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No-free-lunch theorems are important theoretical result in the fi elds of 
machine learning and artifi cial intelligence. Researchers in this fi elds 
often claim that the theorems are based on Hume’s argument about 
induction and represent a formalisation of the argument. This paper 
argues that this is erroneous but that the theorems correspond to and 
formalise Goodman’s new riddle of induction.  To demonstrate the corre-
spondence among the theorems and Goodman’s argument, a formalisa-
tion of the latter in the spirit of the former is sketched. 
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1. Introduction
Right from its beginning, the development of artifi cial intelligence and 
machine learning prompted many interesting philosophical debates 
and provoked some interesting philosophical questions. On the fl ip 
side, researchers in these fi elds often encounter or rediscover classical 
philosophical problems. One such case is the identifi cation of the no-
free-lunch (NFL) theorems—the famous negative results in machine 
learning—as a reiteration or even a formalisation of the Hume’s prob-
lem of induction. The distinguished machine-learning researchers like 
Christophe Giraud-Carrier and Pedro Domingos state, respectively:

It then becomes apparent that the NFL theorem in essence simply restates 
Hume’s famous conclusion about induction having no rational basis... (Gi-
raud-Carrier 2005)

and:
...This observation was fi rst made (in somewhat different form) by the phi-
losopher David Hume over 200 years ago, but even today many mistakes in 
machine learning stem from failing to appreciate it. (Domingos 2012)



480 D. Lauc, How Gruesome are the No-free-lunch Theorems?

Even the originator of the fi rst form of the NFL theorems, David Wol-
pert, fi fteen years after he proved the theorem, joins the information 
cascade and claims that:

…these original theorems can be viewed as a formalisation and elaboration 
of concerns about the legitimacy of inductive inference, concerns that date 
back to David Hume… (Wolpert 2013)

This paper argues that the NFL theorems, although vaguely connected 
to the classical philosophical problem of induction, do not restate the 
Hume’s problem, but rather the associated Nelson Goodman’s argu-
ment.1 We claim that the NFL theorems are closely related to Good-
man’s new riddle of induction (NRI), to the extent that they are one 
possible formalisation of the riddle. Additionally, we would like to pose 
the question of the relevance of the NFL to the vast philosophical dis-
cussion on NRI, as the relationship is yet to be researched. The related, 
reversed, the issue is the relevance of NRI to NFL and the question 
as to whether the machine-learning community could benefi t from the 
almost 70 years of fruitful discussion about Goodman’s argument.

1.1 No-Free-Lunch Theorems
The fi rst form of NFL theorem was proven by Wolpert and Macready, 
1992, in the context of computational complexity and optimisation re-
search (Wolpert and Macready 1995; Wolpert 1992). He later proved 
the variant of the theorem for the supervised machine learning (Wolp-
ert 1996). For the sake of our argument, we will sketch the proof of the 
simplifi ed version of the theorem for supervised learning based on the 
work of Cullen Schaffer (Schaffer 1994).

In the simplest, discrete settings of the machine learning of a Bool-
ean function, training data X consists of the set of binary vectors rep-
resenting a set of attributes that are true or false for each instance of 
the binary function—concept. Each vector is labelled as a positive or 
negative example of a concept we want to learn. The machine-learning 
algorithm L tries to learn a target binary function y; a true concept 
from this set of examples. Training dataset is always fi nite with some 
length n, and the relative frequency of data feed to L is defi ned by prob-
ability distribution D. In a context more familiar to the philosophers, 
this problem of machine learning can be seen as a guessing a true form 
of a large n-ary truth function from the partial truth-table, where most 
of the rows are not visible.

The key performance indicator of a machine learner is a generalisa-
tion performance, with the accuracy of the learner found within the data 
outside the training dataset. Modern machine-learning algorithms can 
easily “memorise” data from the training dataset, and perform poorly 
on the “unseen” data, leading to the problem known as overfi tting. So, 

1 We suppose that the new riddle is a different issue from the classical problem of 
induction, what is the received position with a few notable exceptions like (Magnus 
2006).
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the success of the learner is measured by how well it will generalise, 
and how well it performs on the novel data. In the simple setting of bi-
nary concept learning, the baseline of the generalisation accuracy of a 
learner, GP(L) is the random guess, with the accuracy of the novel data 
being 0.5. This is the performance we will expect on average if we use 
the toss of a coin to decide, for an unseen example, whether it belongs 
to our target concept or not. Clearly, we want any learner to perform 
better than this.

The NFL theorem claims that, for any learner L, given any distribu-
tion D and any n of X

  
 

where Y is a set of all target functions, all possible concepts that can 
be learned.

So, the theorem states that, on average, the generalisation perfor-
mance of any learner is no better than random guessing. All learning 
methods, from the simple decision trees to the state-of-the-art deep 
neural networks, will perform equally when all possible concepts are 
considered.

This result, unanticipated at least on the fi rst sights, does bear some 
resemblance to the discrepancy between the results of the argument 
and our expectations in the case of the Hume’s argument. However, it 
does not claim that we cannot learn anything from the training data 
or experience, but that we can learn everything, which is, arguably, 
the point of Goodman’s argument. The resemblance to the NRI will 
be more evident from the sketch of the proof of the NFL theorem. The 
basic idea is very simple: for any concept that the learner gets right, 
there is a concept that it gets wrong or, in Goodman’s lingo, for every 
“green” concept there is a “grue” concept. The “grue” concept is con-
structed similar to the NRI argument, in that it agrees on all observed 
data—data in the training dataset—with the “green” concept, and it is 
bent on all non-observed data.

More formally, for every concept C that L learns to classify well—
say it classifi es m novel examples accurately—there is a concept C' that 
L learns where all m examples will be misclassifi ed. C' is constructed 
as follows:

 

Visually, this simple construction of the concept C' corresponds to the 
Wittgenstein-Goodman “bent predicate” (Blackburm 1984), where X 
represents observed data (training dataset) and X’ unobserved data.
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From the perspective of the main measure of the success of the learn-
ing—generalisation accuracy, for every accuracy improvement a over 
the baseline for a concept C, there is a concept C' that will offset the 
improvement of the accuracy by –a. Consequently, the improvement 
in accuracy for any learner over all possible concepts is zero. It is pos-
sible to generalise this result to the more general learning settings, 
and many extensions of the theorem are proven (Joyce and Herrmann 
2018; Igel and Toussaint 2005).

1.2 Is the No-free-lunch Theorem the New Riddle of Induction?
Although NFL bears a strong resemblance to NRI, it seems worthy to 
analyse differences and similarities between these two results. Let’s 
start with the similarities. Both arguments are about inductive infer-
ence, about inferring from the known to unknown, and from the ob-
served to the unobserved data. Both arguments imply that there are 
too many inductive inferences that can be inferred. Furthermore, both 
arguments seem to draw empirically inadequate conclusions, contrary 
to scientifi c practice and common sense expectation. Nobody is expect-
ed to conclude that all emeralds are grue, and neither that random 
guess is an inductive strategy as good as any other.

The key resemblance is in the construction of the arguments, the 
split of the evidence and the bend in the unobserved data. In most of 
the NRI arguments, we split the evidence into observed and unob-
served (sometimes to some point in the future). Equally, in the NFL, 
data are split into observed, training dataset and the unobserved data 
to which the learning algorithm should generalise. In both arguments, 
the other counter-concept, grue or C', is constructed in the same man-
ner. It agrees on the observed data and bends on the unobserved data. 

Regarding the differences, fi rstly, there is a difference in the argu-
ment contexts. NRI was made in the philosophical, theoretical context 
of the logic of confi rmation and pragmatic vindication of induction, 
while the NFL was made in the technological context of artifi cial intel-
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ligence and computing. The aim of the arguments also differs, at least 
at fi rst glance. The intention of NRI, at least in Goodman’s initial form 
(Goodman 1946; Goodman 1983), was to recognise one of the problems 
in the logic of confi rmation—the demarcation between projectable and 
non-projectable predicates. On the other hand, the objective of the NFL 
was to demonstrate that there is no single best algorithm, initially for 
the optimisation and search, and later for supervised learning.

The biggest difference seems to be in the scope of quantifi cation. 
The no-free-lunch theorem quantifi es over all learners and all concepts, 
while Goodman’s argument seems to be about constructing one par-
ticular example. However, NRI can be reformulated to have a similar 
quantifi cational structure as the NFL.

2. The New Riddle of Induction 
as the No-free-lunch Theorem
Goodman’s argument, at least in one of its interpretations, can be re-
phrased in the NFL fashion as follows. Let’s defi ne P, the degree of 
projectability, as the generalisation accuracy in the settings of learn-
ing Boolean function. Let’s defi ne L to be a language, understood in-
formally as a frame of reference or level of abstraction (Floridi 2008). 
It is also possible to defi ne language using a more formal framework 
like a web ontology (McGuinness 2004) or the formal concept analysis 
(Ganter 2012). Finally, let’s defi ne I as an inductive strategy or, as in 
Goodman’s original argument the logic of confi rmation. Then, we can 
state the new riddle as:

Claiming that, for any inductive strategy, the degree of projectability 
over all possible languages is 0.5, what is zero improvement over a 
random guess. The formal condition, by the NFL condition, is that the 
languages are unrestricted or that they are closed under permutation 
(Schumacher 2001). The proof of such stated NRI would be the same as 
the proof for NFL—for every concept C with a degree of projectability 
p, there is a concept C' with the degree of –p, and for every “green” 
concept there is a “grue” concept.

3. Discussion and Future Work
The takeaway of this formalisation would be one of the lessons that 
Goodman has taught us—the importance of the language for the in-
duction, or the impossibility of empirical investigation without some 
predefi ned language that we bring to the process. It is interesting to 
compare this with the conclusion that the same researcher from the ma-
chine-learning community draws from the NFL—there is no learning 
without bias, there is no learning without knowledge (Domingos 2015).
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If we accept the above formalisation as one of the possible inter-
pretations of the NRI argument, it would be interesting to examine 
how the NFL can contribute to the NRI exploration. One of the ap-
proaches is to investigate how different NFL conditions apply to NRI. 
For example, if we restrict a set of the concepts to some subset of all 
those possible, it has to be closed under permutation (C.U.P.) for NRI 
to hold (Schumacher 2001), and the fraction of such subsets is tiny. 
Another potential route of exploration is to research the relevance of 
non-uniform distribution of target functions/concepts for arguing that 
NRI works (Igel and Toussaint 2005) and results that the NRI does not 
extend to the continuous domains (Auger 2007).

On the fl ip side, it would also be interesting to explore possible “so-
lutions” to the NFL theorem from the NRI perspective. Is it possible to 
use Goodman’s pragmatic solution in limiting the NFL by formalising 
his concept of entrenchment? It would also be interesting to research 
additional constraints on NFL languages using Davidson’s approach 
to NRI (Davidson 1966). Finally, one of the biggest social and ethical 
problems of machine learning, especially deep learning, is the problem 
of the interpretability of models. It would be interesting to research 
whether the philosophical explorations in the NFL could help in this 
direction.

References
Auger, A. a. 2007. “Continuous lunches are free!” Proceedings of the 9th an-

nual conference on Genetic and evolutionary computation. ACM.
Davidson, D. 1966. “Emeroses by other names.” The Journal of Philosophy 

63 (24): 778–780.
Domingos, P. 2012. “A few useful things to know about machine learning.” 

Communications of the ACM 55 (10): 78–87.
Domingos, P. 2015. The Master Algorithm: How the Quest for the Ultimate 

Learning Machine Will Remake Our World. Hachette UK.
Floridi, L. 2008. “The method of levels of abstraction.” Minds and machines 

18 (3): 303–329.
Ganter, B. a. 2012. Formal concept analysis: mathematical foundations. 

Springer Science.
Giraud-Carrier, C. a. 2005. “Toward a justifi cation of meta-learning: Is the 

no free lunch theorem a show-stopper.” Proceedings of the ICML-2005 
Workshop on Meta-learning. 

Goodman, N. 1946. “A Query on Confi rmation.” The Journal of Philosophy 
43 (14): 383–385.

Goodman, N. 1983. Fact, fi ction, and forecast. Cambridge: Harvard Uni-
versity Press.

Igel, C. and Toussaint, M. 2005. “A no-free-lunch theorem for non-uniform 
distributions of target functions.” Journal of Mathematical Modelling 
and Algorithms 3 (4): 313–322.

Joyce, T. and Herrmann, J. 2018. “A Review of No Free Lunch Theorems, 
and Their Implications for Metaheuristic Optimisation.” Studies in 
Computational Intelligence 744: 27–51.



 D. Lauc, How Gruesome are the No-free-lunch Theorems? 485

Magnus, P. D. 2006. “What’s new about the New Induction?” Synthese 148 
(2): 295–301.

McGuinness, D. L. 2004. “OWL web ontology language overview.” W3C rec-
ommendation 10 (10).

Schaffer, C. 1994. “A conservation law for generalization performance.” 
Machine Learning Proceedings 1994: 259–265.

Schumacher, C. M. 2001. “The No Free Lunch and Description Length.” In 
E. G.-M. L. Spector. Genetic and Evolutionary Computation Conference 
(GECCO 2001). San Franisco: 565–570.

Wolpert, D. 1992. “Stacked generalization.” Neural networks 5: 241–259.
Wolpert, D. 1996. “The Lack of A Priori Distinctions between Learning Al-

gorithms.” Neural Computation 1341–1390.
Wolpert, D. H. 2013. “Ubiquity symposium: Evolutionary computation and 

the processes of life: What the no free lunch theorems really mean: How 
to improve search algorithms.” Ubiquity, December 2013.

Wolpert, D. and Macready, W. 1995. “No Free Lunch Theorems for Search.” 
Technical Report SFI-TR-95-02-010 (Santa Fe Institute).




