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Summary 

This paper addresses the Coulomb dry friction force as a technical indicator for fast and 
efficient condition-based maintenance. To estimate the value of friction force, the Bayesian 
analysis is used. Instead of the complex Markov Chain Monte Carlo numerical method, a 
closed-form analytical solution is applied. Thus, a simple and efficient procedure for friction 
estimation is described. Such a solution in the Bayesian context is known as the conjugate 
prior. The procedure presented here is verified numerically and experimentally by directly 
comparing the estimated value with the measured one. Two families of conjugate priors, the 
gamma-exponential and the normal-gamma, are compared. It is shown that the latter is 
suitable for friction estimation. An additional parameter, the precision parameter, was 
proposed as a criterion for the acceptance of estimation. 

Key words: Bayesian inference, Conjugate priors, Coulomb dry friction, Experimental 
friction estimation 

1. Introduction 
From the diagnostic perspective, the parameter estimation is a key aspect in a successful 

damage assessment and consequently in failure prediction. Generally, in diagnostics, if some 
measurable value is well correlated with the system condition, it can be used as a technical 
indicator. When considering the cases involving mechanical contact, the friction force is the 
first choice for an indicator. The problem that arises is how to develop fast and efficient data 
processing, which can be further included in the condition-based maintenance (CBM) [1–3]. 
Since mechanical contacts are unwanted occurrences, they should be detected in the early 
development stage. Therefore, an additional requirement is the ability to detect small 
quantities. A general CBM approach with two phenomenologically different distributions is 
presented in Fig. 1. The parameter density distribution, f(r|Ti), is related to the system 
condition at a given time instance. It captures the technical indicator uncertainty due to 
different sources, for example the sensor noise and ambient condition. As the system 
deteriorates over time, the indicator value changes. This is observed by diagnostic detection 
points noted as T1, T2 and Tn in Fig. 1. Since the failure is a future event, the failure 
distribution, f(Δt|Tn), is a model of the remaining useful life. To predict failure, the threshold 
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should be preset. Then, with more detection points, a better prediction is obtained [4]. The 
focus of this paper is not on the failure level settings or the CBM prediction phase but on a 
technically simple and efficient time-domain procedure for the estimation of friction.  

 
Fig. 1  A schematic diagram of condition-based maintenance 

For the systems with a stationary operating point, diagnostics can be performed without 
detecting its intrinsic values. Subsequently, a simple amplitude analysis, such as RMS, can be 
performed [4]. The analysis that will be presented here, applies to the systems with a 
dominant first mode, with frequent changes of the operating point. Therefore, short vibrating 
intervals without external energy input are expected. Within the conventional identification 
approach, an extended interval of free decay periods must be acquired. From the diagnostic 
standpoint, this is not feasible and friction estimation should be performed by analysing just a 
few periods. Therefore, it is crucial to have an additional criterion to evaluate the estimation 
before acceptance.  

For most mechanical systems, the aging process causes a bigger change in the friction 
force (r) than in the mass (m) and the stiffness (k), such as oil film loss or lubricant 
deterioration. In those cases, direct methods and more complex monitoring can be used [5]. 
This paper presents the way how to use the friction force as a technical indicator directly 
correlated to damage, but indirectly measured from system response. Herein, the second-order 
mechanical system with dry friction is analysed. Among friction models [6,7], the Coulomb 
model is a model which is commonly used due to its simplicity [8–10]. It can be found as a 
damping model in dry and foil gas bearings [11,12], or in cases involving oil film loss 
[13,14]. When the Coulomb friction model is applicable, the equation of motion is Eq. (1).   𝑚𝑥ሷ + 𝑟 𝑠𝑖𝑔𝑛ሺ𝑥ሶ ሻ + 𝑘𝑥 = 𝑓ሺ𝑡ሻ (1) 

For the free decay case, the analytical solution exists and can be found in [15,16]. It is a 
well-known fact that in the presence of dry friction, free-response amplitudes decay linearly, 
i.e. the envelope is a straight line with a constant slope [17]. The slope, and therefore the 
friction force, can be estimated from at least two consecutive amplitudes. Due to the noise and 
uncertainty, the friction estimation must be in the form of a distribution. In this paper, any 
discrepancy difference between the model and the acquired signal, regardless of the cause, 
will be considered as noise. More details about this can be found in section 4. In the real 
conditions, the Bayesian analysis provides the parameter estimation from the first detection 
instance [18]. It combines the prior distribution with some evidence to obtain a posterior 
distribution [19]. Since the system changes due to degradation, as shown in Fig. 1, the 
succeeding runs cannot be taken as a sample from the same population. The parameters are 
then monitored through an update process. This means that the posterior distribution from the 
previous detection point becomes the prior distribution to the current detection point. To 
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estimate the parameter value, as many detection instances as possible should be considered as 
successful. The Bayesian analysis presented here will provide a means for accepting and 
estimating the parameter, even when a small data set occurs. Due to multidimensionality, the 
Bayesian analysis usually implies the Markov Chain Monte Carlo (MCMC) numerical 
integration. This is an efficient but complex method that involves an additional sampling 
algorithm [20,21]. A different parameter estimation approach can be used instead by applying 
an analytical solution, i.e. a conjugate prior. From an engineering standpoint, these analytical 
solutions should be considered. 

Therefore, a fast and efficient friction estimation procedure using a conjugate prior is 
proposed in this paper. In brief, the conjugate prior is the case when the prior and the posterior 
distribution have the same algebraic form [22]. There are a few conjugate priors and they are 
mainly applicable to one-dimensional problems. Here, to estimate the Coulomb friction force, 
two conjugate models are compared, namely a simple one-dimensional gamma-exponential 
model [23] and a two-dimensional normal-gamma model [24]. Also, uncertainty is relatively 
easily estimated within the same theoretical assumption by calculating the credibility 
intervals, often on a very small data set. In the CBM diagnostic phase, due to the small data 
set, the credibility intervals are expected to be wide. Therefore, an additional precision 
parameter is proposed as a criterion for the acceptance of signal and estimation. 

To demonstrate the proposed procedure in a real, but controlled environment, a single 
degree of freedom testbed is developed. The main feature of the testbed is precise vertical 
motion with minimal damping, which is achieved through an air bearing [25]. The friction 
force is induced externally and estimated on the acceleration free decay signal. The estimated 
friction force distribution is compared to the friction force directly measured by a force 
sensor. 

2. The Bayesian conjugate prior for friction estimation 
According to Eq.  (1), the amplitudes in the free response decays linearly. The friction 

force, r, and the envelope free decay slope, y, are related by Eq.  (2), where ω0 is the natural 
frequency, while k is the stiffness [17,26]. 

 𝑦 = 2𝑟𝜔଴𝜋𝑘  (2)

A series of ideal measurements will yield the same slope for any consecutive two peaks. 
In the real-life signal, this is not the case and different values are estimated even for different 
amplitudes of the same run. Since uncertainty is present, a Bayesian analysis is a reasonable 
choice for parameter density [20], i.e. friction force estimation, at any detection point, as 
shown in Fig. 1. The parameter density consists of the aleatory and the epistemic uncertainty 
[27,28]. The former is caused by the loss of signal information, such as the noise which or an 
improper sampling rate. The epistemic uncertainty is due to the selection of a model. The 
Bayesian mathematical expression is shown by Eq.  (3).  

 𝜋ଵሺ𝝋|𝑥ሻ = 𝑓ሺ𝑥|𝝋ሻ 𝜋଴ሺ𝝋ሻ∫ 𝑓ሺ𝑥|𝝋ሻ𝜋଴ሺ𝝋ሻ𝑑𝝋 (3)

This expression is a combination of the prior distribution, 𝜋଴ሺ𝝋ሻ, of the parameter 
vector, 𝝋, and the likelihood function, 𝑓ሺ𝑥|𝝋ሻ, which yield the posterior distribution, 𝜋ଵሺ𝝋|𝑥ሻ. The prior distribution represents the belief about the parameter value before the data 
has been acquired. The choice of the prior distribution must be supported by an expert opinion 
or previous knowledge to ensure the convergence. A too wide or narrow prior distribution 
means very slow convergence [23]. The likelihood function is a statistical model that defines 
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the difference between the acquired data and the proposed model [29]. The prior distribution 
and the likelihood function form the numerator, which is scaled by a denominator, often 
referred to as the normalization constant.  

The Bayesian updating process is as follows. When the first data set (free decay), which 
corresponds to the detection point T1 in Fig. 1, is acquired and adopted, the likelihood 
function and the prior distribution form the first posterior distribution. After the second data 
set, the detection point T2, the posterior distribution from T1, should be taken as the prior 
distribution for T2, and so on. Thus, in the updating process, different data sets are used to 
establish the density f(r|Ti). In the updating circle from the prior to the posterior distribution, 
there are some combinations which yield a fully analytical, closed-form solution for Eq.  (3). 
This solution is referred to as a conjugate prior. The conjugate prior implies the prior and the 
posterior distribution in the same functional form leading to a highly efficient parameter 
estimation. The list of conjugate priors is limited, and the selected pair must be well-argued 
and justified by an example. In this paper, two families of conjugate priors will be addressed. 

In every real-life system response noise is present and it is typically modelled according 
to a normal distribution. Therefore, it would be reasonable to assume the same random model 
for the slope derived from every successive amplitude. Based on this assumption, the 
estimation of friction can be performed via a conjugate prior. As stated previously, there is a 
limited number of conjugate priors, but when the model is a normal distribution, the normal-
gamma distribution presented here in Eq.  (4) is a conjugate prior. 

 𝜋ଵீ ேሺ𝑟, 𝑠|𝜇ு, 𝜆ு, 𝛽ு, 𝛼ுሻ = 𝛽ுఈಹඥ𝜆ு𝛤ሺ𝛼ுሻ√2𝜋 𝑠ఈಹିଵଶ𝑒ିఉಹ௦𝑒ିఒಹ௦ଶ ሺ௥ିఓಹሻమ
 (4)

This is a bivariate distribution, and r and s in Eq.  (4) are the variables, i.e. the friction 
force and the precision parameter, respectively, which are the system parameters of interest. 
The precision parameter is just the inverse of variance, so this family of conjugate priors 
provides an estimation of the average deviation between the proposed model and the acquired 
data. However, to obtain only the friction force distribution, as shown in Fig. 1, 
marginalization has to be performed. Since the complex friction process is approximated by 
the Coulomb model, the friction force parameter variance can be large. In that case, the 
precision parameter is chosen as a control parameter to additionally support the estimation. 
The notations μH, λH, βH, αH   represent the distribution parameters. The distribution parameter 
μH is related to the mean value of r, with the standard deviation related to λH. The parameters 
αH and βH refer to the precision parameter s. The mean value and the standard deviation are 
set according to the principles of gamma distribution. This means that the mean value is the 
ratio between αH and βH with a standard deviation of αH/β2

H. Equation  (4) represents the prior 
and the posterior distribution. The only difference between them is in the parameter values. 
Parameters in Eqs. (5- 8) marked  with the subindex 0 are related to the prior distribution 
which reflects our initial about the system parameters r and s. Regardless of the acquired data, 
these parameters are set according to the initial information (expert opinion). The parameters 
marked with H are the so-called hyper-parameters related to the posterior distribution. They 
are a result of derivation from Eq. (3) and can be calculated according to Eqs. (5- 8) μு = ఒబఓబା௡௥̅ఒబା௡  (5) λு = 𝜆଴ + 𝑛 (6) αு = 𝛼଴ + ௡ଶ (7) 
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βு = β଴ + ଵଶ ∑ ሺ𝑟௜ − 𝑟̅ሻଶ + ௡ఒబఒబା௡ ሺ௥̅ିఓబሻଶ ଶ௡௜ୀଵ  (8) 

In Eqs. (5- 8), 𝑟̅ is the mean of samples, while n is the number of considered data. 
Additional information on this conjugate prior model can be found in [24] and similar 
information on the chi-square conjugate prior model in [30].  

The objective of Bayesian analysis is to use the simplest possible model. Therefore, the 
previous model will be compared to the frequently used one-dimensional gamma-exponential 
model [23], represented by Eq. (9). 

 𝜋ଵீ ாሺ𝑟|𝜅ு, 𝛼ுሻ = 𝜅ுఈಹ𝛤ሺ𝛼ுሻ 𝑟ఈಹିଵ𝑒ሺି఑ಹ௥ሻ (9)

Notations 𝛼ு and кு represent hyper-parameters, which can be calculated by Eqs. (10-
11). The subindex 0 denotes prior parameters, while r and n are the friction forces and the 
number of considered data, respectively. 𝛼ு = 𝛼଴ + 𝑛 (10) кு = к଴ + ∑ 𝑟௜௡௜ୀଵ  (11) 

As it will be shown, this is a rather fast and efficient procedure, and as long as one 
parameter is to be estimated, the proposed method applies to any system. Otherwise, the more 
complex MCMC method has to be used. 

3. Numerical example of friction estimation 
To demonstrate the efficiency of the friction estimation procedure, numerically 

simulated data with known parameter values were analysed. By doing so, the epistemic 
uncertainty, which is always present when dealing with a real-life problem, is completely 
excluded from the analysis. The Coulomb friction force is set to 0.07 N, the mass is 10 kg and 
the stiffness is 1000 N/m. The Gaussian noise with a zero mean value and a standard 
deviation (σ) of 5e-4 were added to the simulated response. This yields a signal-to-noise ratio 
(SNR) of 20 dB. 

The friction force is assumed to be scattered around the true mean according to a normal 
distribution. To test the assumption initially, the same data were analysed with the normal 
distribution probability paper. It was found that data can be well approximated with a straight-
line, which preliminary proves the model. In this example, the total length of the analysed 
signal was 33 seconds, and all of the 51 amplitudes (evidence) were included in the Bayesian 
analysis according to Eqs. (5-8). The graphical representation of the simulated signal is 
omitted due to brevity.  

The estimated parameters are shown in Fig. 2. The upper panel represents the prior 
distribution, while the lower one represents the posterior distribution after all data 
(amplitudes) have been considered. It is important to mention again that the noise model 
added to the smooth numerical waveform was a normal distribution with a zero mean and a 
standard deviation (σ) of 5e-4. Since only peak amplitudes were analysed, the waveform noise 
surely differs from the one related to the amplitudes. This is an important fact since, here, the 
precision parameter is directly related to the standard deviation. Hence, the true value of this 
parameter is unknown. This can be considered as a disadvantage of the procedure. 
Nevertheless, the standard deviation can be roughly estimated via the root mean square error 
(RMSE), and its value is 4.3e-4. This provides a reference value by which the Bayesian 
analysis should converge.   
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A minor deviation of 0.8 % exists between the true and the estimated friction force, 
which is 0.0706 N. The estimated value of precision parameter is 34.3, converting to the 
standard deviation, whose value is 8.4e – 4, which is the same order of magnitude as RMSE. 
Furthermore, the RMSE estimation falls within the 90% posterior credibility interval. This is 
found to be acceptable, particularly considering the prior setup. Generally, the prior 
parameters are chosen with sparse knowledge about the true value of each parameter, and the 
expected value differs from the true one. Therefore, the prior distribution should cover the 
value that it converges to. Due to different limits of axes, which are not immediately visible, 
the posterior distribution significantly reduces intervals. The 90% credibility interval now 
covers a much smaller area compared to the prior distribution. This is particularly noticeable 
in the case of the precision parameter, which suggests a proper model selection and a good 
friction parameter estimation. 

 
Fig. 2  The Coulomb friction force estimated for a simulated response via the normal-gamma conjugate prior 

The impact of aleatory uncertainty is tested on the numerical model, Eq. (1), by 
increasing the noise levels i.e. SNR=14.7 dB and SNR=8.6 dB. When compared to the true 
friction value, the error is 0.33% and 2.70%, respectively. Even when the noise level 
increases, the presented method still remains effective. 

Even though the list of conjugate priors is short, the choice is not simple because not 
every conjugate model is suitable for solving the problem. Thus, on the same data set, the 
gamma-exponential model, presented by Eq. (9), is analysed. Due to one-dimensionality, this 
model does not have a control parameter. The prior and the posterior distribution can be seen 
in Fig. 3 on the top and the bottom panel, respectively. The true value is noted with a vertical 
red line, while the estimated one with a vertical dashed grey line.  

 
Fig. 3  The Coulomb friction estimated for a simulated response via the gamma-exponential conjugate prior 
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Only by observing the posterior distribution width, when the true friction force value is 
unknown, the result would be accepted for CBM. This is clearly not the case as it converges 
towards an incorrect value. Since the credibility interval is significantly narrowed and does 
not include the true value, this conjugate prior is not suitable for the estimation of friction and 
cannot be applied in a manner shown in Fig. 1; therefore, it will be left out from the further 
analysis. 

The example given in the previous paragraph proves the need to introduce the precision 
parameter, which can support the decision on estimation acceptance. This can be additionally 
illustrated by the following example in which the total number of periods included in the 
Bayesian analysis was varied. Obviously, with more evidence at disposal, the estimation will 
be better. As shown in Fig. 4, the precision parameter value is correlated to the friction 
estimation, i.e. a higher value of precision parameter indicates a better friction estimation. 
Thus, the precision parameter can be a criterion for the diagnostic signal acceptance.  

 
Fig. 4  Precision parameter and the Coulomb friction in correlation with the data used 

It should be noted that by considering only the absolute value of precision an erroneous 
conclusion could be reached. From the diagnostic aspect, it is advisable to have a previously 
determined reference value and to draw conclusions based on the comparison. More details 
will be presented in the next section. This numerical example undoubtedly shows that it is 
possible to obtain an extremely good parameter estimation via the normal-gamma conjugate 
prior. 

4. Experimental analysis and discussion  
In this section, a testbed shown in Fig. 5 is used to experimentally verify the proposed 

procedure. Precise, vertical one-dimensional motion is achieved through an air bearing [25]. 
Since this configuration produces extremely small damping, an external source, i.e. 
mechanical contact, is added. Friction was induced by the metal contact between the 
scratching pin on the moving part and the aluminium plate fixed on the stationary part. The 
force was managed by increasing or decreasing pressure between those two parts.  
The generated force, which was the value of interest, was directly captured by a force sensor. 
The system response, which is taken to be a diagnostic signal, was captured by an 
accelerometer. 

All signals were acquired via a NI-USB-6251 National Instrument DAQ device, with a 
16-bit resolution and a 1000 Hz sampling rate. This is more than satisfactory considering the 
natural frequency of the testbed is 2.9 Hz. No additional filtering of the DAQ system was 
used. After, the friction force was processed using a Savitzky-Golay filter to refine the 
reference value.  
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Fig. 5  Experimental setup for the estimation of friction force 

As shown in section 3, the estimation of friction will be obtained by fitting the 
envelope, so correct amplitudes ratios are required for the analysis. The linearity and cross-
sensitivity of the sensors were verified in detail, before and after the assembly. For 
acceleration, an ADXL322J sensor was used; its operating range is ±2g, the noise in this 
configuration is 6.2e-3g. Calibration was performed using a B&K accelerometer, Model 4370, 
and a B&K calibrator, Model 4291. The total phase error of the accelerometer signal chain is 
0.35 deg. During the operation, an additional displacement sensor was used to check the 
signal adopted for the analysis. The sensor is Honeywell SPS-L075-HALS with an operating 
range of 0-225 mm and linearity ±0.4%. For friction force, a double beam load cell was used, 
with an operating range of ±1 N. The load cell was recalibrated, and its linearity and cross-
sensitivity were tested with a set of laboratory weights; it was also back-to-back tested with a 
Tedea Huntley model 1015 load cell in the overload range. 

A typical friction force signal in comparison to the ideal Coulomb model is shown in 
Fig. 6. Certain differences can be noticed in the whole segment, which is an aleatory 
uncertainty.  But at about 3.8, 4, and 4.5 seconds, the difference is more significant, which is 
essentially an epistemic uncertainty, i.e. the indication of a more complex model. Since the 
signal approximation is satisfying, the Coulomb model is adopted. As the system deteriorates, 
the friction force increases, and a more complex model is taken to be unnecessary because the 
friction values will be compared relatively. This diagnostic context of the proposed procedure 
is an additional reason for adopting this model. 

 
Fig. 6  A typical friction force signal and the Coulomb model adopted 

The first example presented here is with a higher value of friction force, i.e., the 
reference value is 0.2933 N. The acquired acceleration response can be seen in Fig. 7.  
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Fig. 7  Decaying acceleration amplitudes for the case with a higher value of friction force 

The prior and posterior distributions are shown in Fig. 8. The prior distribution is 
relatively wide and is set quite far from the reference value, which emphasizes the uncertainty 
in initial parameter values. Despite the prior distribution mean, its width ensures that the 
posterior distribution converges near the reference value. The estimate parameters are: a 
friction force of 0.2909 N and a precision parameter of 5.7. The estimated values in 
comparison to reference values can be seen in Table 2. 

 
Fig. 8  The Coulomb friction force estimated for the case with a higher value of friction force. 

Besides the point estimation, the distributions also offers additional information. As 
noted earlier, the precision parameter is taken to be a control parameter that evaluates the 
estimation. As for the precision parameter width, it suggests a proper model selection and a 
good friction estimation. However, parameters within the selected model differ. This can be 
seen in Fig. 6, where the acquired friction force varies around the mean considerably. 
Therefore, the distribution width for the friction force is relatively wide. In these situations, a 
different prior selection could provide a more certain estimation if needed. Nevertheless, 
regarding the diagnostic context, the estimation is satisfactory. For example, if this estimation 
corresponds to the detection point T1, as shown in Fig. 1, then the reference value “slides” to 
the right as the degradation progresses. Then, the relatively wide posterior distribution from 
the first detection ensures proper updating for the following posterior distribution which 
corresponds to the point T2. 

A comparison between the acquired (thick grey) and the estimated (blue) system 
response is shown in Fig. 7. It is evident that the amplitude decays linearly, and that the 
relative amplitude ratio is appropriate, which means that the estimation is satisfactory. Also, 
there is a minor difference between the waveform amplitudes and the periods. This is due to 
the fact that only one parameter was analysed. Since other system parameters, mass and 
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stiffness, also affect the resulting waveform, a small deviation can be attributed to them as 
well. The characteristic discontinuity due to the friction force is noted on the estimated 
waveform. This feature is hardly observed in the acquired response due to the sensor noise.  

The amplitude decay for the second case analysed here is shown in Fig. 9. The thick 
grey line represents the acquired response. The reference friction force value is 0.1834 N. 

  
Fig. 9  Decaying acceleration amplitudes for the case with a lower value of friction force 

The prior and the posterior distribution can be seen in Fig. 10. Same as in the previous 
case, the prior distribution is wide and relatively far from the reference value. Here, regardless 
of the prior setup, good convergence is also noted, and the posterior distribution width is 
significantly reduced. This suggests lower uncertainty in the parameter estimation. The 
estimated parameters are the friction force (r=0. 1808 N) and the precision parameter 
(s=11.6).  

 
Fig. 10  The Coulomb friction force estimated for the case with a lower value of friction force 

The difference between the estimated and the recorded value is around 1 %, as noted in 
Table 1. However, the precision parameter has a higher value than in the previous case. This 
implies a smaller deviation between the presumed model and the acquired data, which in turn 
implies higher confidence in the model. This is caused by a lower value of friction force that 
affects the total number of periods. If more evidence is used, the confidence is greater. The 
acquired system response (thick grey line) and the estimated one (blue line) are shown in Fig. 
9. Here, the acceleration discontinuity in the estimated waveform is not emphasized as in the 
previous case, due to a lower value of friction force. The same effect is not observed in the 
recorded response because of the sensor noise. As already shown, a reasonably good Coulomb 
friction force estimation can be obtained by analysing the long, free decay responses.  In the 
context of CBM, they do not occur frequently. But, before the diagnostic process began, in the 
set-up phase, long signals should be used to determine the values of natural frequency ω0 and 
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stiffness k for Eq. (2). These parameters, as assumed here, are correlated to degradation to a 
lesser degree than the friction force r and will not change significantly throughout the process.  

A real diagnostic signal with just a few low-intensity periods and with the initial 
condition unknown is simulated in the next case. Therefore, a short segment at the very end of 
the signal shown in Fig. 9 is selected. The case to be analysed is shown enlarged in Fig. 15. 
The total number of periods is more than five times smaller than the full data set. The prior 
distribution is the same as that for the full data set. 

  
Fig. 11  The acquired signal and a reduced data set  

The estimated parameters are shown in Fig. 12. The posterior distribution width in this 
case is significantly greater, which reflects higher uncertainty. Considering the small data set 
and the signal-to-noise ratio, it can be concluded that the estimation is reasonably good. The 
friction force is 0.1643 N, which gives the difference of 10.3 % relative to the reference value, 
and the precision parameter is 32.2.  

 
Fig. 12  The Coulomb friction force estimated for the reduced data set 

As for the precision parameter, the conclusion would be a more certain estimation 
compared to the full data set. However, the precision parameter should not be taken as an 
absolute value, but as a relative one with respect to the value derived in similar conditions. 
This will be demonstrated later in this section. Here, the high value can be attributed to the 
prior set up and the lack of data. Nevertheless, the fact that the precision parameter decreases, 
and the interval is much narrower suggests a good estimation. On the other hand, if we 
consider only the friction force, the estimation would be rejected because of the large 
uncertainty involved. A better estimation, if needed, would be achieved with a more suitable 
prior distribution, such as the one in which the data from the previous detection points are 
considered. Table 1 shows the estimated friction values in comparison to the reference value 
for all three cases.  
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Table 1  The friction force estimated for all analysed cases 

 Data set1  Data set2 Data set2-reduced 
Estimated value r/N 0.2909 0.1808 0.1643 
Reference value r/N 0.2933 0.1834 0.1834 
Error    /%  0.8 1.4 10.4 

It has been shown previously that the proposed procedure can be efficiently applied in 
the diagnostic context, i.e. a small number of periods with low intensity. In the following 
example we consider the quality of the data, which will be reflected in the precision 
parameter. All the cases presented above are with a 1 kHz sampling rate. To simulate 100 Hz 
and 10 Hz sampling rates, the down-sampling of the signal in Fig. 11 is performed and shown 
in Fig. 13. Thus, by reducing the sampling rate, some pieces of information are lost. In other 
words, the aleatory uncertainty increases while the epistemic uncertainty remains the same as 
the previous one. 

  
Fig. 13  A reduced data set with different sampling rates 

The prior distribution for all three sampling rates is shown in the top panel of Fig. 12, 
while the posterior distributions are shown in Fig. 14. It is apparent that the discrepancy 
between the reference and the estimated friction force increases as the sampling frequency 
decreases, which can be seen in Table 2. The first column in Table 2 corresponds to the third 
column in Table 1, but here, the precision parameter value is added.  

Table 2  The friction force estimated for the reduced data set and different sampling rates 

Sampling rate    fs/Hz 1000 100 10 
Reference value  r/N 0.1834 0.1834 0.1834 
Estimated value  r/N 0.1643 0.1567 0.1465 
Error    /% 10.4 14.4 20.1 
Precision parameter  s 32.2 32.9 27.5 

The precision parameter s is used to propose the estimation acceptance criteria. In this 
experiment, the value of interest is the friction force r; it was directly measured, and the error 
could be defined, which is not always possible in real life. 

The signal sampled with a 100 Hz sampling rate still represents the system response 
well, and there is no significant information loss. A small discrepancy between the estimated 
value of friction and a 1000 Hz sampling rate exists, but the precision parameter is practically 
the same. When the sampling frequency is further reduced to 10Hz, information loss occurs, 
the error is twice as large and negatively correlated to the precision parameter, as shown in 
Table 2. 
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Although all three signals are free decay signals, the precision parameters manage to 
detect the signal quality and distinguish the better from the worse. Thus, this parameter can be 
used as an acceptance criterion when the value of interest cannot be directly measured. For 
this particular case, the acceptance criterion could be set to 30. This is something that should 
be predefined during the setup phase on a sufficiently long signal. 

 
Fig. 14  The Coulomb friction force estimated for the reduced data set and different sampling rates  

Since the natural frequency of the experimental setup is 2.9 Hz, relatively high sampling 
rates of 1 kHz and 100 Hz provided a reasonably good friction estimation regarding the 
diagnostics, which is further supported by the precision parameter. Nevertheless, when the 
sampling frequency is significantly reduced, in this case to 10 Hz, the friction estimation is 
poor regardless of the fact that the Nyquist frequency criterion is satisfied. Thus, in order for 
the proposed analysis to achieve a reasonably good estimation, the sampling rate should be at 
least two orders of magnitude higher than the natural frequency. 

5. Conclusions 
In this paper, the friction force is chosen as a technical indicator for fast and efficient 

condition-based maintenance (CBM) due to the good correlation with degradation. The main 
goal was to propose a fast and efficient but technically simple friction estimation procedure 
that can be implemented in the condition-based maintenance strategy. In the free decay case, 
friction estimation can be performed by calculating the slope on two consecutive amplitudes. 
Since real-life situations regarding CBM involve small data sets, noise, and interference, the 
same approach could lead to a wrong estimation. Hence, the Bayesian analysis is used to 
estimate parameters and the related uncertainty. To avoid complex and time-consuming 
numerical methods, a conjugate prior model was used. In the numerical example, it appears 
that the gamma-exponential family of conjugate priors is not suitable for friction estimation 
while the normal-gamma family of conjugate priors can be efficiently used for that purpose. 
The proposed conjugate prior is two dimensional, which means that it estimates the friction 
force and the precision parameter. The latter was used as a control parameter, further 
supporting the estimated value acceptance when the value of interest cannot be directly 
measured. The proposed procedure was evaluated experimentally on the acquired acceleration 
free decay responses. An excellent correlation between the estimated and the recorded friction 
force was established. Furthermore, the precision parameter suggested a proper parameter 
estimation. The same analysis was performed on a reduced data set; a satisfactory friction 
estimation was obtained, with a small deviation compared to the full data set. In addition, the 
precision parameter suggested a valid estimation. 
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In addition, the proposed analysis was tested regarding the data quality, i.e. the 
sampling rate sensitivity. For the analysed testbed, it has been shown that the diagnostic 
signal has to be at least two orders of magnitude higher than its natural frequency in order to 
obtain a relatively good estimation. The paper proposes an efficient friction force estimation 
procedure tested on a laboratory model that can be easily applied in less controlled 
environmental conditions. 
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