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1. INTRODUCTION
Due to its wide coverage, easy accessibility, and high economic 
efficiency, remote-sensing imagery has been broadly applied to 
dynamic monitoring of land use, agricultural surveying (LIU et 
al., 2017; XIE et al., 2017; JIANG et al., 2018; HOWARI et al., 
2019), urban-survey planning (WANG et al., 2016; SUN et al., 
2017; HU et al., 2018), mineral-resource development (FAN et al., 
2021), environmental monitoring and investigation (WANG et 
al., 2018; MING et al., 2018; ALIJAGIĆ & ŠAJN, 2020), basic 
geological and resource surveying (SHI et al., 2017; XIE et al., 
2020), geological disaster and emergency investigation (GUO et 
al., 2009; ZHOU et al., 2017; WEI et al., 2017), geological-hazard 
monitoring, and emergency investigation (ZHAO et al., 2017; 
ZHONG et al., 2018). With continuous development and progress 
of sensor and computer technology, multispectral remote-sensing 
imagery has developed from low–medium to high spatial, spec-
tral, and radiation resolution. Remote-sensing images have great 
potential for natural-resources surveys.

Hyperspectral remote sensing is a technology by which im-
age data are divided into many very narrow and continuous spec-
tral datasets to detect the visible, near infrared, mid-infrared, and 
thermal-infrared bands of the electromagnetic spectrum (HUNT, 
1989; CLARK et al., 1990; PU & GONG, 2000; TONG et al., 
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Abstract
The airborne hyper-spectral survey system CASI/SASI, which has an integrated system for 
gathering both image an spectral data, is at the cutting edge developments in the remote-sens-
ing field. It can be used to directly identify surface objects based on diagnostic spectral chara­
cteristics. In this paper, the CASI/SASI were used in the Huaniushan gold-silver-lead-zinc ore 
district–Gansu to produce a lithologic map, identify altered minerals, and map the minerali
zed-alteration zones. Radiometric correction, radiometric calibration, atmospheric correction 
(spectral reconstruction), and geometric corrections were carried out in ENVI to pre-process 
the measured data. A FieldSpec ® Pro FR portable spectrometer was used to obtain the spec-
tral signatures of all types of rock samples, ore deposits, and mineralized-alteration zones. We 
extracted and analyzed the spectral characteristics of typical alteration minerals. On the basis 
of hyper-spectral data, ground-spectral data processing, and comparative analysis of the mea-
sured image spectrum, we used the spectral-angle-mapping (SAM) and mixture-tuned matched-
filtering (MTMF) methods to perform hyperspectral-alteration mineral mapping of wall rock and 
mineralized-alteration-zone hyperspectral identification. Hyperspectral-remote-sensing geo-
logical-classification maps were produced as well as distribution maps of all kinds of alteration 
minerals and mineralized-alteration zones. Based on geological comprehensive analysis and 
field investigations, the range of mineral alteration was proven to be the same as shown by the 
remote-sensing imagery. Indications are that airborne hyperspectral-remote-sensing-image 
CASI/SASI offer good application results and show a promising potential as a tool in geological 
investigations. The results will provide the basis for hyperspectral remote-sensing prospect-
ing in the same or similar unexplored areas.

2006), thereby offering a high spectral resolution. Many unrec-
ognized substances in wide-band remote sensing can be detected 
in the hyperspectral data and quantitatively studied (CLARK et 
al., 2003; TANG et al., 2006; SCHAEPMAN et al., 2009; KRUSE, 
2012; VAN DER MEER et al., 2012). Because various minerals 
and rocks have diagnostic spectral-characteristic-absorption 
bands in the range of 400–2,500 nm, hyperspectral remote sens-
ing can better capture the characteristics of minerals. Based on 
these characteristic spectral features, mineral compositional in-
formation can be inverted and identified. Thus, classification, 
mapping of rocks and mineral-resource exploration can be per-
formed (CLARK et al., 2003; GAN & WANG, 2007; ZHANG et 
al., 2011; WEI et al., 2017).

Since the mid-1980s, with the rapid development of key 
technologies such as data acquisition, radiation calibration, 
spectral reconstruction, and data processing, many applica-
tions of hyperspectral remote-sensing technology to the fields 
of geology and mineral resources have been performed by re-
searchers around the world, resulting in some noteworthy new 
achievements (HUNT, 1989; CLARK et al., 1990, 2003; PIE
TERS & MUSTARD, 1988; KRUSE et al., 1990; CLOUDS, 
1996; YESSY et al., 2011; LIU et al., 1999; GAN et al., 2000; 
WANG et al., 2000; YAN et al., 2004; WANG et al., 2010). At 
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present, hyperspectral data are playing an increasingly important 
role in rock and mineral identification (DRAKE, 1995; BISHOP 
et al., 2011; POUR et al., 2013), archaeology (CHEN et al., 2017), 
solid-mineral and oil and gas exploration (GUO et al., 2012; 
WANG et al., 2007; HU et al., 2009; ZHOU, 2014), environ-
mental protection and monitoring (ZHAO et al., 2013; EVER-
ITT et al., 1988; TRENC et al.,1999; WAN et al., 2003; HOW-
ARI et al., 2019), vegetation classification and detection (LI et 
al., 2014), and lunar and planetary exploration (BANDFIELD, 
2002; LAPOTRE et al., 2017), among others.

Here, the CASI/SASI data were used in the Huaniushan 
gold-silver-lead-zinc ore district–Gansu to produce a litho-
logic map, identify altered minerals, and map the mineralized-
alteration zones. A FieldSpec® Pro FR portable spectrometer 
was used to obtain the spectral signatures of all types of sam-
ples for rock, ore deposits, and mineralized-alteration zones. 
The spectral characteristics of typical minerals related to 
gold-silver-lead-zinc ore were extracted and analysed. Com-
bined with worldview-2 high-resolution satellite remote sens-
ing images and geological data, the remote sensing geological 
work of gold, silver, lead and zinc deposits in this area was 
carried out. Finally, hyperspectral-alteration mineral mapping 
of wall rock and hyperspectral identification of mineralized-
alteration zones were performed in the study area, and their 
effects were verified by field investigation. These results will 
provide the basis for hyperspectral remote-sensing prospecting 
in the same or similar unexplored areas.

2. GEOLOGICAL FRAMEWORK
The gold, silver, lead and zinc metallogenic region of Huaniushan 
is located in Beishan, Gansu Province. Since the 1950s, the gold 
and silver deposit of Huaxishan, tungsten-molybdenum deposits 
of Huadongtan, the molybdenum deposit of Huaheitan, gold de-
posit of Huaniushan, copper-iron-tin deposit of Huaxitan, and 

silver-gold deposit of Nanquan have been discovered one after 
another, such that the area is now recognized as one with a con-
centration of noble and rare metals  (NIE et al., 2002; XI’AN IN-
STITUTE OF GEOLOGY AND MINERAL RESOURCES, 
2006). The Huaniushan–Heishan–Shuangyingshan rift belt was 
a site of geotectonic activity in the early Palaeozoic, belonging to 
the northern margin of the Dunhuang massif active belt of the 
Beishan Tarim plate (CAO et al., 2008; DAI, 2010). The main 
strata exposed in the mining area belong to the Pingtoushan For-
mation of the Upper Jixian System, which can be further divided 
into three lithologic segments: Jxp3

c, Jxp3
b, Jxp3

a. It is a set of 
shallow-sea facies shallow metamorphic clastic rock–carbonate 
rock– basic–intermediate volcanic rocks formation. It is the main 
ore-hosting horizon in the area (YANG et al., 2010) (Figure 1).

The faults in the mining area trend mainly EW, NW, NE and 
SN, with a scale that extends from hundreds to thousands of me-
tres. The broken bandwidth is several metres to tens of metres. 
Rocks on both sides of the fault zone are broken. Mylonite, fault 
breccia and fault scratches occur in the fault zone. The fault shows 
the characteristics of multi-stage activity (DAI, 2010). The folds 
are mainly E-W trending complex-fold structures, with N-S, 
NE-SW, and NW-SE trending small-scale secondary folds super-
imposed at a later stage. Magmatic activity was obviously con-
trolled by E-W– trending and NW-SE trending tectonic belts. 
Emplacement took place during the Variscan and Indosinian 
epochs (HE et al., 2012). Influenced by multiple magmatic intru-
sions and hydrothermal activities, the rocks underwent relatively 
strong alterations (diopside-tremolite, skarnization, uralitization, 
zoisitization, and sericitization, etc.) (DAI, 2010; YANG et al., 
2010).

3. METHODS
Here, the CASI/SASI data were used as the main information 
source to carry out remote sensing geological work on gold, sil-

Figure 1. Geological map of the Huaniushan gold-silver-lead–zinc ore district (1. HuaniushanGroup in Middle Ordovician; 2. Third member of the Pingtoushan For-
mation of the Jixian System; 3. Second member of the Pingtoushan Formation of Jixian System; 4. The first member of the Pingtoushan Formation of the Jixian 
System; 5. The second-stage granite of the Indosinian Period; 6. The first-stage granite of the Indosinian Period; 7. The granite of the Middle Variscan period; 8. Por-
phyry granite of the Middle Variscan period; 9. Quartz diorite of the Middle Variscan period; 10. Altered peridotite of the Early Variscan period; 11. Granodiorite of 
the Early Variscan period; 12. Reverse faults; 13. Compressive-torsional faults; 14. Torsional faults; 15. Faults of unknown nature; 16. Stratigraphic boundary; 17. An-
ticline; 18. Syncline; 19. Lamprophyre veins; 20. North finger; 21. Coverage area of hyperspectral data).
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ver, lead and zinc mines in coordination with ground synchro-
nous testing and radiometric calibration. A FieldSpec ® Pro FR 
portable spectrometer was used to obtain the spectral signatures 
of all types of samples for rock, ore deposits, and mineralized-
alteration zones. And the main mineral spectrum library was es-
tablished. Finally, hyperspectral-alteration mineral mapping of 
wall rock and hyperspectral identification of mineralized-altera-
tion zones were performed in the study area, and their effects 
were verified by field investigation (Figure 2).

3.1. Data acquisition
The CASI/SASI data used in this study were acquired by the 
CASI/SASI/TASI Airborne Imaging Spectrometry System 
(AHIS) developed by ITRES Canada. CASI–1500 and SASII–600 
sensors, the ICU central controller, and a series of precise geo-
metric- and radiation-correction instruments (GPS equipment, 
POSAV310, ILS solar irradiance measurement instrument, three-
axis stabilized platform PAV30 and IMU inertial navigation sys-
tem) constitute the VNIR–TIR aviation hyperspectral-measure-
ment system. Two kinds of data, 380–1,050 nm (CASI) and 
950–2450 nm (SASI), are provided. The total number of bands 
reaches 388, and the spatial resolution reaches the sub-metre 
level. Three imaging modes are available: spatial, spectral, and 
full-frame. The main technical indicators are listed in Table 1. 
The system is mainly used in mineral-resource exploration, en-
vironmental monitoring, disaster detection and management, and 
other fields, providing technical support for the development of 
quantitative remote-sensing technology in China (YANG et al., 
2015).

On September 6, 2012, a Yun–5 small multi-purpose aircraft 
carrying a hyperspectral sensor was used to collect test data over 
the Huaniushan gold, silver, lead, and zinc mine in Gansu Provi
nce. The flight altitude was 1,500 m. Two hyperspectral datasets 
were obtained from 10 km2 airstrips. The flight path is shown in 
Figure 1. (Coverage area of hyperspectral data). The weather was 

clear and cloudless on the day of data acquisition. Hyperspectral 
data included the CASI VNIR band and the SASI SWIR band. 
There were 36 bands of CASI data. The spectral-coverage range 
was 380–1,045 nm, the spectral resolution was 18 nm, and the 
spatial resolution was 1 m. SASI data consist of 101 segments 
with a spectral coverage of 950–2450 nm, a spectral resolution 
of 15 nm and a spatial resolution of 2.25 metres. In the process 
of aerial flight survey, field spectral tests were carried out at the 
same point on the ground in the main mineralized area.

3.2. Spectrum test
Spectrum testing is based on the FieldSpec® Pro FR portable 
spectrometer produced by the American ASD Company. It is suit-
able for remote-sensing measurement, crop monitoring, forest 
research, industrial-lighting surveys, oceanographic research, 
and mineral exploration. Wavelength range: 350–2500 nm, detec-
tor: 350–1050 nm, low noise 512 elements PDA, 1000–1800 nm 
and 1800–2500 nm, two INGaAs detector units, PE refrigeration 
constant temperature.

The purpose of spectrum testing is to determine the absorp-
tion and reflection bands of the different rocks or minerals that 
correspond to each band of the hyperspectral remote-sensing im-
age, and to find the absorption and reflection bands of different 
minerals or rocks. Typical rocks and minerals are extracted by 
methods of difference, ratio, principal component, and classifica-
tion in different bands, and spectral inversion of typical rocks or 
minerals from high-resolution remote-sensing images is realized.

Survey points are laid out according to the survey method of 
the geological section. Profile measurements cross the main 
lithostratigraphic and mineralized-alteration zones and are col-
lected according to at least one test sample per typical strati-
graphic unit. Rock-test points on profiles should be encrypted 
according to lithological changes or testing of multiple samples 
at the same point, including typical lithology related to minera
lization, rock in fractured zones, altered rocks, and hydrothermal 

Figure 2. Technical flow chart.

Table 1. Main technical parameters of the CASI/SASI airborne imaging spectrometer.

Parameters Spectral range 
Pixel number 

per row 

Number of 
spectral 

channels 

Spectral 
bandwidth 

Frame 
frequency 
(full band) 

Angle of field /(°) 
Instantaneous 

field of view 
angle /(°) 

noise–signal 
ratio(peak value) 

Absolute 
radiation 

accuracy /% 

CASI–1500 380–1050nm 1470 288 2.3nm 14 40 0.028 >1100 <2% 

SASI–600 950–2450nm 640 100 15nm 100 40 0.07 >1100 <2% 
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veins. The sample size is 3 cm×6 cm×9 cm. GPS positioning is 
used for each sampling point, coordinate data are collected, field 
photographs are taken, and each typical rock sample measured is 
identified and retained in order to verify the accuracy of spectral-
test results. At least one set of spectral curves was collected from 
each ore sample, and the parameters, such as the sample name, 
sample number, light-source type, test time, lens degree and dis-
tance from the sample, were recorded in detail.

Collect the spectral information of weathering surface and 
fresh surface of rock. Three samples were collected from differ-
ent directions of weathering surface. Subsequently, the rock was 
cut and five samples were collected on the fresh rock surface.

The basic parameters of the characteristic-absorption peaks 
of minerals and water are as follows:

About 1400 nm: OH–absorption peak;
1900–2000 nm: water-absorption peak: high-temperature, 

high-crystallinity, good peak shape;
2200 nm: AL–OH (kaolinite, muscovite, pyrophyllite);
2250–2300 nm: Fe–OH, Mg–OH (chlorite, biotite);
2300–2400 nm: carbonate, Mg–OH (talc, tremolite).
The spectral data obtained in the field are processed and the 

relative abundances of minerals are determined by the ratio of 
the characteristic-absorption peaks of minerals to that of water. 
The results of the ratio calculation can be divided into six catego-
ries: absorption strength, integral strength, half width, reflec-
tance, intensity ratio, and central wavelength. The higher the 
value, the higher the mineral abundance. Based on the results of 
rock and mineral analysis, the spectral curves of minerals corre-
sponding to the standard spectral library were compared and an-
alyzed, and the distribution regularity of ores’ characteristic 
spectral bands was summarized.

3.3. Data processing
Because of the influence of flight-platform coordinates, flight 
attitude, the sun, the atmosphere, and other factors, the origi-
nal remote-sensing image is distorted and there are errors in 

space. Thus, before extracting mineral-alteration information, 
CASI/SASI data should first be processed. CASI and SASI 
data (YE et al., 2011) processing include six main steps: data 
browsing, spatial resampling, band matching, geometric cor-
rection, atmospheric correction, and radiometric calibration 
(YE et al., 2011; SUN et al., 2015). After processing, the hy-
perspectral image is shown in Figure 3.

3.3.1. Data browsing, removal of repetitive bands, selection of 
bands
The hyperspectral data were checked and found to be duplicated 
between 950 nm and 1,047 nm. The duplicated spectra in SASI 
were removed. Several bands near the 1,400 and 1,900-nm spec-
tra (which correspond to atmospheric windows and are heavily 
affected by water and gas) increase the amount of data calculation 
and have no research value, so they were removed (Figure 4). 
After band removal, 92 hyperspectral bands remained.

3.3.2. Spatial resampling
Because of the inconsistent spatial resolution of the CASI/SASI 
data, spatial resampling is necessary. There are three common 
sampling methods: nearest, bilinear-interpolation, and cubic-con-
volution. For this study, the bilinear-interpolation method was 
chosen. The results obtained by this method are smoother and 
suitable for continuous data.

3.3.3. CASI and SASI band matching
The acquired CASI/SASI data are positioned 10 pixels (2.25m/
pixel) differently in space. The method of selecting ground-con-
trol points is based on CASI data and the geometric correction of 
SASI data by a quadratic polynomial. Then, CASI and SASI band 
matching is carried out to generate hyperspectral data in the 
range of 368.7–2,450.0 nm.

3.3.4. Geometric correction
The hyperspectral data has two spectral ranges, 380-1050nm and 
950-2450nm. Firstly, preliminary geometric correction of the data 
is completed based on the data parameters of the system. Then, 

Figure 3. Hyperspectral remote-sensing image of the Huaniushan gold-silver-lead-zinc ore district (using airborne hyperspectral-image CASI/SASI data) 
(R:b25, G:b42, B:b87).
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based on the collected basic geographic data and the measured 
control points, such points are selected and the hyperspectral data 
are geometrically corrected by quadratic polynomials. The selec-
tion of control points on maps (or on the spot) and images can 
clearly identify and precisely locate the obvious object points, 
which do not change with time. The number of control points in 
a ground measurement is large and the distribution is uniform.

3.3.5. Image mosaic
The results of the two-airstrip correction are a mosaic. An over-
lapping check is carried out before the mosaic, and the overlap 
tolerance between the airstrips meets the technical requirements. 
In the mosaic, the image with high resolution, new time, less 
cloud, and good quality should be preserved as far as possible. 
The mosaic line allows dislocation, blurring, duplication, and ha-
los to be avoided.

3.3.6. Radiation calibration
In this paper, the spectral curves of marble, granite porphyry, 
skarn and lamprophyre vein measured in the field were compared 
with the spectral reconstruction results of image features. The 
correspondence between the two is 98%, which meets the needs 
of this alteration information extraction.

4. HYPERSPECTRAL REMOTE-SENSING CHARAC-
TERISTICS OF THE GOLD, SILVER, LEAD, AND ZINC 
METALLOGENIC AREA IN HUANIUSHAN
4.1. Spectral-angle-mapping (SAM)
Spectral-angle-mapping (SAM) is an automatic classification 
method, which compares the spectrum in the image with the 
spectrum in the spectral library, and determines their similarity 
by calculating the spectral angle between them.

Figure 4. Field-spectral curve of rocks in the study area (1. marble, 2. granite porphyry, 3. skarn, 4. lamprophyre, 5. phyllite).

Figure 5. Geology classification figure of hyperspectral remote sensing in the study area.
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According to the spectral library established by the reflected 
spectral curve of each feature in the collected image, spectral 
curve reflected were divided into 15 categories, including: alluvial 
material, phyllite, schist, marble, hornstone, skarn, monzonite 1, 
monzonite 2, granite 1, granite 2, granodiorite, granite-porphyry, 
plagioclase granite porphyry, lamprophyre, mineralized altera-
tion zone. At the same time, the typical features (vegetation, 
water, cloud, etc.) were also classified. The geological classifica-
tion figure of hyperspectral remote sensing in the study area 
was obtained after classification and post-processing (Figure 5).

4.2. Hyperspectral mapping of altered minerals in the 
surrounding rocks
Under the influence of multi-stage magmatic intrusion and hy-
drothermal activity, the rocks in the Huaniushan gold-silver-lead-
zinc metallogenic area have undergone relatively strong hydro-
thermal alteration, resulting in sericitization, chloritization, 
silicification, muddification (kaolinite), carbonation (calcite, iron 
carbonate rock), skarnization (diopside, garnet, etc.), potash feld-
spar (jarosite) and other altered minerals (DAI, 2010, YANG et 
al., 2010). They are of great significance to the formation of gold, 
silver, lead, and zinc deposits in the study area. The depth of the 
absorption band is closely related to the content of these minerals 
in the rocks. The spectral characteristics of various types of al-
tered mineral samples in the study area are shown in Figure 6. 

According to the characteristic-absorption spectra of the al-
tered minerals (reflectivity data→ Minimum noise separation 
(MNF)→ PPI pixel purification→ extracting end element train-
ing samples→ Hyperspectral mapping of altered minerals in sur-
rounding rock (SAM)), the mineral extraction method of hyper-
spectral remote sensing was used to extract and identify the 

altered minerals (LIN et al., 2011; WANG et al., 2010). Alteration 
minerals are mainly distributed in the marble section of the Ping-
toushan Formation of the Jixian System, which is the main ore-
bearing horizon in the area and intruded by the Indosinian gra
nite body. In addition, there are dozens of granite porphyry and 
lamprophyre dykes interpenetrating and intruding the country 
strata. Marble has extensive contact with rock mass and strong-
wall rock alteration.

All 92 bands of the test data were transformed by MNF, and 
20 bands with high eigenvalue were output. The pixel purity in-
dex (PPI) of these 20 bands was calculated. The number of itera-
tions was 10000 and the noise threshold was 3. Through pixel 
purity index (PPI), the purest pixel in the data was extracted and 
the sample space was established. The unknown spectrum in the 
field measured spectrum library of altered minerals was matched 
with that in the standard spectrum library. A series of matching 
coefficients was obtained to determine the mineral types. Based 
on the characteristic absorption spectra of qualitative mineral 
types and the method of spectral angle classification (SAM), the 
distribution maps of various altered minerals in the study area 
were obtained (Figure 7).

4.3. Hyperspectral recognition of the mineralized-alte-
ration zone
Ore bodies and veins in the Huaniushan Au-Ag-Pb-Zn metallo-
genic area are generally finer, and mostly more than ten centime-
tres in diameter?. The spectral curves of galena, sphalerite, and 
other ores are relatively straight, and there are no obvious chara
cteristic-absorption bands. However, iron-oxide outcrops (limo-
nite, haematite, jarosite) are a significant indicator of this type of 
mineralized surface (Plate 1). Chemical characteristics generally 

Figure 6. Spectral curves of all kinds of alteration minerals in the study area (1. kaolinite, 2. silicification, 3. K-feldsparization 4. Fe–carbonate rocks, 
5. chloritization, 6. calcite, 7. sericite, 8. diopside).
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contain Fe2+, Fe3+, and there are characteristic-absorption and 
strong-reflection bands in the visible band (GAN et al., 2003). 
These are easy to identify via remote-sensing images, which have 
a particular guiding significance for discovering gold, silver, lead 
and zinc ore bodies (veins) in the study area.

In order to locate the ore bodies and veins in the gold-silver-
lead-zinc metallogenic area of the study area, we used the method 
of looking for surface-iron oxides and field verification to confirm 
it. The spectral curves of several iron oxides were collected on 
the image, and each spectral curve was filtered by a mixed-mod-
ulation-matching filter. The average value of the filtered image 
shows that the metal cations of iron-oxide (jarosite) in the study 
area absorb strongly at 0.45 m, 0.55 m, 0.85 m, 0.90 m, and 
0.94 m, have strong absorption bands between 0.9 m and 1.0 m, 
and have relatively strong reflection between 0.6 m and 0.8 m. 
Hydroxy anions absorb strongly between 2.2 and 2.3 m (Figure 
8). Their characteristic-absorption bands and the corresponding 
bands of SASI images are shown in Table 2. Mixed-modulation-
matched filtering is used to map iron-oxide minerals from the 
transformed images. The consistency between the ore vein ex-
tracted and the ore vein verified in the field were 85% (Figure 9). 
Therefore, the extraction effect was good, which was worthy of 
application and promotion.

5. CONCLUSION
On the basis of obtaining a large amount of geological data, air-
borne hyperspectral remote-sensing data (CASI/SASI) and field 
rock and mineral spectra of the Huaniushan gold-silver-lead-zinc 
mining area, spectral testing of rock, ore deposit and altered-
mineralization zone samples was carried out through spectral 
testing and rock and mineral sampling analysis. Finally, hyper-

spectral mapping of wall rock-altered minerals and hyperspectral 
identification of the altered-mineralization zone were performed 
in the study area. Combined with field investigation and verifica-
tion, the following conclusions were obtained:

1) The alteration-mineral-information maps of the surround-
ing rocks in the study area show that the rocks in the Huaniushan 
gold-silver-lead-zinc metallogenic area have undergone relatively 
strong hydrothermal alteration due to the influence of multiple 
magmatic intrusions and hydrothermal activities. Alteration 
minerals are mainly distributed in the marble section of the Ping-
toushan Formation of the Jixian System, mostly by sericitization, 
chloritization, silicification, muddification (kaolinite), carbona-
tion (calcite, iron carbonate rock), skarnization (diopside, garnet, 
etc.), potassium feldspar (jarosite), etc. The distribution range of 
altered minerals is basically consistent with the results of field 
investigations, indicating that hyperspectral imaging can provide 
accurate and reliable information for prospecting.

2) The surfaces of ore bodies and veins in the Huaniushan 
gold-silver-lead-zinc metallogenic area are marked by iron-oxide 

Table 2. Iron minerals’ characteristic-absorption spectrum and the corresponding image band of CASI/SASI.

Ions and Groups Characteristic absorption spectra /µm Corresponding to SASI band Typical minerals 

Fe2+, Fe3+ 
Fe2+: 1.1–2.4; 
Fe3+:  0.45, 0.55, 0.85, 0.90, 0.94 

b1–b6, b22–b26 Limonite, hematite, jarosite 

Figure 7. Distributions of all kinds of alteration minerals in the study area (kaolinite, calcite, sericite, diopside, chlorite, silicification, jarosite, Fe–carbonate rocks).

Figure 8. Spectral curve of jarosite in the study area (found).
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outcrops (limonite, hematite, jarosite). The mixed-modulation-
matched-filtering method is used to identify and extract the min-
eralized alteration zone containing Fe2+, Fe3+. The results of ex-
traction basically agree with the field-verification results, which 
have a certain guiding significance for finding gold, silver, lead, 
and zinc ore bodies (veins) in the study area.

3) This paper indicates that airborne hyperspectral-remote-
sensing-image CASI/SASI data offer good application results and 
show promising potential in geological exploration. Our results 
will provide the basis for hyperspectral remote-sensing prospect-
ing in the same or similar unexplored areas.
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Plate 1. Iron- oxide outcrop of mineralized-alteration zones in the study area.
A	– limonite;
B 	– hematite;
C 	– jarosite and
D	– jarosite.


