Metode obrade otpadne vode mesne industrije

Tea Štefanac¹, Dijana Grgas¹, Tibela Landeka Dragičević*¹

Sažetak
Količina i sastav otpadnih voda mesne industrije ovise o vrsti mesa koje se obrađuje, načinu čišćenja opreme i veličini postrojenja. Otpadne vode mesne industrije visoko su onečišćene i opterećene proteonom, lipidima, ugljikohidratima i vlaknima. Industrija mesa obuhvaća klaonice, pogone za obradu i poganje za proizvodnju mesnih proizvoda. Istražene su brojne metode obrade otpadnih voda mesne industrije, fizikalni, kimski i biološki procesi. Cilj obrade otpadne vode mesne industrije je postizanje kakvoće pročišćene vode koja zadovoljava zakonske propise, kvalitetno iskorištenje nusprodkata procesa, a odabrani postupak obrade treba biti ekološki, ekonomski i tehnološki najbolji. Ovaj pregledni rad dat će literaturni pregled metoda obrade otpadnih voda mesne industrije kao i kakvoću otpadnih voda mesne industrije.

Ključne riječi: otpadna voda mesne industrije, procesi obrade, kakvoća otpadne vode mesne industrije

Uvod

¹ Tea Štefanac, mag. ing., asistent; dr.sc. Dijana Grgas, poslijedoktorand; dr.sc. Tibela Landeka Dragičević, redoviti profesor; Prehrambeno-biotehnološki fakultet Sveučilišta u Zagrebu, Zavod za prehrambeno-tehnološko inženjeringstvo, Pierottijeva 6, Zagreb, Hrvatska
¹ Autor za korespondenciju: tlandekadragicevic@pbh.hr
iskorištavanja nusprodukata tih procesa. U svijetu se danas proizvodi 325 mil. t mesa, od čega je najveća proizvodnja peradi, oko 130 mil. t, slijedi svinjetina s oko 100 mil. t, govedina i teletina s 70 mil. t, te na kraju ovčeta s oko 15 mil. t (Statista, 2020). Stanovnici Sjedinjenih Američkih Država godišnje konzumiraju najveće količine mesa po glavi stanovnika (100 kg), dok su u Europi i Francuskoj 69,6 kg po glavi stanovnika. Prosjek Evropske unije je 64,5 kg, a Republika Hrvatska troši prosječno 47,8 kg mesa po glavi stanovnika. Republika Hrvatska 2012. godine ima 184 tvrtke u području mesne industrije koje su ostvarile 22 % ukupnih prihoda prehrambene industrije (Hadelan i sur., 2015.), a najuspješnije među njima su PIK Vrbovec, MI braća Pivac te Perutnina Ptuj. Iako mesna industrija značajno doprinosi rastu ekonomije, a vrijednost globalnog mesnog sektora 2018. godine iznosi 945 mrd. $ (Statista, 2020.b) dok se za 2023. predviđa rast na 1 143 mrd. $, njeni štetni učinci na okoliš ne mogu se zamemati. Najveći negativni učinak ostvaruje se na području onečišćenja voda, odnosno stvaranja velike količine otpadnih voda tijekom procesa prerade mesa. Shematski prikaz mjesta nastanka otpadne vode u mesnoj industriji dan je na slici 1 (FRC, 2015.), a predloženi tijek preobrade, obrađe i dezinfekcije otpada klonica dan je slikom 2 (Bustillo-Lecompte i Mehrvar, 2017.a). Količina otpadne vode razlikuje se od klonice do klonice i najviše ovisi o vrsti i veličini životinja koje se kolju i preradjuju, stupnju prerade, količini procesne vode i postupcima čišćenja i održavanja postrojenja, međutim njeno opterećenje organskim sastojcima uvijek je visoko i predstavlja izazov za pročišćavanje, pogotovo jer često sadrži krv, mast, perje i kosti (Massé i Masse, 2000.; Gerbens-Leenes i sur., 2013.). Za preradu govedine
potrošnja vode iznosi od 680 do 2 050 L po obrađenoj životinji, dok je za perad tipa purice potrošnja između 50 i 105 L po obrađenoj životinji (Food Northwest, 2020.). Budući da je Europska industrija hrane i pića, u koju se svrštava i industrija prerađe mesa, odgovorna za 1,8 % ukupne potrošnje vode u Europi, a glavni otpad predstavlja otpadna voda, cilj svakog postrojenja je smanjenje količine otpadne vode, kako s ekološkog tako i s ekonomskog stajališta.

Cilj ovoga rada je dati pregled metode obrađe otpadne vode mesne industrije i istaknuti karakteristike i kakvoću otpadne vode industrije prerađe mesa.

Karakteristike otpadne vode mesne industrije

Otpadne vode mesne industrije karakteriziraju visoko organsko onečišćenje (visoke BPK vrijednosti), sadrže masti i ulja, dušik je prisutan u obliku organskog dušika, amonijevih soli i otopljenog plina, prisutne su aerobne i anaerobne bakterije, patogene i nepatogene, te su više temperature u odnosu na prirodne recipijente (Irshad i sur., 2016.). Otpadne vode mesne industrije razlikuju se po sastavu ovisno o vrsti mesa koje se preradjuje, veličini pogona za preradu, načinu prerade, te učestalosti i načinu pranja pogona i opreme (Tabli-
Tablica 1. Karakteristike otpadne vode mesne industrije
Table 1 Characteristics of meat industry wastewater

<table>
<thead>
<tr>
<th>Otpadna voda Wastewater</th>
<th>KPK COD (mg/L)</th>
<th>BPK BOD (mg/L)</th>
<th>TN (mg/L)</th>
<th>TSS (mg/L)</th>
<th>Masti ulja Oils and fats (mg/L)</th>
<th>pH</th>
<th>TP (mg/L)</th>
<th>Literatura References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaonica peradi Poultry slaughterhouse</td>
<td>1820</td>
<td>900</td>
<td>190</td>
<td>430</td>
<td>170</td>
<td>/</td>
<td>6,88</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2903</td>
<td>1667</td>
<td>211</td>
<td>794</td>
<td>406</td>
<td>6,6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>1301</td>
<td>875</td>
<td>/</td>
<td>595</td>
<td>2989</td>
<td>6,6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Klaonica svinjetine Pork slaughterhouse</td>
<td>1551</td>
<td>/</td>
<td>189</td>
<td>521</td>
<td>/</td>
<td>7,6</td>
<td>28,6</td>
<td>Fongsatikul i sur., 2011.</td>
</tr>
<tr>
<td></td>
<td>2333</td>
<td>450</td>
<td>90</td>
<td>877</td>
<td>/</td>
<td>4,9</td>
<td>28</td>
<td>Massé i Masse, 2000.</td>
</tr>
<tr>
<td></td>
<td>4830</td>
<td>3018</td>
<td>/</td>
<td>385</td>
<td>100</td>
<td>/</td>
<td>18,4</td>
<td>/</td>
</tr>
<tr>
<td>Obrada mesa Meat processing</td>
<td>15812</td>
<td>13659</td>
<td>1022</td>
<td>/</td>
<td>6,57</td>
<td>61</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>3000</td>
<td>/</td>
<td>3000</td>
<td>/</td>
<td>6,5</td>
<td>50</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>1084</td>
<td>688</td>
<td>/</td>
<td>52</td>
<td>/</td>
<td>6,9</td>
<td>12</td>
<td>/</td>
</tr>
<tr>
<td>Klaonica Slaughterhouse</td>
<td>6210</td>
<td>/</td>
<td>/</td>
<td>870</td>
<td>/</td>
<td>7,29</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>6363</td>
<td>5143</td>
<td>/</td>
<td>4144</td>
<td>197</td>
<td>7,2</td>
<td>45,7</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>1400</td>
<td>/</td>
<td>530</td>
<td>/</td>
<td>6,8</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>4250</td>
<td>2700</td>
<td>/</td>
<td>955</td>
<td>474</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Klaonica goveda Cattle slaughterhouse</td>
<td>32000</td>
<td>17198</td>
<td>915</td>
<td>22300</td>
<td>/</td>
<td>6,9</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>5817</td>
<td>2543</td>
<td>137</td>
<td>/</td>
<td>34</td>
<td>7,31</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>7693</td>
<td>/</td>
<td>155</td>
<td>/</td>
<td>/</td>
<td>7</td>
<td>23</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ca 1). Vrijednosti parametara razlikuju se među klaonicama čak i kada se obrađuju isti tip životinj. Obrada otpadnih voda mesne industrije nije jednostavna zbog prisustva masti, proteina, vlakana, krvi, cijevne sluzi iz procesa kljanja, mikroorganizama (patogenih i ne patogenih), detergenata i dezinficijensia iz procesa pranja, te nerijetko teških metalac i antibiotika (Bazrafshan i sur., 2012.; Carvalho i sur., 2013.).

Metode obrade otpadnih voda mesne industrije

Cilj primjene odabrane metode je počišćenje voda zadovoljavajuće kvalitete, te iskorištenje nusprowadaka dobivenih tijekom procesa obrade. Iza zvom je odabrati najpovoljniju i najpogodniju metodu obrade, jer svaka metoda ima pozitivne i negativne karakteristike, prednosti i nedostatke primjene. To ovisi o sastavu i količini otpadne vode, varijacijama u opterećenosti otpadnih voda, opremljenosti pogona i financijskim aspektaima. Najbolje rezultate daju kombinirani procesi prilagođeni konkretnom pogonu, odnosno otpadnoj vodi.

Prethodna obrada

Prethodna obrada uključuje uklanjanje kožnih, krutih čestica iz otpadne vode nastalih tijekom procesa obrade mesa (Irshad i sur., 2016.). Koriste se rešetke i sita različitih veličina otvora. Poželjno je da se rešetke lako čiste i da su prikladne za različite brzine protoka otpadne vode. Tvari zadržane na sitima uklanjanju se manuelno ili automatski kako bi se spriječilo začepljenje, te se odlužu u spremniku i dalje tretiraju kao čvrsti otpad. Budući da sastav otpadne vode nije konstantan te ovisi o stupnju procesa koji se provodi, životinjama koje se koliju i obrađuju te postupcima pranja opreme dobro je uključiti korak izjednačavanja sastava otpadnih voda kako bi proces obrade bio jednostavniji. Postupcima prethodne obrade može se ukloniti do 30% BPK iz otpadne vode (Mittal, 2006.). Nakon prethodne obrade otpadna voda i dalje sadrži sitne suspendirane čestice, masti i ulja.

Primarna obrada

Odstranjivanje čestica preostalih nakon prethodne obrade provodi se taloženjem (neometano, slojivo ili taloženje uz dodatak sredstava za
koagulaciju ili isplivavanjem (prirodnim ili pota-
knutim). Neke od najčešćih metoda primarne obra-
de otpadne vode mesne industrije objašnjene su u
nastavku.

1. Flotacija otopljenim zrakom (DAF, engl. Disso-
lved Air Flotation)

Uspešna metoda uklanjanja suspendiranih čestica i masti iz otpadne vode pomoću mjehurića zraka koji se uvođe s dna spremnika i vežu za čestice te ih podižu na površinu vode odakle se uklanjuju i odvode. Metoda se može ubrzati i pospešiti dodatkom kemijskih sredstava poput željezovog klorida, željezovog sulfata, aluminijevog sulfata, natrijeva karbonata, kalcijeva karbonata i drugo. Uspešnost uklanjanja KPK i BPK varira između 30-90 % za KPK i 70-80 % za BPK (De Nardi i surl., 2011.).

2. Koagulacija i flokulacija

Dodatkom koagulanata i flokulanata poput aluminijevog sulfata ili željezovog klorida pospešuje se metoda flokulacije, uz potrebu kontrole pH vrijednosti otpadne vode. Primjenom vapna i aluminijevog sulfata kao koagulacijskog sredstva uklanja se do 85 % KPK iz otpadne vode klonice uz malu produkciju mulja, te 85 %, 98 % i 77 % BPK, ukupnih suspendiranih čestica (TSS, engl. Total Suspended Solids) i ukupne otopljeni tvari (TDS, engl. Total Dissolved Solids) (Tariq i surl., 2012.). Pri kombinaciji vapna i aluminijevog sulfata u omjeru 400:50 mL/L uklanjanje KPK iznosi 42,6 % (Satyanarayan i surl., 2005.).

3. Elektrokoagulacija (EC, engl. Electrocoagula-
tion)

Elektrokoagulacija je ekološki prihvatljiva tehnologija uklanjanja onečišćenja poput teških metala, emulgiranog ulja ili patogenih mikroor-
ganizama iz otpadne vode koji se ne mogu ukloni
iti filtracijom ili kemijskim tretmanima (Bayar i surl., 2011.; Qin i surl., 2013.). Ne zahtjeva upotrebu kemikalija ili čišćenje filtera što olakšava primjenu, smanjena je produkcija mulja i operativni troškovi su niži nego kod konvencionalnih metoda. Željezo i aluminij su najčešći materijali elektrode u procesu EC (Ozyonar i Karagözoglu, 2014.). Princip rada uključuje oslobađanje kationa potrebnih za koagula-
ciju i flokulaciju onečistila iz vode pod utjecajem električnog polja iz anoda. Na katodi dolazi do nastajanja H+ i OH− iona redukcijom vode. OH− ioni reagiraju s kationima tvoreći stabilne hidrokside (Ni’Am i surl., 2008.).

Elektrokoagulacija se koristi za smanjenje koncentracije fosfata u otpadnim vodama. Najbolji rezultat elektrokoagulacijskog uređaja sa željeznim elektrodama postignut je nakon 120 minuta rada reaktora s protokom od 0,05 L/s i strujom jakosti 5 A uz dodatak 2 g/L NaCl kao elektrolita. Koncentracija fosfata iznosila je 10 mg/L (od početnih 50 mg/L), a nakon 24 sata taloženja 2 mg/L. NaCl u koncentraciji 2 g/L ne utječe na učinkovitost uklanjanja fosfata, ali smanjuje potrošnju električne energije (Posavcić i surl., 2018.). Pročišćavanje otpadne vode klonica pomoću EC korističenjem željezne elektrode, ovisno o broju elektroda, vremenu rada i jakosti struje pokazalo je da povećanjem broja elektroda i produljenjem vremena rada raste i uspješnost pročišćavanja (Ahmadian i surl., 2012.). U pokusima s četiri, šest i osam elektroda, pri 10 A/m2, tijekom kontaktnog vremena 10 min, 20 min, 30 min, 40 min i 50 min istražili su učinak broja elektroda i kontaktnog vremena, dok su učinak jakosti struje od 5 A/m2, 10 A/m2, 15 A/m2, 20 A/m2 i 25 A/m2, tijekom 50 min istražili sa osam elektroda. Najbolji rezultati postignuti su nakon 50 minuta rada pri 25 A/m2 i to uklanjanje 97 % BPK, 93 % KPK, 81 % TSS i 84 % TN (Ahmadian i surl., 2012.).

Sekundarna obrada
1. Fitoremedijacija

Fitoremedijacija je naziv za skup postupaka koji upotrebljavaju biljke, njihove enzime i prisutne mikroorganizme iz zone korištenja za izolaciju, transport, detoksikaciju i mineralizaciju ksenobiotika, čime se smanjuje njihova koncentracija, pokretljivost ili toksični učinci (Milčić i surl., 2011.). Biljni uređaji naziv su za sve uređaje za pročišćavanje otpadnih voda kod kojih se koriste biljke (Geller i Honer, 2003.). Dijele se prema vrsti biljaka, režimu tečenja, tipu konfiguracije, vrsti i razini obrade otpadne vode i njenom načinu distribucije, te vrsti supstrata (UN-HABITAT, 2008.). U Hrvatskoj se najčešće primjenjuju biljni uređaji s potpovršinskim tokom, s pijeskom ili šljunkom kao filterskih materijalom i močvarnim biljkama poput trske, rogoza ili oblića (Stanković, 2017.). Takvim načinom rada postiže se uklanjanje KPK i BPK, suspendiranih tvari, dušika i fosfora, patogenih mikroorganizama i teških metala. Obradom otpadne vode klonica na biljnom uređaju s primarnim taložnicima i anaerobnom lagunom postiže se uklanjanje BPK, KPK i TSS.
za 97 %, 89 % i 85 % i uklonjeni su patogeni mikroorganizmi. Tako pročišćena voda nije bila zadovoljavajuće kvalitete za ispušt u okoliš (Gutierrez-Sarabi i sur., 2004.).

2. Membranski procesi

Otpadna voda djelovanjem tlaka prolazi kroz poroznu membranu i razdvaja se u permeat i koncentrat. Prednosti procesa su nekorišćenje kemikalija, mali zahtjevi za površnom uređajaju i visoka učinkovitost pročišćavanja. Negativna strana očituje se u problemu čepljenja površina membrana (He i sur., 2005.). Tipovi membranskih procesa dijele se u ovisnosti o veličini pora membrane: reverzivna osmoza (RO), pore veličine 0,1-1 nm, nanofiltracija (NF), pore veličine 1-5 nm, ultrafiltracija (UF), pore veličine 20-50 nm i mikrofiltracija (MF), pore veličine 100-1000 nm, a prikladni su za smanjenje vrijednosti KPK, BPK, TN i TOC (engl. Total Organic Carbon) iz otpadnih voda (Yordanov, 2010.; Almandoz i sur., 2015.). Korištenje reverzivne osmoze nakon postupka obrade otpadne vode mesne industrije s aktivnim muljem rezultira smanjenjem koncentracije KPK, BPK, TP i TN za 85,8 %, 50,0 %, 97,5 % i 90,0 % (Bohdziewicz i Sroka, 2005.).

3. Napredni oksidacijski procesi

Napredni oksidacijski procesi su procesi obrade otpadnih voda u kojima se uz utrošak energije generiraju radikali (npr. hidroksilni radikal) koji neselektivno reagiraju s organskim spojevima i mineraliziraju ih (pretvaraju u vodu i CO₂). Dijele se na: Fentonov proces, oksidacija ozonom (O₃), oksidacija vodikom peroksidom (H₂O₂), UV fotoliza i drugi (Serdarević, 2018.). Njihova učinkovitost čini ih zanimljivim alternativom ili dodatkom klasičnim procesima obrade otpadnih voda (Tabrizi i Mehvar, 2004.). UV/H₂O₂ proces jedan je od najčešće korištenih naprednih oksidacijskih procesa u obradi otpadnih voda. Oksidacija i razgradnja onečistila temelji se na stvaranju hidroksilnog radikala OH iz reakcije H₂O₂ s UV. UV/H₂O₂ proces uzrokuje 5,2 puta bržu razgradnju organskih spojeva (aromatickih spojeva) u odnosu na samostalnu UV obradu. Maksimalno uklanjanje KPK od 95 % postignuto je nakon 5 sati naprednih oksidacijskih procesa (Luiz i sur., 2009.). Ozonezacija otpadne vode pregrade mesa s 23,09 mg ozona/ml. otpadne vode kroz 8 minuta inaktivirala 99 % aerobnih bakterija i ukloni 10,7 % KPK i 23,6 % BPK (Wu i Doan, 2005.). Unatoč dobrim rezultatima korištenje procesa kao samostalnog procesa nije dovoljno učinkovito, a i financijski troškovi su preveliki pa se pristupa kombinaciji naprednih oksidacijskih procesa i biološke obrade otpadne vode.

4. Aerobna i anaerobna biološka obrada

Biološkom obradom otpadnih voda pomoću mikroorganizama dolazi do uklanjanja organskih i anorganskih sastojaka i preostalih suspendiranih čestica. Aerobni postupci temelje se na sposobnosti aerobnih organizama aktivnog mulja da koriste otoljene organske sastojke uz kisik unesen proizvajanj zmakom. Anaerobna razgradnja organskih sastojaka otpadne vode pomoću mikroorganizama, bez prisustva kisika, rezultira produkcijom bioplena i biomase anaerobnog mulja (Mao i sur., 2015.). Anaerobni procesi pokazuju prednosti u odnosu na aerobnim procesima poput male količine biomase anaerobnih mikroorganizama (5-20 %), male potrošnje energije i proizvodnja bioplena (Chan i sur., 2009.). Ipak, anaerobni procesi teško zahvaćaju postizanje dopuštenih vrijednosti onečišćenja za ispuštanje u prijemnik, te je potreban daljnja obrada za uklanjanje preostalih organskih sastojaka, dušika i fosfora (Gomec, 2010.).

4.1. Proces s aktivnim muljem

Proces s aktivnim muljem jedan je od najčešće korištenih načina obrade otpadnih voda u svijetu zbog niskih troškova i jednostavnosti izvedbe (Zhao i sur., 2018.). Princip rada uključuje aeracijski spremnik (reaktor) u kojem se zbiva mikroba razgradnja organskih sastojaka i taložnik u kojem se odjedno obrađena voda od istaloženog aktivnog mulja. Dio mulja se recikliira u bioreaktor a višak se odvodi na daljnju obradu. Kod otpadnih voda mesne industrije masti otežavaju taloženje fokula aktivnog mulja, povećavaju potrebu na otoljenju kisika, te produžuju potrebno hidrauličko vrijeme zadržavanja (HRT, engl. Hydraulic Retention Time) za uspješan proces (Musa i sur., 2019.).

Bole taloženje postiže se uvođenjem anaerobnog selektora, povećanjem kapaciteta aeracijskog bazena i koncentracijom otoljenog kisika od 2 mg/L i 4 mg/L (Al-Mutairi, 2009.). Uz protok otpadne vode od 1,38 L/s i HRT od 2 d ukloni se 89,73 % BPK, 89,03 % KPK i 94,09 % suspendiranih čestica (Pabon i Gelvez, 2009.).

4.2. Rotirajući biodisk

Rotirajući biodisk konstruiran je od jednog
ili više valjaka koji su s 40 % svog promjera uronjeni u spremnik s otpadnom vodom i smješteni na okretnoj osnovi čime se omogućava naizmjčen pristup biofilmima mikroorganizama s valjaka kisiku iz zraka i otpadnom vodi. Prednosti rotirajućih biodiskova su mala potrošnja energije, velika površina za rast biofilmova i dobra učinkovitost obrade otpadne vode. Ipak, nepoželjan je preveliki rast biofilmova jer se time dijeli mikroorganizama onemogućava doticaj s otpadnom vodom i kisikom (Coetzee i sur., 2004.).

Učinkovitost obrade otpadne vode klonica s rotirajućim biodiskom kao post-tretmanom ovisi značajno o brzini okretanja valjaka, dok povećanje OLR (engl. Organic Loading Rate) negativno utječe na uspješnost uklanjanja KPK i BPK. Najbolje uklanjanje BPK od 85±3 % postiže se pri OLR 5,3 g BPK/m³d (Torkian i sur., 2003.). Za postizanje zadovoljavajućih koncentracija BPK (<25 mg/L) i KPK (<60 mg/L) potreban je OLR od 22 g BPK/m³d i 65 g KPK/m³d (Al-Ahmady, 2005.).

4.3. Aerobni SBR (engl. Sequencing Batch Reactor)

Rad SBR uključuje ponavljačje korake u određenim vremenskim intervalima: punjenje, reakciju, taloženje, dekanteranje i odvodenje višak mulja.

Biološko uklanjanje nutrijenata iz otpadne vode mesne industrije pomoću SBR uz hidrauličko vrijeme zadržavanja od 2,5 d rezultira simultanim uklanjanjem KPK (99 %), dušika (<10 mg/L) i fosfora (<1,0 mg/L) (Thayalakumaran i sur., 2003.). Proces obrade otpadne vode klonica u SBR volumena 10 L pri ambientalnoj temperaturi uz trajanje ciklusa od 8 sati (punjenje 7 min, reakcija 393 min, taloženje 30 min i dekanteranje 50 min) uklanja 96 % KPK i TN, te 99 % TP (Li i sur., 2008.).

4.4. UASB (engl. Up-Flow Anaerobic Sludge Blanket Reactor)

UASB radi na principu uvođenja otpadne vode u reaktor s donje strane, kontakta s granulama mulja i bioloških reakcija pročišćavanja otpadne vode, odvođenja pročišćene vode s gornje strane reaktora (Del Nery i sur., 2008.). Tri glavne komponente UASB su mulj, otpadna voda i plinovi CH₄ i CO₂ nastali tijekom procesa.

U obradi otpadne vode klonica s vrijednosti KPK od 1 400-3 600 mg/L i 413-645 mg/L ulja i masti, u USAB reaktoru, nakon provedenog procesa koagulacije i flokulacije kao prvog koraka, postignut je uklanjanje KPK od 70-92 % i uklanjanje ulja i masti 27-58 % (Miranda i sur., 2005.). Del Nery i sur. (2016.) su postigli ukupno uklanjanje KPK 97,9±1,0 %, BPK 98,6±1,0 % i masti i ulja 91,1±5,2 % iz otpadne vode klonica peradići u postrojenju za obradu otpadnih voda koje se sastojalo u slijedu od rotirajućih i statičkih rešetki, primarnog sustava za flotačiju otpoljenim zrakom, DAF, UASB reaktora, zatim aerirane-fakultativne lagune (engl. Aerated-Facultative Pond) i kemijskog DAF sustava.

4.5. Anaerobni filter (AF)

Anaerobni filteri su biološki reaktori ispušteni nosaćima od inertnog materijala, primjerice keramika, staklo, plastika, na kojima raste biomasu organizama. Otpadna voda se propušta kroz reaktor s gornje ili donje strane, a organski materijal se uklanja djelovanjem mikroorganizama na filterima. Učinkovitost AF ovisi o sastavu otpadne vode, nosaćima i prisutnoj mikrobiološkoj kulturi (Mittal, 2006.).

Istražena je učinkovitost AF u obradi otpadnih voda klonica u tri reaktora s različitim nosačima (polipropilenski prstenovi, poluirementatska pjena i glinena cigla). Uklonjeno je 72±8 % KPK, a nosač od glinene cigle pokazao je najveću miokrobiološku raznolikost (Stets i sur., 2014.). Obrada na AF pri mezoofilnim i termofilnim uvjetima (temperatura od 37 °C i 55 °C) rezultira uklanjanjem 80-90 % KPK u mezoofilnim i 70-72 % u termofilnim uvjetima. Iako je uklanjanje KPK slabije u termofilnim uvjetima, uklanjanje patogenih mikroorganizama je bolje nego pri 37 °C (Gannoun i sur., 2009.).

4.6. Anaerobni SBR

Prema Pal i sur. (2016.) anaerobni SBR trenutno je najbolja dostupna tehnologija za obradu otpadnih voda klonica. Punjenje, reakcija, taloženje i dekanteranje koraci su svakog SBR uređaja i ponavljaju se ciklički. Budući su se pri ovom koraci događaju u istom reaktoru nema potrebe za taložnikom i smanjeni su troškovi u odnosu na anaerobne digestore.

Istražen je učinak hidrauličkog vremena zadržavanja (HRT) i temperature (mezofilna i termofilna temperatura od 35 °C i 55 °C) na uspješnost procesa u obradi otpadnih voda klonica u anaerobnom SBR. Promjene hidrauličkog vremena zadržavanja pri mezoofilnim temperaturama nisu značajno utjecale na uklanjanje organskih onečišćenja. Ipak, produkcija biopliša bila je učinkovitija pri termofilnoj temperaturi i HRT od 20 dana u odnosu na HRT od 10 dana (Bouallagui i sur., 2009.).
5. Kombinirani procesi obrade otpadnih voda

Iako su prethodno nabrojeni procesi pokazali učinkovitost u pročišćavanju otpadne vode mesne industrije, ponekad je za zadovoljavanje zakonskih granica za ispušt vode u površinske vode ili sustav javne odvodnje potrebna kombinacija metoda obrade kako bi se međusobno nadopunile i dale najbolje rezultate. Odabir kombinacija ovisi o otpadnoj vodi i financijskim aspektima, odnosno dostupnosti određenih metoda, a u ovom radu prikazane su neke od njih.

Česte su kombinacije bioloških procesa anaerobnih i aerobnih obrade čime se postiže uklanjanje organskih sastojaka, dušika, fosfora, teških metalova, kao i proizvodnja vrijednog nusprožeta u obliku bio goriva (Shi i sur., 2014.). Korištenjem anaerobno-aerobnog sustava, kombinacijom anaerobnog filtera i aerobnog SBR postignuto je uklanjanje od preko 95 % KPK (Lopez-Lopez i sur., 2010.), dok je kombinacija anaerobnog i aerobnog SBR rezultirala uklanjanjem 99 % KPK i BPK, 96 % TN i 61 % TP (Mutua i Mwaniki Ngaji, 2016.), odnosno 92 % KPK, 97 % BPK i 74 % PO₄³⁻ uz produkciju bio goriva od 3,95 L/d (Aziz, 2018.). Anaerobno-aerobni reaktor s fiksnim punjenjem uklanja 93 % organskih sastojaka uz 0,77 kg KPK/m²d i 67 % dušika uz 0,084 kg N/m²d (Del Pozo i Diez, 2005.). Utjecaj koncentracije p-nitrofenol (80 mg/L) i KPK (0,3 kg KPK/m²d - 3,16 kg KPK/m²d) uz HRT od 1 do 10,38 dana na efikasnost anaerobno-aerobnog tretmana istražili su Kusçu i Sponza (2006.). Ukupno uklanjanje KPK i BPK do 94 % postignuto je uz koncentraciju KPK manju od 2,1 kg KPK/m²d. Veće početne koncentracije KPK dovode do smanjenja učinkovitosti procesa. Kombinacija anaerobnog filtera i aerobnog membranskog reaktora uklanja 99 % organskih sastojaka i 46 % ukupnog dušika, uz početne koncentracije KPK od 6 000-14 500 mg/L, TN od 300-1 000 mg/L i HRT od 24 sata (Ahn i sur., 2007.). A²/O sustav (engl. Anaerobic/Aerobic/Oxic System) omogućuje istovremeno uklanjanje KPK, dušika i fosfora iz otpadne vode klonica uz omje-
Zaključak

Otpadne vode mesne industrije zbog složenog sastava predstavljaju izazov u odabiru prilike metode obrade. Unatoč problemima poput velike potrošnje energije, pjenjenja ili mogućnosti ispiranja biomase iz sustava, biološke metode obrasce zbog efikasnosti i ekonomičnosti često su prvi izbor za obradu otpadnih voda mesne industrije. Kombinacije postojećih metoda obrade omogućavaju nadopunjavanje slabih točaka određenog procesa drugim procesom, a time i zadovoljavanje zakonskih obveza o kakvoći vode čime se osigurava ekološka održivost procesa.

Literatura

[63] Pravilnik o grančnim vrijednostima emisije otpadnih voda (2020) NN 26/2020

Meat industry wastewater treatment methods

Abstract

The quantity and quality of meat industry wastewater depend on the type of meat processed, the way the equipment is cleaned, and the size of the plant. The meat industry wastewater is highly polluted and rich in proteins, lipids, carbohydrates and fibers. The meat industry includes slaughterhouses, processing plants and plants for the production of meat products. Numerous methods for meat industry wastewater treatment, physical, chemical and biological processes, have been investigated. The aim of meat industry wastewater treatment is to achieve the quality of purified water that meets the legal regulations, the quality utilisation of the process by-products, and the selected treatment process should be the most ecologically, economically and technologically advanced. This review paper will provide a literature review of meat industry wastewater treatment methods, as well as the quality of the meat industry wastewater.

Key words: meat industry wastewater, treatment processes, meat industry wastewater quality

Verfahren zur Abwasserreinigung in der Fleischindustrie

Zusammenfassung

Schlüsselwörter: Abwasser der Fleischindustrie, Behandlungsverfahren, Qualität des Abwassers der Fleischindustrie

Métodos de tratamiento de aguas residuales en la industria cárnica

Resumen

La cantidad y calidad de las aguas residuales de la industria cárnica depende del tipo de carne procesada, la forma de limpieza del equipo y del tamaño de la planta. Las aguas residuales de la industria cárnica están muy contaminadas y cargadas de proteínas, lípidos, carbohidratos y fibras. La industria cárnica incluye mataderos, plantas de procesamiento y plantas para la producción de productos cárnicos. Se han investigado numerosos métodos de tratamiento de aguas residuales de la industria cárnica, así como los procesos físicos, químicos y biológicos. El objetivo del tratamiento de aguas residuales de la
industria cárnica es lograr la calidad del agua purificada que cumpla con la legislación, la utilización de calidad de los subproductos del proceso y el procedimiento de tratamiento seleccionado debe ser el mejor del aspecto ambiental, económico y tecnológico. Esta revisión proporcionará una revisión de la literatura sobre los métodos de tratamiento de aguas residuales de la industria cárnica, así como la calidad de las aguas residuales de la industria cárnica.

Palabras claves: aguas residuales de la industria cárnica, proceso de tratamiento, calidad calidad de aguas residuales de la industria cárnica

Metodi di trattamento delle acque reflue dell’industria della carne

Riassunto

La quantità e la composizione delle acque reflue dell’industria della carne dipendono dal tipo della carne lavorata, dalle modalità di pulizia degli impianti e dalla grandezza dello stabilimento. Le acque di scarico dell’industria della carne sono altamente contaminate e ricche di proteine, lipidi, carboidrati e fibre. L’industria della carne comprende gli impianti della macellazione, gli impianti della lavorazione e gli impianti della produzione dei prodotti a base di carne. Sono stati studiati numerosi metodi di trattamento delle acque reflue dell’industria della carne che consistono in processi fisici, chimici e biologici. Il trattamento delle acque reflue dell’industria della carne ha, come finalità, il raggiungimento di una qualità delle acque dePURate che soddisfi i parametri previsti dalla legge e lo sfruttamento ottimale dei sottoprodotti del processo, mentre il processo di trattamento prescelto deve essere il migliore possibile dal punto di vista ecologico, economico e tecnologico. Quest’articolo di rassegna fornirà un quadro bibliografico dei metodi trattamento e della qualità delle acque reflue dell’industria della carne.

Parole chiave: acque reflue dell’industria della carne, processi di trattamento, qualità delle acque reflue dell’industria della carne

TUTTO FOOD

Milano - 22-26 Ottobre 2021