}
and BX′ = {B(X ′, σ) : σ ∈ R+} are local bases of X and X ′, respectively. Let us
consider the open ball B(X ′, ρ). Let A and B be two distinct points in R2 such
that AXB is an equilateral triangle and assume |AB| = r. Since all point pairs that
form an equilateral triangle with A such that one side length is equal to r must lie
on C(X, r), it follows that A and B are two points in C(X, r). Assume |A′B′| = r′.
By Lemma 5 and Lemma 7, we get f(C(X, r)) ⊂ C(X ′, r′). Moreover, by Lemma

6, we get that f(C(X, r
2n )) ⊂ C(X ′, r′

2n ) for all n ∈ N. If r′ ≤ ρ, this implies that
f(B(X, r)) ⊂ B(X ′, ρ). If r′ > ρ holds, then there exists a positive integer k such

that r′

2k
< ρ. Hence we get that f(B(X, r

2k
)) ⊂ f(B(X ′, r′

2k
)) ⊂ B(X ′, ρ). Therefore,

we obtain that f is continuous at X, so it is continuous everywhere.

Lemma 9. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles in
∆, then f preserves the angles of triangles in ∆.

Proof. Let X be a point in R2 and construct a sequence, say XAiAi+1, consist-
ing of isosceles triangles taken from ∆ such that ∠AiXAi+1 = π

k , where k is an
integer with k > 1, and |XAi| = |XAi+1| for all i with 1 ≤ i ≤ 2k − 1. Clearly,
A1A2 · · ·A2k is a 2k-sided regular polygon with centroid X, that is equiangular
(all angles are equal in measure) and equilateral (all sides have the same length).
We claim that A′

1A
′
2 · · ·A′

2k is also a 2k-sided regular polygon with centroid X ′.
Firstly, by Lemma 7, the triangles X ′A′

iA
′
i+1 (1 ≤ i ≤ 2k − 1) and X ′A′

2kA
′
1 are

isosceles with |X ′A′
i| = |X ′A′

i+1| since the triangles XAiAi+1 (1 ≤ i ≤ 2k − 1)
and XA2kA1 are isosceles with |XAi| = |XAi+1|. Using again Lemma 7, since
AiAi+1Ai+2 (1 ≤ i ≤ 2k − 2), A2k−1A2kA1 and A2kA1A2 are isosceles triangles
with |AiAi+1| = |Ai+1Ai+2|, |A2k−1A2k| = |A2kA1|, |A2kA1| = |A1A2|, we get
that the image triangles A′

iA
′
i+1A

′
i+2 (1 ≤ i ≤ 2k − 2), A′

2k−1A
′
2kA

′
1 and A′

2kA
′
1A

′
2

are isosceles with |A′
iA

′
i+1| = |A′

i+1A
′
i+2|, |A′

2k−1A
′
2k| = |A′

2kA
′
1|, |A′

2kA
′
1| = |A′

1A
′
2|.

HenceA′
1A

′
2 · · ·A′

2k is an 2k-sided equilateral polygon. Moreover, observing |X ′A′
i| =

|X ′A′
i+1| (1 ≤ i ≤ 2k − 1), one can easily see that the triangles X ′A′

iA
′
i+1 (1 ≤ i ≤

2k − 1) and X ′A′
2kA

′
1 are congruent by side-side-side theorem. Therefore, we get

that A′
1A

′
2 · · ·A′

2k is a 2k-sided equiangular polygon. Thus A′
1A

′
2 · · ·A′

2k is a 2k-sided
regular polygon with centroid X ′ and it is clear that ∠A′

iX
′A′

i+1 = π
k for all i with

1 ≤ i ≤ 2k − 1. Hence f preserves nπ
k -valued angles at the vertex X, where k, n are

integers. As f is continuous by Lemma 8, and the set of rational numbers is dense in
R, it follows that f preserves all angles at the vertex X, and this finishes the proof.

Corollary 1. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles
in ∆, then f preserves the circles.

Lemma 10. If f : R2 → R2 preserves the Fermat-Torricelli points of all triangles
in ∆, then f preserves the lines. More precisely, if l is a Euclidean line in R2, then
f(l) is a Euclidean line in R2.
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Proof. It is clear from Lemma 3 and Lemma 4 that, for an arbitrary line AB
defined from two arbitrary points A,B in R2, f(AB) ⊂ A′B′ holds. Let S be a
point on A′B′, and try to find a point on AB, say X, such that f(X) = S. Assume
|A′B′|+ |B′S| = |A′S|. We can find a point, say C ′, that provides |A′S|+ |SC ′| =
|A′C ′| by getting enough symmetries of points A and B relative to each other. Now
construct an equilateral triangle whose two vertices are A and C, and denote this
triangle by ACD. Then, by Lemma 5, we get A′C ′D′ is an equilateral triangle.
Clearly, at least one of the triangles D′A′S and D′C ′S must be in ∆. Without loss
of generality, we may assume D′A′S ∈ ∆. If ∠D′SA′ := α, then by observing ACD
and A′C ′D′ are equilateral triangles, there exists a point on AB, say X, such that
∠DXA = α. By Lemma 9, we get f(X) = S, which finishes the proof.

From the results we have obtained so far, the function f is non-degenerate and
preserves the lines, so we can give our main theorem by Theorem 4 as follows:

Theorem 7. Suppose that f : R2 → R2 preserves the Fermat-Torricelli points of
all triangles in ∆. Then f is an affine transformation.

Naturally, one may wonder whether Theorem 7 holds for the mappings f : Rn →
Rn that preserve the Fermat-Torricelli points of all triangles in ∆? Here ∆ is defined
in the same sense above. The answer to this question is “yes”. Indeed, in Euclidean
space Rn, the Fermat-Torricelli point of a triangle ABC in ∆ is a point in the plane
containing ABC. Let us denote this plane by Ω. For each point X in Rn \ Ω, it is
clear that

|ψ(X)A|+ |ψ(X)B|+ |ψ(X)C| < |XA|+ |XB|+ |XC|

holds, where ψ(X) is the orthogonal projection of X on Ω. Therefore, if M is the
Fermat-Torricelli point of ABC in Ω, then M is also the Fermat-Torricelli point of
ABC in Rn. This ensures that all lemmas we have proved above hold here as well.
Thus, we can extend Theorem 7 to n-dimensional space Rn without proof.

Theorem 8. Suppose that f : Rn → Rn preserves the Fermat-Torricelli points of
all triangles in ∆. Then f is an affine transformation.

Remark 1. By Theorem 7 and Lemma 9 or Corollary 1, f can be expressed by

f(x) = ag(x) + b,

where g(x) is an isometry (or an orthogonal transformation) and a ∈ R (a ̸= 0),
b ∈ Rn.
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