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Summary 

Hard-facing process is widely used for improving the wear resistance of mild steel. During 

the application of hard-facing, due to high temperatures, residual stresses and deformations 

may occur. The tensile residual stresses may cause crack propagation on the hard-faced part. 

The purpose of this study is to utilise minimum computer work for minimizing these residual 

stresses and deformations during the hard-facing of mild steel. The fully coupled transient 

heat transfer and structural analysis was performed for calculations. The double-ellipsoidal 

moving heat source was utilised to simulate the heat input from the gas metal arc welding 

(GMAW). Only eight numerical simulations were performed to minimize the computer 

work; the grey relational analysis was used for minimizing both the residual stresses and 

deformations. Welding speed, welding current, and welding pattern were considered as 

changing parameters. At the end of the numerical and statistical solutions, it is observed that 

heat input should be kept minimum to minimize the stresses and deformations. But it is 

obvious that the heat input must provide a temperature greater than the melting point. 

Straight patterns always produce better results for minimizing stresses and deformations. 

Transverse stress at the beginning and end of the longitudinal path gets higher significantly 

after cooling. Cooling does not affect the total deformation. 

Key words: Hard-facing; grey relational analysis; residual stresses; deformations; 

moving heat source; GMAW 

1. Introduction 

Most of the hard-facing applications are performed by the arc welding processes 

commonly known as gas tungsten arc welding (GTAW), shielded metal arc welding 

(SMAW), or gas metal arc welding (GMAW). There are a considerable number of modeling 

efforts for the arc welding processes in the literature. Some authors dealt with only the 

thermal part of the problem. Goldak et al. proposed a new geometrical method to simulate the 

heat input during the arc welding processes [1]. Since then, their model, which is called the 

double ellipsoidal moving heat source model, has been used by many authors. The effects of 

welding conditions and heat source parameters on temperature variations in butt joint welding 

were analyzed by Gery et al. [2]. They concluded that welding conditions and heat source 

parameters influence peak temperatures in the fusion zone (FZ) and affect the welded plate's 

transient temperature distributions.  
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Ghosh and S. Chattopadhyaya proposed a new kind of heat source [3]. In their work, they 

utilised a conical Gaussian heat distribution to simulate the heat input during the submerged 

arc welding (SAW) process. Their results matched the experimental ones. Similar and 

dissimilar butt joints of the GTAW welding process were analyzed by some authors [4]. Such 

authors used ABAQUS software for simulation, worked with St 37 and AISI 304 sheets of 

steel, and concluded that the peak temperatures in AISI 304 are more significant than St 37. 

Their reasoning behind this the thermal properties differ from each other. An analytical 

method to simulate the transient temperature field for submerged arc welding was proposed 

and gave good results [5]. Garcia-Garcia et al. proposed an elliptic paraboloid heat source 

model [6]. Garcia-Garcia et al. studied the GTAW process with the help of the finite volume 

method. Design of experiments (DOE) technique simulates the temperature distribution in 

laser beam welding [7].  

Alternative researchers dealt with both the thermal and structural parts of the modeling 

efforts in arc welding. Fanous et al. utilised element birth and element movement techniques 

to simulate the filler metal and welding [8]. It was concluded that the element movement 

technique was better than the other technique. Thermal elastic-plastic simulation of the arc 

welding process was studied by further researchers [9] who predicted the deflections in large 

structures very successfully. Deaconu made a structural analysis to simulate the distortions 

and residual stresses in welded plates [10].  SMAW of carbon steel plates was studied, and the 

residual stresses were predicted successfully in a research article [11]. Jeyakumar et al. 

studied ASTM36 steel plates to analyze weldment's structural behavior [12]. In their analysis, 

they found that even a 2-D model can predict the residual stresses successfully. Butt-welded 

IN716 plates were studied by some authors [13] and predicted that the tensile stresses near the 

weld centerline and compressive stresses away from it, which were observed in the 

experimental results. In a study using numerical simulation and experimental validation, 

authors concluded that longitudinal and circumferential stresses performed on the inner and 

outer surfaces and the radial direction revealed a considerable increase in weld speed and 

power [14]. Darmadi et al. utilised a mixed heat source model, which gave a well-matched 

temperature distribution and weld pool shape [15]. A mathematical model of a double 

ellipsoidal moving heat source has been used to simulate the transient thermal analysis by 

finite element method [16]. They exploited temperature distributions as thermal loads in a 

mechanical analysis to predict the plate distortions.  

Nezamdost et al. proposed a new kind of moving heat source model to simulate SAW 

[17]. The fusion zone boundaries and the residual stresses were guessed very successfully. A 

group of researchers studied the TIG welding process of a stainless steel pipe [18]. They 

found that residual stress changes from compressive to tensile from outer to inner surface 

after the welding. AISI 316L steel was butt-welded, and the residual stresses were measured 

[19]. Only a small percentage of discrepancy was obtained. Some authors analyzed the 

GTAW welding of AISI 314 steel [20].  Model solutions show that the longitudinal residual 

stresses get smaller with heat input. With the heat input increasing, the tensile and 

compressive residual stresses are decreased. The transverse residual stresses get smaller with 

heat input. Butt-welded thin titanium plates were investigated both experimentally and 

numerically [21]. The longitudinal stress along the weld centerline was tensile, but it was 

compressive away from it.  

Balram and Rajyalakshmi studied the multi-pass arc welding of dissimilar metals, and 

their model results are in good match with experiments [22]. Double-pass GTAW welding of 

aluminum plates was studied by other authors [23]. The model well predicted residual stresses 

and distortions. Prediction of temperature distribution and displacement in SAW was 

performed by Arora et al. [24] where they used DOE method not to make many calculations. 

Their results are in good agreement with the experiments.  
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Some researchers dealt with hard-facing and other surface processing techniques. The 

details about these studies can be found in the next part. Wu et al. studied the modeling of the 

hard-facing phenomenon [25] where they concluded that the effects of the base metal 

thickness were dependent on the thickness. When the sample changed from thick to thin, the 

residual stresses in the hard-facing layer are reduced. Yang et al. studied the residual stresses 

in a hard-faced steel specimen [26]. A literature survey about surfacing processes yields 

Cordovilla et al. 's work dealing with laser surface hardening [27], El-Sayed, Shash, and Abd-

Rabou's work on friction stir processing [28], and Zanger et al. 's work dealing with a stream 

finishing process [29]. Ramesh prepared a review study on hard-facing [30]. He mentioned 

processes and materials utilised in hard-facing. Lazic et al. also made an experimental study 

of the deformations at elevated temperatures during steels' hard-facing [31]. Lazic et al. 

studied the residual stresses between the hard-facing layers [32]. Zargar et al. studied the 

effects of the welding sequence on the distortions. They stated that the welding sequence 

significantly affected the distribution and the magnitude of welding-induced vertical 

deflection. [33]. Pandey et al. investigated the influence of preheating the filler metal on the 

distortions [34] where results revealed that there is a reduction in weld-induced distortion 

when the filler wire is preheated. 

In the previous paragraph, one can find studies of hard-facing from the literature. Only 

one of the studies [33] involves how the welding sequence influences residual stresses and 

deformations.  In this present work, low carbon steel's hard-facing process is investigated to 

minimize the residual stresses and deformations. The present work does not consider the filler 

material, only melting of the base metal is taken into account. The effect of the welding 

sequence, welding current, and welding speed was analyzed. The numerical technique was 

supported by a statistical method to accomplish this minimization.  

 

2. Numerical Procedure  

The most critical input of the GMAW hard-facing process is the transient heat generated 

by the arc. According to the most popular and referred work of Goldak et al., the double 

ellipsoidal moving heat source can be written in the appropriate form for the numerical 

domain in this present work [1] (Equations 1 and 2).  

 

(1) 

 

(2) 

Here, subscripts f and r represent front and rear, x,y,z are cartesian coordinate axes, a, b 

and c are the heat source parameters. Q can be calculated by multiplying efficiency, voltage, 

and ampere. τ is the lag factor needed to define the position of the heat source at time t=0. v is 

the welding speed. The heat input is depicted in Figure 1 [35].  
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Figure 1. Schematic view of the double ellipsoidal moving heat source [35]. 

The thermal part of the welding simulation involves conduction, convection, and 

radiation. The model's structural part considers the elastic strain, plastic strain, and thermal 

strain (Equation 3). 

 (3) 

Elastic strain is simulated using the isotropic Hooke's law with temperature-dependent 

Young's modulus and Poisson's ratio. The thermal strain is calculated using the temperature-

dependent coefficient of thermal expansion. For the plastic strain, a plastic model is employed 

with von Mises yield criterion, temperature-dependent mechanical properties, and bi-linear 

isotropic hardening model. Zhang and Wang also utilized the same equation (Equation 3) for 

modeling the residual stresses in welded structures [36]. According to their work thermal 

strain can be calculated using the thermal expansion coefficient. The same applies to the 

present work. Creep and phase transformation induced strains are also ignored in both studies. 

The coupling between the thermal and structural parts was performed using temperature-

dependent material properties such as thermal expansion coefficient, elasticity modulus, and 

Poisson's ratio. Plastic deformations caused by the high heat input can cause a slight 

temperature change. Two-way coupling makes it possible for the strain work to affect the 

temperature field; however, the thermal field affects the structural part.  

The problem domain is a 300x100x8 mm mild steel domain. The welding patterns, 

meshing, dimensioning, and paths for calculating transverse and longitudinal residual stresses, 

and deformations can be seen in Figures 2a, 2b, and 2c. The structural boundary condition 

fixed supports are depicted in Figure 2d. The mesh size was chosen as 3 mm according to 

similar studies conducted by Fang et al. [37] and Andhale et al. [38]. The hard-facing 

simulation was conducted as a line heating problem without taking into account the filler 

material. 
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Figure 2 a. Straight welding pattern and mesh, b. Reverse welding pattern and mesh, c. Welding 

paths, d. Position of fixed supports. 

The welding and heat source parameters are tabulated in Table 1. The thermal and 

structural properties of mild steel are given in Table 2. The Young’s modulus is taken as 200 

GPa, and the tangent modulus for the bi-linear isotropic hardening model is chosen as 2 GPa. 

These moduli could not be taken as temperature-dependent because the model did not 

converge. The yield strength (YS) and the ultimate tensile strength (UTS) of A36 steel are 

taken as 250 MPa and 500 MPa, respectively. The composition of A36 steel is tabulated in 

Table 3. 

Table 1. The Goldak double ellipsoidal parameters for the welding simulation [24]. 

a (parameter in x-direction) 6 mm 

bf (parameter in y-direction, front) 4 mm 

br (parameter in y-direction, rear) 10 mm 

c (parameter in z-direction) 10 mm 

ff (front fraction)  1.55 

fr (rear fraction) 0.45 

Welding speed, v 7.50 mm/s 

Welding voltage, U 25 V 

Welding current, I 450 A 

Welding efficiency, η 0.8 

Heat input, Q= ηIU 9000 W 

Heat input, Qj= ηIU/v 1.2 KJ/mm 
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Table 2. Thermo-physical and thermo-mechanical properties of A36 [16]. 

Temperature 

 (°C) 

Density 

(kg/m3) 

Specific 

Heat 

(J/kg/°C) 

Conductivity 

(W/m/°C) 

Young's 

Modulus 

(109 Pa) 

Poisson 

Ratio 

Thermal 

Expansion 

Coeff. 

(10-7/°C) 

0 7900 444 45.9 205 0.33 120 

100 7880 472 44.8 202.5 0.34 122 

200 7830 503 43.4 200 0.35 124 

300 7790 537 41.4 187.5 0.36 126 

400 7750 579 38.9 175 0.37 128 

600 7660 692 33.6 148 0.39 132 

800 7560 837 28.7 100 0.41 136 

1200 7370 860 28.6 17.5 0.45 144 

1300 7320 863 29.5 15 0.46 146 

1500 7320 - - 10 0.48 150 

 

Table 3. Composition of A36 steel. 

Carbon Copper Iron Manganese Phosphorus Silicon Sulfur 

0.25-

0.29 % 

0.2 % 98 

%  

1.03 % 0.04 % 0.28 % 0.05 

% 

 

The problem was solved in the transient structural module of ANSYS software. The 

problem domain has 28505 nodes and 5000 elements; the transient analysis was performed in 

0.02-second increments. One hundred twenty seconds' hard-facing process solution takes 17 

hours, one hundred and eighty seconds' hard-facing process takes 26 hours. The computer 

used in the process has an Intel I7 CPU and 16 GB of RAM. Grey relational analysis was 

used to minimize the computing effort.  

As for the boundary conditions; the structural boundary conditions for the hard-facing 

process are as follows: The four corners of the welded plate which are lines in the z-direction 

are kept fixed (see Figure 2d). The Goldak double ellipsoidal parameters for the hard-facing 

process are tabulated in Table 4. The thermal boundary conditions are as follows. Ambient 

temperature was taken at 20 °C, the convective heat transfer coefficient and emissivity were 

chosen as 6 W/m2/ °C and 0.9.  

Table 4. The Goldak double ellipsoidal parameters for the hard-facing process. 

a (parameter in x-direction) 5 mm 

bf (parameter in y-direction, front) 5 mm 

br (parameter in y-direction, rear) 8 mm 

c (parameter in z-direction) 5 mm 

ff (front fraction)  0.5 

fr (rear fraction) 1.5 

Welding speed, v 10.0 mm/s 

Welding voltage, U 40 V 

Welding current, I 150 A 

Welding efficiency, η 0.83 

Heat input, Q= ηIU 5000 W 

Heat input, Qj= ηIU/v 0.5 KJ/mm 
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In Table 5, one can see the eight simulations investigated in this work. By performing 

these eight numerical simulations, one can choose the optimum welding conditions to 

minimize the residual stresses and deformations. 

Table 5. The simulation details. 

Simulation No. 

(Abbreviated 

as SIM) 

Welding Speed 

(mm/s) 

Welding 

Current (A) 

 

Heat Input 

(KJ/mm), Qj 

Pattern 

1 10 150 0.5 Straight 

2 10 150 0.5 Reverse 

3 10 200 0.66 Straight 

4 10 200 0.66 Reverse 

5 15 150 0.33 Straight 

6 15 150 0.33 Reverse 

7 15 200 0.44 Straight 

8 15 200 0.44 Reverse 

 

The validation of the numerical solution was established by experiment 1  found in Ref. 

[24]. The model and the experiment have the same welding conditions, material, and 

geometry. The peak temperature in the middle point of path 1 (see Figure 2c)  is 334 °C for 

the present model and 320 °C for experiment 1 from Ref. [24]. The error is not more than 5  

percent, which is very acceptable. The total deformation UT (The maximum contribution of 

total deformation is from the – (minus) z-direction and on the bottom surface and in the 

middle of the weld centerline.) calculated by the present model is 2.65 mm, whereas the 

experimental measurement from Ref. [24] was 2.67 mm. These comparisons show that the 

model's thermal and structural parts can be utilised to predict the residual stresses during the 

hard-facing application presented in this work. 

 

3. Grey relational analysis 

Grey relational analysis is utilised to minimize the deformations and the residual stresses 

in the hard-facing process simulations. The following equations should be used to minimize 

the responses, and we start with normalization: 

 
(4) 

where, i = 1,…, m; k = 1,…,n, m is the number of simulation data, and n is the number of 

responses. xi(k) denotes the original sequence, xi
*(k) denotes the sequence after the data 

processing, max xi(k), and min xi(k) values are the largest and smallest values of xi(k). 

The next step is the calculation of grey relational coefficient ξi(k) from the normalized 

values from the following equations: 

 (5) 

 
(6) 

where, x0(k) implies the reference sequence, xi(k) is the comparability sequence, and 

 is the deviation sequence.  and  are the minimum and the maximum values of 

the absolute differences ( ) of all comparing sequences.  value is usually taken as 0.5.  
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The following equation can compute grey relational grade (GRG): 

 

(7) 

where,   is the required grey relational grade for the ith simulation, and n is the number 

of response characteristics (3 for our case). The highest value of GRG is the optimum solution 

to the multi-objective optimization problem [37]. 

4. Results and Discussion 

Temperature distributions for simulations 1 and 6 can be seen in Figures 3a and 3b. The 

lower welding speed causes a higher temperature in the straight pattern. In the reverse pattern, 

the welding speed was increased by 50 % resulting in a considerable decline in temperature. 

By looking at these two figures, one can understand that heat input is substantially affected by 

the welding speed. The longitudinal stress distribution for simulation 1 at 100 seconds can be 

seen in Figure 3c. The maximum tensile stress is 1.43 times the yield strength (YS) of the 

material used. The compressive stresses surpassing the ultimate tensile strength (UTS) can be 

explained that the sharp fixed supports at the corners of the plates. One cell away from the 

sharp corners have compressive stresses below the UTS. One thing that should be made clear 

is that the deformations depicted in these figures are magnified by 4. 

Figure 4 shows the transverse residual stresses along path 2, depicted in Figure 2c. From 

SIM1 to SIM8 the results are shown for the 180th second, which is the end of the hard-facing 

process. SIM1* shows the residual stress 720 seconds from the beginning of the process. One 

should analyze this figure in groups of two. Simulations 3 and 4 produce the highest 

transverse stress, simulations 7 and 8 follow this group. Simulations 5 and 6 produce the 

lowest transverse stress. In between the last two groups, simulations 1 and 2 take place. The 

ordering of these simulations according to their transverse stress values on path 2 follows 

mainly their heat input values in Table 5. One contradiction to this thesis is that simulations 7 

and 8 come before simulations 1 and 2 although their heat input value (0.44 KJ/mm) is lower 

than the other group (0.5 KJ/mm). This fact can be explained by the welding current value. In 

simulations 7 and 8, the welding current value is 200 A which is greater than the other group. 

When one investigates the influence of the welding pattern in Figure 4, one can see that in the 

first half of the path the straight patterns always produce higher stresses than the reverse 

patterns. In the second half of the path, one can observe vice versa. This can be explained by 

the delayed cooling effect of the welding patterns. After 9 minutes of cooling time, the 

transverse stress gets higher at the beginning and end of the path. This can be explained by the 

contraction caused by the cooling. The fixed supports are close to the beginning and end of 

the path. This fact may also be important for this result. 
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Figure 3. Temperature distributions. a. Simulation 1, temperature distribution at 100th second, b. 

Simulation 6, temperature distribution at 66th second, c. Simulation 1, longitudinal stress distribution 

at 100th second. 

 

Figure 4. Transverse residual stresses along path 2. 
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Figure 5 depicts the longitudinal residual stresses along path 1. Except for SIM1* the 

results are shown for the 180th second. Here, reverse patterns (red and green lines in the 

figure) produce lower stresses in the first half of the path. When one looks at the second half 

of the path, one can see that straight patterns (black and blue lines in the figure) cause lower 

stresses. This can be explained by the delayed cooling effect caused by the type of pattern. 

The highest stress can be encountered in the first half of the path with simulation 1, whereas 

the lowest one comes from simulation 3. In the second half of the path, the highest stress was 

observed in simulation 2 and the lowest stress was seen in simulation 4. The cooling effect 

was investigated in SIM1*, which gives the 720th second of the process. The residual stress is 

not affected in between 120th  and 180th  mm.s of the path. This can be explained by the fact 

that the fixed supports are away from the investigated part of the path. That is why the cooling 

contractions may not prevail. 

 

 

Figure 5. Longitudinal residual stresses along path 2. 

Figure 6 shows the total deformation along path 2. The deformations can be ordered from 

the highest to the lowest according to the heat input values of the simulations. Simulations 3 

and 4 have the highest heat input (0.66 KJ/mm) and the highest deformation. Since the fixed 

supports are on the corners of the plate, it is quite normal to have the maximum deformation 

in the middle of the plate. The lowest heat input (0.33 KJ/mm) produces the minimum 

deformation (dotted black and red lines). As for the lines in between the two extrema, one can 

say that although the heat inputs are different from each other, they produce the same amount 

of deformation. Simulations 7 and 8 have (0.44 KJ/mm), whereas simulations 1 and 2 have 

(0.5 KJ/mm). In simulations 7 and 8 the welding current is greater than the one in simulations 

1 and 2. This can explain why they produce the same amount of deformation. When one 

observes the two extrema again, one can say that the reverse pattern causes a deformation 

slightly greater than the other pattern. The cooling period does not affect the total deformation 

much. 

Figure 7a shows the temperature distribution at the 720th second. The maximum 

temperature went down to 644 C. Reaching the ambient temperature could not be achieved 

because of the restricted computer resources. Figure 7b gives the longitudinal stress 

distribution at the 720th second after 9 minutes of cooling. Since the fixed supports are very 

sharp, the higher stress values must not be considered near the fixed supports. The stress 

values along the welding paths are around 300 Mpa, which is very reasonable. 
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Figure 6. Total deformation along path 2. 

 

 
Figure 7. a. Temperature and longitudinal stress distributions after 720 seconds (SIM1) a. temperature 

distribution b. longitudinal stress distribution. 
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To apply the grey relational analysis to the simulations' results, the transverse and 

longitudinal residual stresses, and deformations along paths 2 should be analyzed. These 

values can be seen in Table 6. 

Table 6. The numerical simulation results (along paths 2 (see Figure 2c)). These values are obtained at the 

end of the hard-facing process, i.e in the 180th second and 120th second. 

Simulation 

No.  

(Abbreviated 

as SIM) 

Max. Transverse 

Residual Stress (MPa) 

Max. Longitudinal 

Residual Stress (MPa) 

Max. 

Defor-

mation 

(mm) 

Time for 

data 

collection 

(s) 

- SX SX/YS SX/UTS SY SY/YS SY/UTS - - 

1 136.1 0.5444 0.2722 100.6 0.4024 0.2012 2.77 180 

2 152.1 0.6084 0.3042 149.3 0.5972 0.2986 2.71 180 

3 158.7 0.6348 0.3174 59.6 0.2384 0.1192 5.16 180 

4 183.2 0.7328 0.3664 110.8 0.4432 0.2216 5.27 180 

5 143.1 0.5724 0.2862 91.2 0.3648 0.1824 2.16 120 

6 140.3 0.5612 0.2806 118.6 0.4744 0.2372 2.2 120 

7 149.5 0.598 0.299 72.5 0.29 0.145 2.7 120 

8 170.0 0.68 0.34 135.2 0.5408 0.2704 2.68 120 

 

The welding parameters' influence for both residual stresses and deformations can be 

seen in Table 7 and Figure 7. The highest grey relational grade gives the optimum solution. 

The optimum solution is simulation 5 which has the lowest heat input and straight pattern. On 

the other hand, simulation 4 gives the worst solution to the optimization problem. It has the 

highest heat input and reverse pattern. When one investigates the straight patterns 

(simulations 1, 3, 5, and 7), it is observed that they always produce better results than the 

reverse patterns (2, 4, 6, and 8), when the other parameters are kept constant.  

 

Figure 8. Gray Relational Analysis for minimizing both residual stresses and total deformations. 
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Table 7. Grey relational analysis results for path 2 , normalization (Eq.(4)), deviation sequence (Eq.(5)), 

grey relational coefficient (GRC) (Eq.(6)) and grey relational grade (GRG) (Eq.(7)) calculations. The 

maximum residual stresses and maximum total deformation values are taken from Table 6. 

 Normalization Deviation Sequence GRC GRG 

 Max. 

Stress 

SX 

(MPa) 

Max. 

Stress 

SY 

(MPa) 

Max. 

Defor-

mation 

(mm) 

Max. 

Stress 

SX 

(MPa) 

Max. 

Stress 

SY 

(MPa) 

Max. 

Defor-

mation 

(mm) 

Max. 

Stress 

SX 

(MPa) 

Max. 

Stress 

SY 

(MPa) 

Max. 

Defor-

mation 

(mm) 

- 

SIM 

1 
1.000 0.543 0.804 0.000 0.457 0.196 1.000 0.522 0.718 0.747 

SIM 

2 
0.660 0.000 0.823 0.340 1.000 0.177 0.595 0.333 0.739 0.556 

SIM 

3 
0.520 1.000 0.035 0.480 0.000 0.965 0.510 1.000 0.341 0.617 

SIM 

4 
0.000 0.429 0.000 1.000 0.571 1.000 0.333 0.467 0.333 0.378 

SIM 

5 
0.851 0.648 1.000 0.149 0.352 0.000 0.771 0.587 1.000 0.786 

SIM 

6 
0.911 0.342 0.987 0.089 0.658 0.013 0.849 0.432 0.975 0.752 

SIM 

7 
0.715 0.856 0.826 0.285 0.144 0.174 0.637 0.777 0.742 0.719 

SIM 

8 
0.280 0.157 0.833 0.720 0.843 0.167 0.410 0.372 0.749 0.511 

The validation of the results was performed by a welding experiment, the results of which are 

given in Figures 9a and 9b. The welding conditions are taken from simulation 1, i.e the 

welding speed is 10 mm/s, the welding current is 150 A, voltage is 40 V, and the type of 

pattern is straight. Argon gas is utilized for shielding the weld pool. The maximum 

deformation obtained from the simulation is 2.77 mm. The experimental deformation 

measurement gives a value of 3 mm. One can say that the results of the 8 simulations can be 

reliable and can be used by the welding engineers who want to perform hard-facing with mild 

steel. In Figures 9a and 9b, it is obvious that the deformation is in the – (minus) z-direction, 

and this deformation causes a concave structure in the plate. 
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Figure 9. a. Hard-faced plate (SIM1) a. upper surface b. bottom surface 

5. Conclusion 

Modeling efforts for hard-facing processes can not be encountered much in the literature. 

In this present work, the finite element method (FEM), together with the statistical method 

grey relational analysis, was utilised to minimize the transverse and longitudinal residual 

stresses and deformations. The FEM part was structured with two-way coupling between the 

thermal and structural parts. Coupling between the two parts was performed using 

temperature-dependent material properties such as thermal expansion coefficient, elasticity 

modulus, and Poisson's ratio.  Since the time-dependent simulations took so much time, the 

number of simulations is kept as low as possible. The cooling effect was also investigated and 

the influence of cooling on the residual stresses and deformations was reported. 

One can conclude that for mild steel's hard-facing: 

• One should use lower heat input to minimize residual stresses and deformations.  

• The type of pattern should be chosen as the straight pattern for minimization of 

the residual stresses and deformations. 

• In general transverse residual stresses in eight simulations were ordered according 

to their heat input along path 2 (the path located in the middle of the transverse 

direction on top of the plate). The maximum heat input gave the maximum 

transverse stress. 

• Longitudinal residual stresses along path 2 behave according to their type of 

welding pattern.  

• Deformations along path 2 are mainly affected by the heat input. 

• The cooling period has much more influence on the transverse stress rather than 

the longitudinal stress.  

• Transverse stress at the beginning and end of path 2 gets higher significantly after 

cooling 

• Cooling does not affect the total deformation. 
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• The high stresses near the sharp fixed supports should not be considered. They 

may mislead the researcher. 

 

Supplementary Materials: The datasets generated during the current study are available 

from the corresponding author on a reasonable request. 
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Nomenclatures: 

a:  heat source parameter in the x-direction (mm) 

bf:   front heat source parameter in the y-direction (mm) 

br:  rear heat source parameter in the y-direction (mm) 

c:  heat source parameter in the z-direction (mm) 

ff:  front heat fraction 

fr:  rear heat fraction 

I:  welding current (A) 

m:  number of simulation data 

n:  number of responses 

qf:  front heat input (W) 

qr:  rear heat input (W) 

Q:  total heat input (W) 

Qj:  total heat input (KJ/mm) 

SX:   transverse stress (MPa) 

SY:  longitudinal sress (MPa) 

t:  time (s) 

U:  welding voltage (V) 

UX:  deformation in the x direction (mm) 

UY:  deformation in the y direction (mm) 

UZ:  deformation in the z direction (mm) 

UT:  total deformation  

v:  welding speed (mm/s) 

x:  cartesian coordinate axis 

xi(k):  original sequence 

xi
*(k):  sequence after data processing 

max xi(k): largest value of xi(k) 

min xi(k): smallest value of xi(k) 

UTS:  ultimate tensile strength 

y:  cartesian coordinate axis 

YS:  yield strength 

z:  cartesian coordinate axis 

 

γi:  grey relational grade 

Δoi(k):  deviation sequence 

Δoi :  absolute differences 

Δmin :  minimum values of absolute differences  

Δmax :  maximum values of absolute differences 

εelastic:  elastic strain 

εplastic:  plastic strain 
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εthermal:  thermal strain 

εtotal:  total strain 

ζ:  coefficient taken as 0.5 

η:  welding efficiency 

ξi(k):  grey relational coefficient 

σxx:  transverse residual stress (MPa) 

σyy:  longitudinal residual stress (MPa) 

τ:  lag factor (s) 
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