Biopotičajni učinak fitobiotika u proizvodnji pilećeg mesa

Duro Senčić, Zvonko Antunović, Danijela Samac

Sažetak

Fitobiotici (fitogeni dodatci) su sastojci dobiveni iz biljaka čija je uloga da dodani u hranu poboljšavaju proizvodnost životinja, štite njihovo zdravlje i poboljšavaju kvalitetu proizvoda (mesa). Za razliku od antibiotika ne javljaju se u mesu u obliku ostataka (rezidua) i ne uzrokuju rezistentnost mikroorganizma, zbog čega se trajno mogu davati životinjama. Fitobiotici mogu stimulativno djelovati na tovna i klaonička svojstva pilića, a ućinci mogu i izostati. Potrebno je i dalje istraživati biopotičajno djelovanje različitih fitobiotika na proizvodnju pilećega mesa.

Ključne riječi: Fitobiotici (fitogeni dodatci), biopotičajni učinak, pileće mesa

Uvod

U cilju podizanja proizvodnosti (brzine rasta, učinkovitosti iskorištavanja hrane), poboljšanja klaoničke kvalitete i zaštite zdravlja pilića, koriste se u svijetu različiti dodaci hrani (antibiotici, kokciostatieci, enzimi, antioksidansi, organske kiseline i dr.). Neki od dodataka, npr. antibiotici, mogu imati i štetni učinak na zdravlje životinja, ali i konzumenata mesa jer se javljaju u mesu u obliku ostataka (rezidua) i mogu uzrokovati rezistentnost mikroorganizama. EU je 2006. godine zabranila upotrebu antibiotika kao promotora rasta u hranidbi životinja. Posljednjih desetljeća, kao novi dodatak hrani, pojavili su se fitobiotici, sastojci dobiveni iz biljaka, a čija je uloga: poboljšanje proizvodnosti životinja, zaštita njihova zdravlja i istodobno poboljšanje kvalitete proizvoda (mesa).

S tim u vezi, čini se da bi fitobiotici mogli uspješno zamijeniti antibiotike, kao promotore rasta u hrani pilića. Fitobiotici se, za razliku od antibiotika i drugih lijekova, mogu trajno davati životinjama u cilju poticanja njihove proizvodnosti.

Fitobiotici se, s obzirom na porijeklo i način dobivanja, mogu podijeliti na: bilje, eterična ulja, začine i uljne smole (Windsch i sur., 2008.). Najveći dio fitobiotika čine eterična ulja. To su ulja intenzivnoga mirisa, koji se u osnovi sastojte od terpena i fenilpropena. Sastav eteričnih ulja može varirati, ovisno o vegetativnoj fazi biljke, načinu uzgoja biljke, godišnjem dobu, sezoni berbe i dijelu biljke koji se koristi (list, korijen, sjeme, stabljika). Eterična ulja su vrlo složene smjese, a njihov kemijski sastav i koncentracija mogu biti varijabilni. Zbog razlike u

Prof. dr. sc. Duro Senčić, prof. dr. sc. Zvonko Antunović, doc. dr. sc. Danijela Samac; Sveučilište J. J. Strossmayera, Fakultet agronosti, Zavod za animalnu proizvodnju i biotehnologiju, Vladimira Pehloga 1, 31 000 Osijek, Hrvatska

*Autor za korespondenciju: dsamac@fazos.hr

godina XXIII (2021) | siječanj-veljača | broj 1 | MESO | 67
sastavu, biološki utjecaj eteričnih ulja je različit.

U cilju podizanja proizvodnosti pilića mogu se koristiti cjelovita eterična ulja ili samo neke njihove komponente. Europska komisija dozvoljila je upotrebu samo nekih sastojaka eteričnih ulja (cinamaldehid, karvakrol, karvan, citral, eugenol, limonen, p-cimen, mentol i timol). Neki od sastojaka eteričnih ulja (estragol i metil) izbrisani su s EU-liste dopuštenih, jer im je utvrđena genotoksicičnost.

Fitobiotici su, prema regulativi Europske Unije (EC No 1831/2003) o dodatcima tvari za životinje (European Union Refister of Feed Additives) svrstani u drugu kategoriju dodataka, kao senzorni aditivi. Europska agencija za sigurnost hrane (EFSA, 2009) navodi da fitobiotici, kao i svi drugi biljni dodaci u hrani za životinje, podliježu regulativi o senzornim aditivima-aromama.

Fitobiotici mogu imati antioksidativno, antimikrobno i biopoticajno djelovanje. Antioksidativno djelovanje imaju, npr., eterična ulja. Ulje ružmarina, npr., sadrži fenolne terpene, rozmarsol i ružmarinsku kiselinu, a ulje timijana i marvinca sadrži monoterpene (timol i karvakrol).

Antimikrobno djelovanje fitobiotika očituje se u stabilizaciji crvene flore i poboljšanju mikrobiološke higijene trupa zatknutih pilića, smanjivanja ukupnog broja bakterija i specifičnosti patogene, kao što je npr., Salomonella spp. Antimikrobnu aktivnost imaju, npr., karvakrol, terpinen i timol iz timijana, eugenol iz ulja kliničišta, karvon iz sjemenja kopra i kima, cinamaldehid iz cimetra te kapsaicin iz crvene paprike.

Fitogeni dodaci u hrani mogu stimulativno djelovati na proizvodne osobine peradi. Količina i kvaliteta aktivne tvari u biljnim ekstraktima značajno utječu na reakciju peradi. Biološki učinci mogu biti vrlo različiti, a primjena nekih fitogenih dodataka može biti bez rezultata. Cilj ovoga rada je da pregledno ukaže na biopoticajno djelovanje različitih fitobiotika u tovu pilića.

Utjecaj fitobiotika na tovnu svojstva pilića
Tovna svojstva pilića (brzina rasta i, s tim u vezi, postizanje odgovarajuće završne tjelesne mase u određenoj dobi, razine konzumacije hrane i stupanj iskorištenja hrane - konverzija hrane) značajno utječu na ekonomičnost i rentabilnost proizvodnje piletaca mesa. Troškovi hrane u tovu pilića čine najveći udio ukupnih troškova tova (70 %), pa svako smanjivanje utroška hrane za kg prirasta značajno poboljšava rentabilnost tova. Povećanje brznine prirasta pilića skraćuje vrijeme tova do zeljene tjelesne mase, a time i druge vrste troškova.

Galib i sur. (2010.) istraživali su učinak dodavanja različitih koncentracija (0,25 % i 0,50 %) maslačka (Taraxacum officinale) krnim smjesama na proizvodne rezultate tovnih pilića. Pilići hranjeni s dodatkom maslačka imali su značajno veći dnevni prirast i veću završnu tjelesnu masu od pilića kontrolne skupine bez dodatka maslačka.

Amad i sur. (2011.) su dodavali u hranu pilića provenijencije Cobb esencijalna ulja timijana i anisa u različitim količinama (150, 750 i 1500 mg/kg). Nisu utvrdili utjecaj navedenih fitobiotika na konzumaciju hrane pilića, ali je utvrđeno poboljšanje konverzije hrane.

U istraživanju Safamehr i sur. (2012.) utvrđeno je da dodatak različitih koncentracija (0,5, 1,0, 1,5 i 2,0 %) suhe koprive (Urtica dioica L.) u krmnim smjesama statistički značajno povećava masu pilića 42. dana tova i smanjuje konverziju hrane.

Loetscher i sur. (2013.) utvrdili su da dodatak šipka (Rosa canina) u količini 25 g/kg krmne smjese za tov pilića statistički značajno povećava masu trupa pilića.

Al Mashhadani i sur. (2013.) su dodavali u krmne smjese za tov pilića različite koncentracije (100, 200, 300 i 400 mg/kg) ulja kamilice (Matricaria chamomilla). Pilići pokusnih skupina imali su značajno brži prirast i veću završnu tjelesnu masu te manju konverziju hrane u odnosu na piliće kontrolne skupine.

Ali (2014.) je istraživao utjecaj dodatka u hranu praha liliča mažurana (Origanum majorana) u različitim koncentracijama (0,5, 1,0 i 1,5 %) na proizvodne rezultate tovnih pilića. Utvrdio je da spomenuti dodatak značajno povećava dnevni prirast i tjelesnu masu pilića te smanjuje konzumaciju i konverziju hrane i njenoj oduzimnoj skupini bez utjecaja dodatka.

Safa i sur. (2014.) su dodavali crni papar (Piper nigrum, L.) u različitim koncentracijama (0,0, 0,5, 0,75 i 1,0 %) u hranu pilića provenijencije Hubbard. S povećanjem koncentracije crnoga papra u obroku poboljšao se prirast pilića, završna tjelesna masa, konzumacija i konverzija hrane. Najbolja ukupna konzumacija hrane bila je kod pilića skupine s dodatkom 1 % crnoga papra (4030,09 g), a najslabija kod pilića kontrolne skupine (3620,11).
Najbolju konverziju hrane (1,92 kg) imali su pilići s dodatkom 1% crnoga papra u krmnoj smjesi, a najslabiju konverziju hrane (2,00 kg) imali su pilići kontrolne skupine bez dodatka papra.

Šević i sur. (2016.) istraživali su utjecaj fitogenesa pripravka „Digestarom poultry®“ (Biomin, Austrija) na proizvodne rezultate pilića u tovu. Fitogeni dodatak je pripravak koji sadrži esencijalna ulja kima, mente, klinička i anisa, a dodava se u količini 150 g/t hrane. Utvrdjeno je da je prosječna tjelesna masa brojera pokusne skupine 42. dana tova bila značajno veća od kontrolne skupine. Za cijelo vrijeme tova pokusna skupina je imala značajno veći prosječni dnevni prirast pilića, manju ukupnu konzumaciju hrane i bolju konverziju hrane.

I drugi autori (Nasir i Grashorn, 2010; Khan i sur., 2012; Cho i sur., 2014.) su utvrdili da dodavanje različitih fitobiotika u krmne smjese uzrokuje poboljšanje tovnih svojstava pilića.

Utjecaj fitobiotika na klonička svojstva pilića

Klonička kvalitetu mesa pilića je vrlo široki pojam i obuhvaća kvalitetu zakrivenih i očišćenih trupova i kvalitetu mišićnog tkiva, tj. mesa u uzem smislu. Kakvoću piletinih trupova određuje niz pokazatelja: masa, konformacija, stupanj utovljenosti (zastupljenost potkožnoga i trbušnoga masnoga tkiva i dr. (Sencić, 2011.). Objektivna ocjena konformacije dobije se utvrđivanjem udjela pojedinih dijelova (prsa, bataka i zabataka, krila, leđa i zdjelice, vrata i nogu) na primarno obradnima trupovima pilića. Veći udjeli vrijednih dijelova trupa (prsa i bataka sa zabatacima), ukazuje na bolju konformaciju piletinih trupova.

Kvalitetu mesa u uzem smislu određuje više pokazatelja: nutritivna svojstva (sadržaj osnovnih hranjivih tvari – bjelančevina, masti, mineralnih tvari, vitamina, aminokiselina, masnih kiselina, kolesterol i dr.), tehnološka svojstva (pH, boja, sposobnost vezanja vode, električna provodljivost) i senzorska svojstva – miris, okus, tekstura-čvrstoća (Sencić, 2011.).

Bolšubasj i sur. (2006.), koji su istraživali utjecaj različitih koncentracija vitamina E (100 i 200 mg/kg) i esencijsalnog ulja timijana (100 i 200 mg/kg) u krmnoj smjesi na prinos prsa i bataka sa zabatacima pilića provenjenjci Ross 308, nisu utvrdili statistički značajne razlike između pilića istraživa-
nih skupina.

Zhang i sur. (2005.) također nisu utvrdili statistički značajne razlike u udjelu prsa i bataka sa zabatacima u trupovima pilića hranjenih smjesama sa različitim koncentracijama smjese esencijsalnih ulja origana, citrama, timijana i paprike u usporedbi s kontrolnom skupinom pilića.

Soltan i sur. (2008.) su istraživali utjecaj različitih koncentracija sjemenke anis (0,25; 0,5; 0,75; 1; 1,25 i 1,5 g/kg) u krmnim smjesama na randman pilića. Kod pilića hranjenih s dodatkom 0,25, 0,50, 0,75 i 1,50 g/kg sjemenka anisa došlo je, iako ne značajno, do povećanja randmana (72,3; 72,69; 73,49 i 71,46 %), dok kod skupine pilića s dodatkom 1,0 i 1,25 g/kg sjemenke anisa nije došlo do statistički značajnog smanjenja randmana (69,88 i 70,36 %).

Bozkurt i sur. (2009.) su utvrdili da su pilići hranjeni obrokom s dodatkom esencijsalnog ulja origana i biljnoga ekstrakta hmelja ostvarili bolji randman u usporedbi s pilićima hranjenih obrokom s antibiotikom promotorom rasta i pilićima kontrolne skupine.

Zdunczyk i sur. (2010.) su istraživali utje-
caj dodatka prirodnog alkaloida iz biljke Macleaya cordata u hrani pilića provenjenjce Cobb 500 te su utvrdili da je masa trupa pilića hranjenih s dodatkom alkaloida (1566,5 g) bila veća u odnosu na onu pilića kontrolne skupine, skupine (1555,5 g) bez dodatka alkaloida, ali ne i statistički značajno. Također su utvrdili povećanje mase prsa za 3% i smanjenje mase bataka i zabataka za 2,44% u odnosu na kontrolnu skupinu pilića koja nije dobivala dodatak fitobiotika, ali te razlike nisu bile statistički značajne. Autori nisu utvrdili utjecaj dodanog alkaloida na senzorni smjesi mesa prsa, bataka i zabataka pilića (mekoća, sočnost, miris, okus i ukupna prihvatljivost). Također nije utvrđen utjecaj ovoga dodatka na pH vrijednost mesa prsa i bataka sa zabatacima.

Jang i sur. (2008.) su utvrdili da dodavanje smjese lekovitog bilja (listovi duda, biljke Lonicer flos v Coptis sinensis) u krmne smjese za piliće nije značajno utjecalo na kemijski sastav mesa prsa. Sadržaj proteina, masti, vode i pepela u pokusnim skupinama pilića s dodatkom 0,3% i 1% ekstrakta smjese lekovitog bilja bio je redom 22,10% i 22,59%, 1,96% i 1,60%, 75% i 74,86% te 0,17% i 0,14%, a kod kontrolne skupine 21,97%, 75,36%, 2,01% i 0,45%. Autori su također utvrdili da je aroma mesa prsa
pılıća pokusnih skupina, hranjenih s dodatkom 0,3 i 1 % ekstrakta smješte lječovitog bilja bila je poveljna (ocjene 7,83 i 7,00) u odnosu na aromu mesa kontrolne skupine (6,50). Ocjene okusa i teksture mesa prsa pilića pokusne skupine, s dodatkom 0,3 % smješte ekstrakta lječovitog bilja je povoljnija (8,16 i 19,16) od ocjene okusa i teksture mesa prsa pokusne skupine s dodatkom 1 % smješte ekstrakta lječovitog bilja (6,01 i 7,0) i ocjena mesa kontrolne skupine (6,33 i 7,33).

Al - Beita w i El Ghosein (2008.) istraživali su utjecaj dodavanja u hranu različitih koncentracija (1,25; 2,0; 2,5 i 13,0 %) drobljenog i nedrobljenog crnog kima (Nigella sativa) na kemijski sastav mesa prsa i bataca sa zabatacima. Pilići hranjeni s dodatkom 1,5 % drobljenog i 1,5 % nedrobljenog papra imali su značajno veći sadržaj proteina u mesu prsa (23,14 % : 23,39) u odnosu na kontrolnu skupinu bez ovoga dodatka (22,11 %), kao i u mesu bataca sa zabatacima u pokusnim skupinama (20,67 % i 20,40 %) u odnosu na kontrolnu skupinu (20,12 %).

Sarker i sur. (2010.) su dodavali u hranu pilića različite koncentracije (0,5 % i 1,0 %) fitogenog aditiva iz biljke Salicornia herbacea te utvrdili da se sadržaj proteina u mesu prsa i bataca sa zabatacima s dodatkom 0,5 % i 1 % fitobiotika značajno poveća (23,89 % i 23,89 %) u odnosu na piliće kontrolne skupine (21,94 %) i skupinu s dodatkom antibiotičkoga promotora rasta (22,20 %). Sadržaj vode u mesu prsa nije se značajno razlikovao između pokusnih i kontrolne skupine. Sadržaj masti u mesu prsa značajno se smanjio kod pilića skupine s dodatkom fitobiotika (0,82 % i 0,72 %) i skupine s dodatkom antibiotičkoga promotora rasta (0,68 %) u odnosu na kontrolnu skupinu (1,04). Sadržaj pepeola u mesu prsa značajno se povećao u skupinama s dodatkom fitobiotika (1,31 % i 1,26 %) u odnosu na skupinu s antibiotičkim promotorom rasta (1,25 %) i kontrolnu skupinu (1,25 %).

Erener i sur. (2011.) su istraživali utjecaj dodatka ekstrakta zelenog čaja (Camellia sinensis) u količini 0,1 i 0,2 g/kg hrane, na masu trupova pilića provenijencije Ross 308, te su utvrdili značajno povećanje mase trupova pilića pokusnih skupina (1,966 kg i 2,029 kg) u usporedbi s pilićima kontrolne skupine (1,838 kg).

Olęforh - Okoleh i sur. (2014.) su utvrdili da dodatak fitogenih dodataka dumbira i češnjaka u prahu u hriani pilića značajno utječe na povećanje mase trupova (206,25 g) u usporedbi s pilićima kontrolne skupine bez toga dodatka (1351,50 g). Isto tako utvrđen je značajan utjecaj ovoga dodatka na povećanje randmana (88,08 %) u usporedbi s pilićima kontrolne skupine koja nije dobivala taj dodatak (69,18 %).

Abou-El-khair i sur. (2014.) su hranili piliće provenijencije Cobb 500 s dodatkom crnoga papra (Piper nigrum), kurkume u prahu (Curcuma longa), sjemena korijandera (Coriandrum sativum), kao i njihovih kombinacija. Utvrđili su najbolji randman kod pilića hranjenih s dodatkom crnoga papra i sjemena korijandera (77,97 %), a najlošiji kod pilića kontrolne skupine bez dodataka (76,10 %), ali ne i statistički značajno.

Safa i sur. (2014.) su, hraneci piliće s različitim koncentracijama crnoga papra (0,5, 0,75 i 1,0 %), utvrdili da je skupina pilića hranjena s najvećom koncentracijom crnoga papra u obroku (1,0 %) imala značajno najbolji randman (69,80 %), dok je skupina pilića bez dodatka crnoga papra u hrani imala najlošiji randman. Također su utvrdili da je udjel najvrjednijih dijelova u trupu pilića (prsa i bataca sa zabatacima) bio statistički značajno veći kod pilića hranjenih smjesom s većom koncentracijom crnoga papra. Pilići skupine koja je dobivala najveći koncentraciju crnoga papra u obroku (1 %) imala je statistički značajno veći udio vrjednjih dijelova u masi trupa (prsa 25 %, bataca 16,50 %, zabataka 17,90 %) u odnosu na piliće kontrolne skupine bez dodatka crnoga papra u hrani (prsa 24,01 %, bataka 14,20 %, zabataka 15,20 %).

Huda (2015.) je istraživač utjecaj hranidbe pilića obrokom s različitim koncentracijama češnjaka (Allium sativum), dumbira (Zangibir officinal), mente (Meantehea spicata) i ljute paprike (Capsicum Fuictences) na randman pilića. Skupine pilića s različitim koncentracijama fitogenih dodataka ostvarile su bolji randman u odnosu na kontrolnu skupinu, ali i statistički značajno, osim pri dodatku ljute crvene paprike u obroku. Autor nije utvrdio statistički značajne razlike u mazi prsa i bataca sa zabatacima u trupu pilića koji su hranjeni smjesom s dodatkom različitih koncentracija češnjaka, dumbira, mente i ljute crvene paprike, u usporedbi s pilićima skupine hranjene s dodatkom antibiotičkoga promotora rasta i pilićima kontrolne skupine. Autor također nije utvrdio značajne razlike u senzornim svojstvima mesa prsa i bataca sa zabatacima između pilića hranjenih smjesama s različitim koncentracijama češnjaka dumbera, mente i ljute crvene paprike, pilića s antibiotičkim promotorom rasta i kontrolne skupine pilića.
Khattak i sur. (2014.) su istraživali utjecaj dodataka smjese esencijalnih ulja iz bosiljka, kima, lovora, limuna, origana, kaludje i majčine dušice u različitim količinama (100, 200, 300, 400 i 500 g/t) u krmne smjese za pilića provenijencije Ross 308 na prinos prsa u trupu pilića. Utvrdili su značajno veću masu prsa kod skupina pilića s dodacima 300 i 400 g/t smjese esencijalnih ulja (697,9 g i 717,9 g) u odnosu na masu prsa kontrolne skupine pilića hranjenih smjesom bez dodatka smjese esencijalnih ulja (649,3 g).

Pri uključivanju u obroke pilića origana različite koncentracije Teuchert (2014.), također, nije uveliko statistički značajne razlike u udjelu prsa i bataka sa zaboravima u trupu pilića u odnosu na skupinu pilića hranjenih s dodacima antibiotskog promotora rasta i kontrolnu skupinu pilića bez dodatka u hrani. Vrijednost pH mesna 15 minuta nakon klanja pilića bila je značajno niža pri dodatku biljnom ekstraktu origana (5,71) u odnosu na meso pilića hranjenih s dodacima antibiotskog promotora rasta (5,88) i meso pilića kontrolne skupine (5,84).

Pри dodavanju flavonoidnog spoja kvercetina u količini 0,5 i 1,0 g/kg krmne smjese, Goloomytis i sur. (2014.) nisu utvrdili njegov utjecaj na pH vrijednost mesna prsa pilića. Jiang i sur. (2007.) su, pak, utvrdili da se pri upotrebi 40 mg/kg isoflavona u krmnoj smjesi dolazi do povećanja pH vrijednosti mesa prsa.

Zaključak

Fitobiotici (fitogeni dodatci) u hrani mogu stimulativno djelovati na proizvodne osobine tovnih pilića. Reakcija pilića na dodatak fitobioticuma ovisi o količini i kvaliteti aktivnih tvari u hrani. Biopotentni učinci fitobiotika na piliće mogu biti vrlo različiti. Fitobiotici uglavnom poboljšavaju tovno svojstva pilića (prirast, završna telesna masa, konzumacija i konverzija hranjene i neka klanja pilića (randman klanja, konformacija trupa, kemijski sastav mesna i dr.). Primjena nekih fitobiotika može biti bez rezultata. Rezultati primjene fitobiotika često su i oprečni, zbog čega je potrebno provoditi detaljniju istraživanja njihovog učinka na proizvodne rezultate, zdravstveni status pilića i ekonomski učinak.

Literatura

Biostimulating effect of phytobiotics on chicken meat production

Abstract
Phytobiotics are ingredients derived from plants which, if added to foods, improve the productivity of animals, protect their health and improve the quality of products (meat). Unlike antibiotics, they do not appear in meat in the form of residues and do not cause resistance of microorganisms, therefore can be given to animals continuously. Phytogens can stimulate the fattening and slaughter properties of chickens. However, their effects may not occur. The biostimulating effect of different phytogens on chicken production needs to be further investigated.

Key words: phytobiotics, biostimulating effect, chicken meat
Zusammenfassung

Phytobiotika sind aus Pflanzen gewonnene Inhaltsstoffe, die, wenn sie Lebensmitteln zugesetzt werden, die Produktivität von Tieren erhöhen, ihre Gesundheit schützen und die Qualität der Produkte (Fleisch) verbessern. Im Gegensatz zu Antibiotika treten sie im Fleisch nicht in Form von Rückständen auf und verursachen keine Resistenzen bei Mikroorganismen, daher können sie den Tieren kontinuierlich verabreicht werden. Phytogene können die Mast- und Schlachteigenschaften von Hühnern stimulieren. Es kann jedoch sein, dass ihre Wirkung nicht eintritt. Die biostimulierende Wirkung verschiedener Phytogene auf die Hühnerproduktion muss weiter untersucht werden.

Schlüsselwörter: Phytobiotika, biostimulierende Wirkung, Hühnerfleisch

Efecto bioestimulante de los fitobióticos en la producción de carne de pollo

Resumen

Los fitobióticos son los ingredientes derivados de plantas que, cuando son añadidos a los alimentos, mejoran la productividad de los animales, protegen su salud y mejoran la calidad de los productos (la carne). A diferencia de los antibióticos, no aparecen en la carne en forma de los residuos y no provocan la resistencia a los microorganismos, por lo que pueden administrarse a los animales de forma continua. Los fitógenos pueden estimular las propiedades de engorde y sacrificio de los pollos. Sin embargo, sus efectos pueden no ocurrir. Es necesario seguir investigando el efecto bioestimulante de diferentes fitógenos en la producción de pollos.

Palabras claves: fitobióticos, efecto bioestimulante, carne de pollo

Effetto biostimolante dei fitobiotici nella produzione della carne di pollo

Riassunto

I fitobiotici sono sostanze ottenute dalle piante il cui ruolo, aggiunti al mangime degli animali, è quello di migliorare la loro produttività, proteggere la loro salute e migliorare la qualità del prodotto (carne). A differenza degli antibiotici, non sono presenti nella carne in forma di residui, né causano la resistenza ai microorganismi, perciò possono essere somministrati agli animali continuativamente. I fitogeni possono stimolare le proprietà d’ingrasamento e di macellazione dei polli. Tuttavia, tali effetti possono anche mancare. È necessario, quindi, continuare gli studi sull’azione biostimolante di differenti fitogeni sulla produzione della carne di pollo.

Parole chiave: fitobiotici, effetto biostimolante, carne di pollo