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Explicit forms for three integrals in Wand et al.*
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Abstract. We derive explicit forms for the three integrals used in Kim and Wand [3] and
Wand, Ormerody, Padoan and Frithwirth [7]. The explicit forms involve known special
functions for which in-built routines are available.
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1. Introduction

Article [3] gave an explicit form of expectation propagation for a simple statistical
model, while [7] studied mean field variational Bayes for elaborate distributions.
Their studies involved the following three integrals. The first integral is

dz (1)

P exp {qxfrxz}
‘A b 2 7t7 = u
(p.g; 7, 8,t,u) /R (T snt29)

for p>0,q,s € R, r,u > 0 and s? < 4¢; see equation (2.1) on page 552 of [3]. The
second integral is

D _ x __ x x
B(p,q,r,s,t,u):/x exp {qzr — re se®/(t+e%)} de @)

R (t+e)"

for p,s > 0,q € R and r,¢,u > 0; see equation (2.1) on page 552 of [3]. The third
integral is

I(p,q,'f’, 3) - / xp eXp{qx — TZ'Q — S eix} dz (3)
R

for p > 0,9 € R and s,r > 0; see page 851 in [7].
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Both publications [3] and [7] provided explicit forms for none of the three inte-
grals. In this note, we provide explicit forms for all three integrals. The forms involve
known special functions and in-built routines for computing them are available in
the literature.

The organization of this note is the following. Section 2 gives two explicit forms
for (1). Section 3 gives one explicit form for (2). Section 4 gives two explicit forms
for (3).

2. The integral A

We present an approach in which we use the Griinwald-Letnikov fractional derivative.
The Griinwald-Letnikov fractional derivative of order v with respect to the argument
x of a suitable function f is defined by [6]
p(f) = tim 5 (-0 (V) o+ (v = moh)
= lim — — z+(v—m
x m )

hi0 hY

m=0

where h | 0 means that in approaching zero h remains positive. As is well-known
(see, for example, [4]), the Grinwald-Letnikov fractional derivative DY of order v of
the exponential function is

DY [e**] = a”e*". (4)

Firstly, consider the well-known integral

F(a, ) = /}Re"‘m_ﬁf’:2 dz = \/g exp {Zé;}, R(B) > 0.

Obviously, we have

D? [ (o, B)] = / aPe?=h g

R
On the other hand,

o) 0
D? [#(a, B)] = / 2P A g 4 / 2Peo®=B oy — [+ 4 [~
0

—o0
Using equation (13), page 313 of [1],

It = (28)7 T(p+1) exp{g;} Dy (—;;73),

where D, (-) denotes the parabolic cylinder function of order u (see, for example,
[2]), and the constraint p + 1 > 0 should be satisfied (which is definitely a weaker
assumption than the assumed p > 0 by Kim and Wand [3]). Accordingly, we have

I = e o eo{ S 0o ()
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Therefore,

D% 7 (o, B)] = (26)7% T(p+1) exp {gﬂ}

o () v ()]

Now, introduce a parameter a > 0 and specify a« = ¢ —as € R and g = r + a, the
latter evidently positive; therefore nothing harms the assumption on the parameter
space of (p,q,r,s,t). Considering now the integral

e DP_ [ (q—as,r+a)= / gPedr—ra’ —a(t+sa+a?) dz,

q—as
R
we conclude that

Alp,g.r,s,t,u) = (1) D" [e”"'Dy_,, [F (g — as,7 + a)]]

q—as

This formula proves the following result.
Proposition 1. For allp > 0,q,s € R, r,u > 0 and s*> < 4t, we have

(r+a)~" exp {M - at}

as —q inp q—as
Ao (i) o ()]

We now present another approach to calculating integral .A. Kummer’s (or con-
fluent hypergeometric) function series definition is

1Fi(a,c, z) = Z (a)nﬁ.

= (¢)n n!

A(pvqu’ra Svtvu) = eiﬂ-u 2_1:%—1 F(p + ].) hﬁ)l]D)g“

The parabolic cylinder function D, is expressible in terms of the Tricomi confluent
hypergeometric function, viz.

'l — I'(c—1
Ula; ¢ 2) = M 1Fi(a;¢;2) + (ch)) A7 P (14+a—¢2—¢2),
as (see equations (2) and (4) on page 117 of [2])
v 22 v 1 22 v—1 _22 1—v 3 22
Dy(z) =27 e U(2,2a2>22 ze 4 U<2,272), (5)

where in both cases —7 < 2arg(z) < 7. Applying the first formula in (5), we obtain

Proposition 2. For the same parameter space as in the previous proposition, we
have

A(p,q,r,s,t,u) = 2~ (pH1) gimu (1 + ei’”’) T(p+1)

—at _ 2
x im DY | —2 U<p+1 L (a—as) )
al0

ptl 5

(r+a)% 2 72 4(r +a)
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3. The integral B

We apply again the Griinwald-Letnikov fractional derivative (4) of the exponential
function. Firstly, we eliminate the denominator and the power z? in the integrand,
namely,

Bl ton) = (0 2205 | [e{(— o —re = 25} ad].
R

t+e”

Now, we transform the inner integral I(s) and use the Maclaurin expansion with
respect to s of the appropriate exponential term to obtain

B(p,q,7,5,t,u)

— (-1)* D [e—s D?_, [/R exp {(q — )z — re® + titel’} dx”

’ £)7 (g—u)x—re®
— (1 by e pr, |30 D /e dz
R

n!

= (t+e7)
+n B yqfuflefry
=(-1)" ) — D |e® s" DP — o d
(-1) Zn! sle s a—u /R+ (t+y)" yH

n>0

= (1) an DY [e*s s" DP [T(w) t* U(w,w+1—n,r t)}wzq_u}, (6)

n>0

where in (6) the Laplace transform formula (see equation (2.1.3.1) on page 18 of [5])

et caili d r P U 1
z=T(a) 2%~ a,a+1—-p,pz
/R+ EFwT () ( p,p z)

was used, which holds for all #(a) > 0, R(p) > 0 and |arg(z)| < 7. This proves the
following result.

Proposition 3. For all p,s > 0,q € R, r,t,u > 0 and q > —u, we have

. 1
B(p,q,r,s,t,u) =™ Z —HD)Z: {efs s"
=

x Dy, [T(q —u) 17" U(q—u7q—u+1—n,rt)]}. (7)

Unfortunately, our method holds true for ¢ — u > 0 only since I'(¢ — w) in (7).

4. The integral 7

This time it is enough to split the integration domain into positive and negative reals
and take the Maclaurin expansion in both sub-integrals of the exponential expression
exp {—se~*}. We obtain the following
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Proposition 4. For allp > 0,q € R, s, > 0, we have

Moreover, the following computable series representation holds:

s = T (1 gm) 52 G g (2 L o),

(4”% = n! 2 27 4y

Expression (8) could be deduced by some aspects of the discussion on pages 851-
852 of [7]. However, there the authors’ approach to quadratures for I(p, q,r, s) was
completely different.
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