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Recent progress in artifi cial intelligence has led some to speculate that 
machine intelligence may soon match or surpass human intelligence. 
We argue that this understanding of intelligence is fl awed. While physi-
cal machines are designed by humans to simulate human rule-following 
behaviour, the issue of whether human abilities can be emulated is not 
well-defi ned. We outline a series of obstacles that stand in the way of for-
malizing emulation, and show that even a simple, well-defi ned function 
cannot be decided in practice. In light of this, we suggest that the debate 
on intelligence should be shifted from emulation to simulation, address-
ing, for example, how useful machines can be at particular tasks, rather 
than deliberating over the nebulous concept of general intelligence.
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1. Introduction
Could a human-made machine ever surprise its creator, by taking ini-
tiatives of its own? According to Cristianini (2016), this is a question 
that has been asked for centuries, resulting in a variety of answers. Ar-
guably the fi rst computer programmer, Ada Lovelace knew where she 
stood on this issue: “The Analytical Engine has no pretensions what-
ever to originate anything”, she stated in 1843. “It can follow analysis; 
but it has no power of anticipating any analytical relations or truths”.

And yet, 173 years later, a computer program developed just over a 
mile from her house in London beat Lee Seedol, a 9-dan master of the 
game Go. None of AlphaGo’s programmers could ever hope to defeat 
Lee Seedol, let alone defeating their own program. According to Cris-
tianini (2016), the software has learned to do things its programmers 
can’t do and don’t understand. The machine learning techniques used 
by AlphaGo are becoming widespread in the fi eld of AI. Whereas in the 
past the idea of a “learning machine” might have sounded like a con-
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tradiction, it now seems reasonable to speak of physical machines that 
are fl exible, adaptive, or even curious (Cristianini 2016).

Given these recent breakthroughs, some commentators have sug-
gested that machine learning will continue to improve to the point 
where it surpasses human ability in many domains. At the Future 
of Humanity Institute’s conference on machine intelligence in 2011, 
Sandberg and Bostrom (2011) conducted an informal poll eliciting the 
views of participants. The median estimate for the emergence of hu-
man-level machine intelligence was the year 2050 (see also Müller and 
Bostrom 2016).

We argue in this paper that the idea of AI somehow surpassing hu-
manity constitutes a misrepresentation of the nature of intelligence. 
The goal of machine learning is not to recreate intelligence or even to 
defi ne it, but instead to show that many tasks that were previously as-
sumed to require human intervention can be successfully automated. 
The pertinent question is not whether machines are going to overthrow 
humanity in a technological singularity (e.g. Bostrom 2014), but how 
resistant different aspects of human behaviour are to simulation.

In order to make this case we highlight a series of obstacles that lie 
in the way of formally defi ning the concept of emulating human intel-
ligence. We then show that even simple, well-defi ned functions cannot 
be decided in practice. Returning to the question of whether people are 
smarter than machines we conclude that, rather than grappling with 
the concept of general intelligence, philosophers should instead focus 
on anticipating the utility that machines might provide on particular 
constrained tasks.

2. Problems with the question of emulation
Building on earlier work by Kurt Gödel, the theory of computation 
was independently discovered from different perspectives in 1936 by 
Alonzo Church and Alan Turing. Church’s version was based on the 
λ-calculus, while Turing’s was based on what is now known as the Tur-
ing Machine. In his 1936 article, Turing presents the idea of a Univer-
sal Turing Machine (UTM), which is capable of simulating any other 
Turing Machine. The key ingredients for this breakthrough are:
1) the idea of capturing general recursive functions (a.k.a. comput-

able functions) in the form of a simple model for symbol manipu-
lation (a.k.a. Turing Machines)

2) the philosophical position that general recursion captures all 
effective methods, a position now known as the Church-Turing 
thesis

With these two ingredients, all effective processes can be enumerated. 
This enumerability supports the concept of universal computation, as 
it allows a single “Universal Turing Machine” (UTM) to read in a de-
scription of any other effective method to be simulated, as represented 
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by the machine’s index in the ordering of Turing Machines. A UTM is 
thus capable of simulating any process that is effectively calculable.

This result seems to open the door to human-level AI: a single phys-
ical machine can be developed which can, when given the appropriate 
program, simulate every effective process conceivable. Could a UTM 
running a specially-designed program therefore emulate the ‘program’ 
running in the human brain? We identify several obstacles that lie in 
the way of formalizing and then deciding such a question.

2.1 We don’t know what it means 
to build a Turing machine in practice
The UTM is an abstract mathematical idea. Physical machines are en-
gineered to offer only fi nite precision, rather than the potentially un-
bounded precision and memory space required by Turing’s defi nition. 
Thus, physical machines merely simulate the behaviour of a genuine 
Turing machine. This issue goes beyond the lack of an infi nite tape, it 
concerns the very mechanics of the device: we simply can’t be sure that 
a physical machine will continue to compute properly without making 
mistakes at some point in the future due to unforeseen engineering 
limitations. In the words of Wittgenstein (RPP I 1096), Turing’s ‘ma-
chines’ are, actually, “humans who calculate”. Turing (1948/9) himself 
clarifi es that human behaviour sets the standard for his concept: “A 
man provided with paper, pencil and rubber, and subject to strict disci-
pline, is in effect a universal machine.”

Physical machines are engineered by humans to simulate human 
computing abilities with a certain level of fi delity. They are not intend-
ed to emulate the standard of computation benchmarked by humans. 
By ‘emulate’ we mean to match or exceed human capacity, as opposed 
to ‘simulate’, which involves a fi nite level of success at imitation:

The idea behind digital computers may be explained by saying that these 
machines are intended to carry out any operations which could be done by a 
human computer. (Turing 1950)

Also:
Electronic computers are intended to carry out any defi nite rule of thumb 
process which could have been done by a human operator working in a dis-
ciplined but unintelligent manner. (Turing 1950b)

The dual interpretation of the word ‘machine’, as in Turing machine 
(human abstraction) versus computing machine (physical device), can 
lead to confusion. The ‘machine’ in the term ‘Turing machine’ refers to 
the idea of strict rule following without imagination. It does not refer 
to a physical device. Humans compute in a way which is captured by 
the abstract idea of a Turing machine, whereas electronic devices are 
engineered to simulate that behaviour. Human-built machines rep-
resent only a fi nite amount of engineering calibration carried out by 
a relatively small set of humans. Whereas human consensus sets the 
standard for computation, electronic devices merely simulate that abil-
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ity to a fi nite degree of precision, one which is continually improved by 
developments in technology (see Maguire and Maguire 2018).

Because Turing machines are a mathematical ideal, it remains un-
clear how such a concept could be represented by a physical object in 
practice.

2.2 We can’t formalize what it means for a UTM to be universal
The cornerstone of computation is the concept of the stored program, 
the idea that no function is special, that every function can be repre-
sented as data inputted to a single UTM. However, this intuitive foun-
dation depends crucially on the Church-Turing thesis (see Copeland 
2002). The Church-Turing thesis asserts that a function on the natural 
numbers is computable by a human following an algorithm (ignoring 
resource limitations) if and only if it is computable by a Turing ma-
chine. In other words, it states that the idea of a Turing machine cap-
tures everything there is to the notion of a human following the step-
by-step instructions of an algorithm.

The physical form of the Church-Turing thesis in even more restric-
tive. It states that a Turing machine captures every act of algorithmic 
rule-following that a human can achieve even when exploiting the use of 
exotic physical processes, such as black holes or quantum systems (see 
Cuffaro and Fletcher 2018; Earman 1993; Kieu 2004). Thus, the physi-
cal Church-Turing Thesis could be false without humans necessarily 
being able to demonstrate a superior ability using only pen and paper.

The concept of universal computation (i.e. the idea that a UTM 
exhausts the set of effectively computable functions) depends on the 
Church-Turing thesis. If the Church-Turing thesis turns out to be 
false, then Turing machines would lose their privileged position: there 
would exist logical processes that could not be simulated by any given 
Turing machine, but which could be computed by a human using some 
other rule-following process. There might not be any automaton ca-
pable of computing all the new functions, in which case the concept of 
universality would be lost.

As soon as we accept that an automaton is capable of universal 
computation, or that it supports a Turing-complete language, we are 
relying on the Church-Turing thesis. Nevertheless, we have no proof 
that the Church-Turing thesis is true, and, according to Turing (1954), 
have no aspirations of ever discovering such a proof (cf. Black 2000; 
Dershowtiz and Gurevich 2008). By defi nition, the thesis seems to be 
outside the scope of proof, because it speaks about the set of effective 
methods, and the process of proof-checking is in that set. Although 
there are no known counter-examples, and different formalisms con-
verge towards the same result, the Church-Turing thesis is not the 
type of statement we aim to prove. It exists as an informal statement 
in natural language, not in a form that could be processed by a Turing 
machine. So, is the thesis ‘true’?
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Certainly, there has been no refi nement in the notion of effective 
method since 1938, when Kleene refi ned Turing and Church’s (1936) 
method by applying it to partial functions. In that sense, there is con-
vincing evidence that it is hard to identify a stronger notion of effec-
tive method than that provided by Church and Turing. And yet, it is 
not possible to guarantee that, at some point in the future, a new de-
velopment in the understanding of human rule-following abilities will 
reveal a limitation in the Turing machine’s functionality that vitiates 
its putative property of exhausting the set of effective methods. We 
simply don’t know. Although the concept of universal computation is 
intuitively convincing, its existence is not something that has been for-
mally proved.

Although Church and Gödel were happy to accept the Church-
Turing account of effective method as a defi nition (according to Gödel 
“... the correct defi nition of mechanical computability was established 
beyond any doubt by Turing”), Emil Post, who in 1936 delivered an 
alternative model of computation, was vociferous in his opposition. Ac-
cording to him, “to mask this identifi cation under a defi nition hides the 
fact that a fundamental discovery in the limitations of mathematiciz-
ing power of Homo Sapiens has been made and blinds us to the need of 
its continual verifi cation”. Post hoped to publish a series of “wider and 
wider formulations ... The success of the program would for us, change 
this hypothesis not so much to a defi nition or to an axiom but to a natu-
ral law” (Post 1936).

Turing adopted the middle ground, accepting computation’s strong 
intuitive foundation, while at the same time acknowledging that the 
thesis would always remain unproved. In 1954 he remarked: “The 
statement is...one which one does not attempt to prove. Propaganda is 
more appropriate to it than proof, for its status is something between a 
theorem and a defi nition.”

In sum, the Church-Turing thesis remains an informal statement, 
not a mathematical one. It cannot be fully formalized, and consequent-
ly it cannot be processed by a computing machine. It is a sophisticated 
thesis expressed in natural language, on which the universality of a 
UTM depends, yet it lies beyond the scope of a UTM.

This presents another obstacle to the emulation of human intel-
ligence. The recognition of emulation depends on the recognition of 
universality, which itself hinges on the truth of a sophisticated thesis 
in natural language, which cannot be formally addressed by a Turing 
machine.

2.3 We can’t formally address the potential existence of human 
abilities beyond computation
Even if we could somehow formally confi rm the Church-Turing thesis, 
there might still be some human abilities which remain beyond rule-
based computation. In other words, a UTM might have some limita-
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tions that humans are able to ‘appreciate’ in some nebulous sense that 
is itself beyond automation. Any claim that machines can emulate hu-
man abilities has to deal with this possibility.

For example, in his 1936 paper, Turing identifi ed the existence of a 
well-defi ned problem which is beyond computation (i.e. an uncomput-
able problem). This allowed him to resolve in the negative the Entsche-
idungsproblem, the question of whether there exists an algorithm to 
decide whether a given statement in fi rst order-logic is provable or not. 
Turing showed by contradiction that no such algorithm is possible. He 
imagined taking an automaton which decides if an algorithm will halt 
or not, and then feeding it a description of itself (now made possible by 
the enumerability of effective methods). This creative leap allowed him 
to precisely defi ne an object, known as the halting language, which can-
not be produced by any effective method whatsoever. 

The issue here is that no Turing machine can ever ‘know’ that the 
halting language exists. To do that it would have to be able to appreci-
ate that there is something it cannot do, without trying to do it. Thus, it 
seems that humans hold a privileged perspective over Turing machines, 
insofar as we ‘know’ that the halting language exists. For example, Lu-
cas (1961) argued that humans can look and see that a given machine’s 
Gödel sentence is true, meaning they can always do something that the 
machine cannot. This argument has been further developed by Penrose 
(1994) to show by contradiction that human abilities could never be 
formalized to the point at which a Gödel sentence becomes discernible. 

Similarly, even though the halting language cannot be constructed 
or represented in nature, it seems to be defi ned for the human reader 
in a fi nite number of symbols by Turing’s 1936 article. If humans can 
indeed appreciate such a defi nition, then they are capable of recogniz-
ing the idea of an object that no computer can ever represent. 

In his 1938 PhD thesis, carried out under the supervision of Church, 
Turing makes clear his view that the human mind has an intuitive 
power for performing uncomputable steps beyond the scope of a Turing 
machine:

Mathematical reasoning may be regarded rather schematically as the ex-
ercise of a combination of two faculties, which we may call intuition and 
ingenuity. The activity of the intuition consists in making spontaneous 
judgments which are not the result of conscious trains of reasoning...In con-
sequence of the impossibility of fi nding a formal logic which wholly elimi-
nates the necessity of using intuition, we naturally turn to non-constructive 
systems of logic with which not all the steps in a proof are mechanical, some 
being intuitive.

After the Second World War, Turing’s view on the role of intuition in 
reasoning appears unchanged. In a 1948 report to the National Physi-
cal Laboratory, Turing again clarifi es that mathematicians’ ability to 
decide the truth of certain theorems appears to transcend the methods 
available to any Turing machine:
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Recently the theorem of Gödel and related results...have shown that if one 
tries to use machines for such purposes as determining the truth or falsity 
of mathematical theorems and one is not willing to tolerate an occasional 
wrong result, then any given machine will in some cases be unable to give 
an answer at all. On the other hand the human intelligence seems to be able 
to fi nd methods of ever-increasing power for dealing with such problems, 
‘transcending’ the methods available to machines. 

In his last article published before his death in 1954, Turing again em-
phasises the role of intuition beyond effective method. He argues that 
Gödel’s theorem shows that ‘common sense’ is needed in interpreting 
axioms, something a Turing machine can never demonstrate:

The results which have been described in this article are mainly of a nega-
tive character, setting certain bounds to what we can hope to achieve purely 
by reasoning. These and some other results of mathematical logic may be 
regarded as going some way towards a demonstration, within mathematics 
itself, of the inadequacy of ‘reason’ unsupported by common sense.

Human intuition is an ability that resists formalization or description. 
It is not possible to verify the emulation of human abilities if we cannot 
even represent what those abilities are.

2.4 Even simple, well-defi ned functions are undecidable in practice
In sum, merely formalizing the question of whether physical machines 
can emulate human intelligence is fraught with great diffi culty. And 
yet, even if it could somehow be formalized, the question would still not 
be a useful one, because it couldn’t be answered in practice. 

Let’s assume that it’s somehow possible to build a true physical 
Turing machine. Let’s assume that we somehow ‘know’ for sure that 
Turing machines are capable of universal computation, and that all 
aspects of human behaviour can be described in terms of that compu-
tation. Even with all of these assumptions, it can be shown, using an 
argument from theoretical computer science, that the question of emu-
lating a given program remains undecidable, since, in practice, even 
the simplest functions are undecidable from their output.

Below, we provide a modifi cation of the use theorem (see Odifreddi 
1992) to show that no fi nite set of interactions is suffi cient for deciding 
what process, whether computable or uncomputable, is behind the be-
haviour of a black-box system: properties of functions cannot be decided 
in practice based on their output. No matter how many questions are 
asked, it is not possible to know for sure what is behind the output of a 
black-box system. The argument is related to that of Gold (1967), who 
showed that any formal language that has hierarchical structure ca-
pable of infi nite recursion is unlearnable from positive evidence alone. 
It is also related to Rice’s theorem (1953), which shows that all non-
trivial semantic properties of programs are undecidable (in the case of 
Rice’s theorem access is given to the program code itself, rather than 
its output).
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More formally, let O be an observer, A a set of strings over some 
fi nite alphabet Σ, and f: Σ*→{0,1}, our black-box, be a Boolean function.

O can adaptively ask fi nitely many queries f(x)=? (O has access to 
A), after which O decides whether f computes the set A, i.e. f(x)=A(x) 
for every x.

The following standard argument shows every observer is wrong on 
some function (i.e. the past behaviour of the black-box cannot be used 
to decide its future behaviour).

For any observer O, and any set A, there is a function f: Σ*→{0,1} 
such that O is wrong on f.

Proof.
Let O be as above, A be a set. If O rejects all functions (i.e. thinks all 
functions do not compute A) then O is wrong on f, where f(x)=A(x) for 
every x. So let g be accepted by O. O queries g on fi nitely many strings 
x1,x2,…, xn. On all the strings x1,x2,…, xn, g is equal to A, otherwise O 
is wrong about g. Choose y different from x1,x2,…, xn, and construct 
f: Σ*→{0,1}, by letting g(x)=f(x) for all x≠y, and f(y)=1-A(y). f does not 
compute A, because f is different from A on input y. Because f equals 
g on inputs x1,x2,…, xn (the ones queried by O), O will make the same 
decision about f as about g, i.e. O decides that f can compute A. By con-
struction of f, O is wrong.

In sum, this result shows that not only is a fi nite interaction inca-
pable of deciding intelligence, it is not even capable of deciding any 
function whatsoever. Even an oracle with access to the halting lan-
guage could not produce behaviour which reliably separates it from a 
simple Turing machine. Past behaviour is never suffi cient for deciding 
whether a system is doing something smart. A computable process can 
mimic an uncomputable one up to any fi nite duration of interaction.

The question of emulating human intelligence thus holds no utility 
in practice. No fi nite set of interactions can always be relied on to ex-
pose the lack of intelligence of any given machine. If a black-box system 
has not yet made a mistake, there is no way to tell whether or not it 
will make any mistakes in the future. Thus, the propensity to make 
mistakes at some stage does not matter.

According to Turing (1948): “the condition that the machine must 
not make mistakes ... is not a requirement for intelligence”. At the 
infi nite limit, mistakes are inevitable, but in practice those mistakes 
can be pushed back as far as one wants. Turing (1947), in his earliest 
surviving remarks concerning AI, points out that this would allow ma-
chines to play very good chess:

This...raises the question ‘Can a machine play chess?’ It could fairly easily 
be made to play a rather bad game. It would be bad because chess requires 
intelligence. We stated... that the machine should be treated as entirely 
without intelligence. There are indications however that it is possible to 
make the machine display intelligence at the risk of its making occasional 
serious mistakes. By following up this aspect the machine could probably be 
made to play very good chess.
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Rather than dismissing the idea that humans are ultimately smarter 
than machines, Turing (1950) is instead highlighting the lack of practi-
cal signifi cance of such an idea: in the physical world there will always 
be some machine which is up to the job of simulating intelligence to a 
required fi nite length before making any mistakes:

There would be no question of triumphing simultaneously over all ma-
chines. In short, then, there might be men cleverer than any given machine, 
but then again there might be other machines cleverer again, and so on.

It should be noted that reducing human behaviour to the computa-
tion of a function is already a very strong modelling assumption, even 
before the issue of emulation is tackled. The observable behaviour of 
some physical systems, such as chaotic deterministic systems, cannot 
be described by the computation of any function (see Longo and Paul 
2011). Applying a functional description to biological individuals would 
no doubt be close to impossible.

In practice then, emulation is a thoroughly useless idea, or in Tur-
ing’s (1950) words, an idea “too meaningless to deserve discussion”. At-
tributing intelligence to any being or object with certainty is an unde-
cidable issue at best. Whatever intelligence is, it’s not something that 
depends on confi rmation. So what is it? In the remainder of the paper 
we examine alternatives to emulation.

3. Emulation is not a useful concept, but simulation is
Thus far we have highlighted why the question of a machine emulat-
ing human abilities has no utility. But if the emulation of intelligence 
holds no utility, does this imply that intelligence is itself a useless idea? 
What, if anything, does the concept of intelligence imply in practice? 
One possible conclusion is that intelligence has no discernible real-
world effects whatsoever, having nothing to do with behaviour.

This is the attitude adopted by Professor Jefferson in his 1949 List-
er Oration (which Turing was responding to in his 1950 article): “Not 
until a machine can write a sonnet or compose a concerto because of 
thoughts and emotions felt, and not by the chance fall of symbols, could 
we agree that machine equals brain—that is, not only write it but know 
that it had written it.”

Here, Jefferson is arguing that behaviour alone is never suffi cient 
for providing evidence of intelligence. Instead, we must ‘know’ what 
words mean and ‘feel’ emotions. Because such properties can never be 
represented symbolically, there is no possibility of any system, human 
or otherwise, evidencing its intelligence in practice. Intelligence and 
behaviour have no relationship at all.

But this doesn’t seem right. Intuitively, what we mean by ‘intel-
ligence’ is something useful. Our human abilities let us achieve things 
in the real world that simple rule-following systems could not. It seems 
as though we can quickly and reliably identify intelligence through the 
communication of symbols. For example, this article is only a few pages 
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long, yet (we hope) it strongly suggests an intelligent origin. It seems 
feasible that a fi nite signal beamed from a distant solar system could 
convince us that it harbours intelligent life. We could never be abso-
lutely 100% sure, but it seems plausible that there exist signals that 
could lead us to be very, very confi dent.

Indeed, all the communication that has ever taken place between 
human beings can be summarized as a fi nite string of symbols. Human 
communication, of course, relies not just words, but also gesture, voice 
tone, facial expression, body language and context. Assuming a con-
tinuous high fi delity recording of what an individual sees and hears, 
all of this information could be translated into a fi nite set of 1s and 0s. 
If intelligence could not be evidenced in practice through fi nite interac-
tions, it would preclude humans from identifying each other as intel-
ligent, reducing us to solipsists.

It seems that in order for the concept of intelligence to be a mean-
ingful and useful one, there must be some practical means of identify-
ing and engaging with intelligent systems in the real world. Having re-
alised this, Turing (1950) remarks “I am sure that Professor Jefferson 
does not wish to adopt the extreme and solipsist point of view. Probably 
he would be quite willing to accept the imitation game as a test.”

Intelligence does something in practice. Although it cannot be used 
to decide the intelligent origin of a signal (i.e. choose yes or no with 
absolute certainty), it seems as though it can be used to detect the 
footprint of intelligence with high confi dence. According to Aaronson 
(2006), “people regularly do decide that other people have minds after 
interacting with them for just a few minutes...there must be a rela-
tively small integer n such that by exchanging at most n bits, you can 
be reasonably sure that someone has a mind” (see also Harnad 1992).

With this in mind, Turing (1950) makes clear that the interesting 
question is not whether machines can emulate humans (an undecid-
able proposition at very best), but how diffi cult it will be to build useful 
machines that simulate human behaviour closely, for extended periods 
of time. Specifi cally, the questions about intelligence that can be mean-
ingfully asked and answered are those concerning how resistant differ-
ent human abilities are to simulation.

Turing switches the focus from emulation to the simulation of in-
telligent behaviour, describing the idea of an imitation game, a ‘test’ 
which sets human behaviour as the standard to be simulated for a 
fi nite duration. The goal is for machines to confound the heuristics 
that people typically rely on for detecting signals of intelligent origin. 
Hodges (2009) succinctly expresses this idea: “operations which are in 
fact the workings of predictable Turing machines could nevertheless 
appear to the human observer as having the characteristics of genuine 
intelligence and creativity”.
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To be clear, Turing’s test is not a test for deciding intelligence. Tur-
ing (1950) never once refers to machines ‘passing’ his test; the test is 
not intended to provide evidence of anything beyond the ability of a 
machine to do well at that test for a fi nite period of time, hence the 
notion of ‘passing’ doesn’t hold any particular signifi cance. The imita-
tion game merely provides a vehicle for quantifying how resistant hu-
man behaviour is to simulation (albeit, an unreliable one). If a machine 
passes one test, we do not deduce anything further about the abilities 
of that machine, because there is no guarantee whatsoever that it will 
pass another test. Instead, we conclude that the test is not as hard as 
we thought it was, that it is perhaps no longer a strong test for intel-
ligence. The test is not intended to address the question of whether ma-
chines can emulate intelligence (i.e. that they could simulate human 
behaviour perfectly for any length of time). Instead, Turing’s (1950) 
contribution is to take a question “too meaningless to deserve discus-
sion” (i.e. “Can machines think?” / can machines emulate human abili-
ties?) and to transform it into a meaningful question that can be ad-
dressed in practice (how resistant are human abilities to simulation?). 

Turing seeks merely to establish the possibility of “satisfactory per-
formance” at the imitation game over a fi nite period (i.e. fi nite simula-
tion); not perfect performance, nor the idea that satisfactory perfor-
mance is a perfect predictor of subsequent perfect performance. He 
never goes beyond claims for the fi nite simulation of intelligence: “My 
contention is that machines can be constructed which will simulate the 
behaviour of the human mind very closely” (Turing 1951).

4. Designing a good test
Some have interpreted Turing (1950) as suggesting that infi nite test-
ing is required to establish intelligence, spread over an infi nite length 
of time (e.g. Harnad 1992). Again, Turing’s focus is not on establishing 
that machines can emulate human thinking, a concept which he de-
scribes as “meaningless”. Instead, he is speculating on the diffi culty of 
identifying reliable tests for discriminating human intelligence. Even 
if humans have intuitive abilities beyond machines, it may be diffi cult 
to demonstrate such abilities in practice. How hard is it to identify a 
reliable test for intelligence?

Let’s consider the question of “what is a good test”? A test is of fi nite 
length. Applying it to an object yields results that enable inferences 
to be drawn about that object. Somehow, the results hold signifi cance 
for other aspects of the object, beyond those which have been directly 
tested. One could say that the test succeeds in succinctly ‘characteris-
ing’ the object through a fi nite set of investigative results.

For example, students are asked to sit tests to reveal how much 
they know about a particular subject. Because of the short duration, it 
is not possible to ask them every question that could possibly be asked. 
Instead, questions are chosen cleverly so that responses can be relied 
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on to draw inferences about students’ ability to answer all the other po-
tential questions which haven’t been asked. A good test allows the tes-
ter to make inferences about future behaviour based on past behaviour.

Of course, a particular student might get lucky on a test. They 
might fortuitously (or by cheating) have learned off the answers to the 
exact questions which came up, but no others. Thus, as previously ar-
gued, a test can never decide whether a student fully understands a 
subject. What a cleverly crafted test can do is offer a very high level 
of confi dence that the student would have answered other questions 
correctly. Past behaviour can allow us to predict future behaviour with 
high confi dence.

What are the properties of a good test that would lead us to have 
such confi dence? In short, a good test is one for which there is no easy 
strategy for passing it, other than full mastery of the subject. For a 
start, there should be no way for students to get a copy of the test in ad-
vance, or predict what will be on it so that they can learn off the relevant 
responses without understanding the subject deeply. In addition, the 
test should be well diversifi ed, bringing together material from many 
different areas of the subject. For instance, the answers should draw 
on different aspects of understanding, and not betray a simple pattern 
which would allow them to be all derived using the same technique. Fi-
nally, successive answers should be integrated with each other, rather 
than addressing separate chunks of knowledge which could be learned 
off independently. When one answer builds on the next, the only way 
to do well is to understand everything.

These criteria for test reliability can be summarized as follows: the 
content of the test should be random relative to the set of questions 
that could potentially be asked, and also internally integrated, so that 
questions cannot be answered independently of each other. If we follow 
these criteria, it seems the diffi culty of passing the test can increase 
exponentially relative to its length.

If test questions were leaked in advance, then machines would only 
need to hardcode the appropriate responses to ensure success. How can 
we ensure that test questions are as unpredictable as possible? Tur-
ing’s (1950) idea is to hand this responsibility over to human judges. 
Given that they can rely directly on their own intelligence (whatever 
that is), questions derived by humans on the fl y have the potential to 
be hard to answer. In addition, human judges have the greatest ability 
to integrate subsequent questions into the preceding conversation, so 
as to ensure there is no trivial algorithm for computing the relationship 
from input to output. 

Of course, this only applies in the best case scenario, when human 
judges choose the most challenging questions conceivable. But how do 
we know which questions are reliable indicators of intelligence?

Although intelligence might give us the ability to pass convincing 
tests easily, it does not necessarily give us the ability to easily fi nd, gen-
erate or recognize good tests. Given a particular test, how can we know 
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that there is no simple program that quickly computes the answer? 
For example, the Winograd schema challenge (e.g. Levesque 2014) cur-
rently poses great diffi culty for machines, yet we have no guarantees 
that developments in AI over the next few years will render such prob-
lems obsolete.

Whenever researchers put forward what intuitively appears to be a 
challenging test for AI, such as playing chess, nobody knows for sure 
how hard it really is. Problems that are assumed to require deep in-
sight can end up having relatively simple mechanical solutions. For ex-
ample, Hofstadter (1980) erroneously predicted that no dedicated pro-
gram would ever defeat a chess champion, because playing the game 
well constituted a test for general intelligence:

“Do you want to play chess?” “No, I’m bored with chess. Let’s talk about po-
etry”. That may be the kind of dialogue you could have with a program that 
could beat everyone. (Hofstadter 1980)

Turing’s concept of a test is not intended as a once-off decider of emula-
tion. Instead, it represents the idea of a never-ending battle to estab-
lish the superiority of human intelligence over rule-following. Turing 
believed that it would be a battle in perpetual retreat, with supposedly 
reliable tests continuing to fail:

It is customary, in a talk or article on this subject, to offer a grain of com-
fort, in the form of a statement that some particularly human characteristic 
could never be imitated by a machine...I cannot offer any such comfort, for I 
believe that no such bounds can be set. (Turing 1951)

Inevitably, if a Turing-style test is run using laypeople, the programs 
that get furthest will be those that exploit the weaknesses of human 
psychology. People who aren’t trained in AI can be more easily fooled. 
Thus, rather than being inferred from the length of questioning, resis-
tance to simulation could be quantifi ed by unrestricted open competi-
tion, with signifi cant prize money awarded to expert machine-exposing 
teams. Turing seemed to assume that the tester would be at the level 
of an informed graduate of Oxford or Cambridge (McDermott 2015). 
Either way, Turing’s opinion was that coming up with new tests that 
reliably separate people from machines was going to get harder quite 
quickly.

Once a test is found to be passed by a machine, then the test is 
busted. It can no longer be relied on to provide evidence of intelligence. 
As soon as a machine succeeds in defeating a test, researchers go back 
to the drawing board to develop a harder test. The process never ends. 
In the same way that it is not possible to decide intelligence, it is not 
possible to decide the reliability of a test for intelligence. Tests must 
themselves be tested, in an unending cycle of doubt.

Even though the question of emulating human abilities is useless, 
the practical issue of evidencing an ability gap between machines and 
humans is becoming more and more challenging. This explains why 
Turing (1950) was upbeat on the imminent prospect of artifi cial intel-
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ligence. The behaviours that were intuitively assumed to be reliable 
tests in 1950, such as playing good chess, or engaging in convincing 
conversation, had never been exposed to machine-scrutiny before, mak-
ing Turing quite confi dent that they would not hold up for long. This 
confi dence is evident in his prediction that by the end of the 20th cen-
tury people would “be able to speak of machines thinking without ex-
pecting to be contradicted”.

5. Are people smarter than machines?
Who is better at the game of Go, humans or physical machines? Al-
though there will probably never again be an individual human that 
can defeat or improve on the top Go-playing program, we expect that 
humanity as a whole will continue to overthrow every reigning pro-
gram by constantly designing better and better ones.

For instance, humans have already created an improved computer 
program that is capable of beating AlphaGo, called AlphaGo Zero. De-
veloped within 2 years of its predecessor, it beat the original version 
of the program 100 games to 0 (see Silver et al. 2017). If humanity as 
a whole retains the ability to improve on the world’s top Go-playing 
software, then humanity must know something about the game of Go 
that the software does not. While the individual AI developers who to-
gether created AlphaGo Zero are individually beaten by their collective 
creation, they can, when working together, fi nd ways to improve on the 
state of the art. Technology and AI offer a way for humans to combine 
and leverage their collective engineering prowess into a single system 
whose efforts can be focused on a specifi c problem which is beyond the 
understanding of any single person.

The main advantage that a program has over an individual human 
is being able to concentrate the historical wisdom provided by many 
different people over a lengthy period of time, and to apply it quickly. 
Machines can be faster, cheaper, more reliable, more durable, and can 
hold greater memory. However, this ‘brute force’ does not equate to 
emulation. Brute force can surpass human ability over short runs, but 
in the longer run humans have the ability to innovate superior algo-
rithms for performing the same task even more quickly.

For example, just because current chess programs can beat any 
grandmaster in the world at chess does not mean that computers are 
better at chess than humanity as a whole. We can say that they simu-
late the intelligent playing of chess well, under certain conditions, for 
a certain period of time. But we still cannot show that a program emu-
lates human ability at chess.

The output of any human-built machine simply refl ects the stored 
historic work of humans, which always involves a fi nite amount of ef-
fort drawn from a potentially unbounded set. The possibility always 
remains for humans to carry out even more work, and build an even 
better machine, which more closely simulates human intelligence.
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While highly engineered machines can ‘simulate’ human ability to 
avoid mistakes for a long time, such performance is never suffi cient to 
rule out the possibility of some bug that was too rare to be anticipated. 
For this reason, at no point in the future will humans recognize the 
behaviour of a human-built machine as the ultimate authority for what 
counts as logically correct. Human-built machines will always have 
human errors embedded in their makeup that their original builders 
missed, but that the hardware and software engineers of tomorrow can 
fi x. Consequently, humanity does not learn about logic by observing the 
activity of human-built machines.

Granted, an individual human can make a mistake relative to the 
standard held by a larger group of humans, or temporarily to a ma-
chine, but the whole of humanity cannot make a mistake relative to a 
machine. While physical machines may provide useful information to 
one person in a particular context, they never provide information to 
humanity as a whole: human-built machines merely represent a store 
of humanity’s logical and engineering effort, which can then be reused 
and applied to novel problems.

From this perspective, we can see that the idea of physical machines 
surpassing humanity is nothing more than a clever trick. Physical ma-
chines can certainly impress individual humans, but only by recycling 
and cleverly blending the stored historical wisdom of larger groups of 
humans.

And yet ... any claims that humanity might make to ultimate supe-
riority over machines refl ect nothing more than useless intuitions. As 
noted by Turing (1950), assertions of the mind’s superiority are “with-
out any sort of proof”. Intuitively we seem to ‘know’ that people are 
smarter than machines, but in practice that means nothing.

6. Identifying useful questions for AI
Interpretations of Turing’s (1950) work have focused strongly on the 
idea of a specifi c challenge that, once passed, has signifi cant implica-
tions. For example, Warwick and Shah (2015) claim that the Eugene 
Goostman chatbot machine “became the fi rst to pass the Turing Test, 
as set out by Alan Turing, on unrestricted conversation”. Turing’s ar-
ticle has often been interpreted either as being supportive of function-
alism (e.g. Searle 1980), or of advocating a trite, deeply fl awed test for 
evaluating the intelligence of artifi cial systems through the process of 
imitation (e.g. French 2012). Shieber (1994), for instance, interprets 
Turing (1950) as making the claim that “any agent that can be mis-
taken by virtue of its conservational behaviour [for] a human must be 
intelligent” (see Copeland 2003, for further examples). Hayes and Ford 
(1995) go so far as to interpret Turing as proposing “a test of making a 
mechanical transvestite” and state that “Turing’s vision from 1950 is 
now actively harmful to our fi eld”.
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Although the specifi c test described by Turing is no doubt dated, we 
have argued that his article is not focused on emulation. Because hu-
mans cannot even express what it would mean for a physical machine 
to emulate human abilities, the question is useless. Instead, Turing 
was speculating about what physical machines of the future would be 
able to accomplish in practice. He hinted at, not a specifi c challenge, 
but a general thought experiment, involving the hypothetical simula-
tion of human intelligence by imaginable computers. Although it cur-
rently seems as though we can quickly and reliably identify human 
intelligence through the communication of symbols, the same methods 
of discrimination we rely on now might not hold up in the future. Reli-
able tests may prove harder and harder to fi nd. For instance, realistic 
sounding chatbots may end up phoning people and holding functional 
conversations without being identifi ed as automata. Future software 
may be able to generate images, audio, and videos of humans that look 
and sound like real humans but are actually fake, indistinguishable 
from “real” digital representations of people. Even though it seems that 
humans possess some intuition beyond formal logic, it might still be-
come quite diffi cult to separate humans from machines in practice.

Can we design a test for intelligence that can be run in practice, 
though not passed by a machine? Intuitively it seems like we should 
be able to. But the missing ingredient here is proof. While it seems like 
we can set and pass tests which reliably draw a line between us and 
machines, we cannot prove it. We cannot say anything defi nitive at all 
about the relationship between computable functions and intelligence 
beyond the realm of the computable. We cannot bridge that gap in any 
meaningful way. There’s nothing useful that can be said about intelli-
gence beyond seeking to simulate it bit by bit in practice, by continually 
improving our machines and seeing what they are capable of.

This basic insight allows us to separate questions about machine 
intelligence that are useful from those that are not.
How resistant is language translation to simulation?—We can ask this 
question. Specifi cally, we can use the imitation game to quantify the 
diffi culty of developing a machine that simulates human-level lan-
guage translation to some level of accuracy. The potential availability 
of an answer renders the question meaningful.
Is human-level language translation beyond machines?—This question 
has no utility because it is not well-defi ned.
Can machines do language translation better than humans?—This 
question has no utility because it is not well-defi ned. Humans as a 
group provide the standard for recognizing what is linguistically cor-
rect. Doing machine translation well is about convincing other humans 
that the job is being well done; human opinion as a whole sets the 
standard.
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Can machines do language translation better than the average bilin-
gual human?—We can ask this question. As soon as restrictions are 
placed on human performance, machine simulation might be suffi cient 
to surpass the ability of any given individual human at any given time. 
The question of who is doing a better job continues to be decided by 
humans as a whole, but assuming the judging process involves a larger 
group of humans, or a more skilled human, then it still makes sense to 
say that a machine can outperform an average human.
How soon will truck drivers by replaced by machines?—We can ask 
this question. Machines do not need to emulate truck drivers to replace 
them. Machines might well be better at driving than the average truck 
driver. They might also be cheaper. Nevertheless, humanity continues 
to defi ne what counts as ideal truck driving. At the extreme limits, it 
becomes diffi cult to formalize how exactly a vehicle should drive, and 
the issue reverts back to human opinion. For example, the issue of who 
should AI kill in a driverless car crash resists logical formalization be-
cause it interacts with human life. According to Goodall (2014), autono-
mous vehicles will certainly crash, some crashes will certainly involve 
a moral component, and there is “no obvious way to encode complex 
human morals effectively in software”.
Do chess-playing programs play better chess than any human?—Yes, 
they do. For instance, the Komodo chess engine can reach an Elo rating 
of higher than 3300, which is about 450 points higher than any human 
currently playing chess (Regan 2014). 
Are machines now as good as humans at playing chess?—This question 
has no utility because it is not well-defi ned. Chess-playing algorithms 
continue to be strengthened by humans, implying that humanity knows 
more about chess than any given machine. The point at which further 
strengthening becomes impossible is undecidable.
Does the human brain hold less than 500 exabytes of information?—
This question has no utility because it is not well-defi ned. We don’t 
have any means to formalize the representation of human abilities and 
thus we don’t have any means to decide whether a not a given system 
which uses under 500 exabytes can emulate the behaviour of the hu-
man brain. Any question which presupposes a complete representation 
of the human mind in its entirety is a useless question.
Here we can see a pattern: the questions that seek to benchmark ma-
chine intelligence against human intelligence are useless, while the 
questions that consider how useful machines can be to humans are 
useful. Accordingly, we recommend that frameworks for evaluating the 
quality of machine “simulation” should be focused, not on the mimicry 
of human thinking, but on utility.
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7. Conclusion
In recent years there have been suggestions of a possible future techno-
logical singularity, at which point computer programs would begin im-
proving themselves recursively (e.g. Hutter 2012; Schmidhuber 2012). 
This concept, fi rst identifi ed by von Neumann (Stanislaw 1958), refers 
to the point at which machines start designing machines better than 
themselves, leading to a runaway effect, or intelligence explosion. Ac-
cording to this vision, smart machines will start designing successive 
generations of increasingly powerful minds, creating intelligence that 
far exceeds human intellectual capacity or control. Proponents perenni-
ally see the singularity as being 15 to 20 years off (e.g. Kurzweil 2005).

However, this concept is based on the fl awed perspective of ma-
chines reaching a point where they emulate human intelligence. As 
we have seen, it is not possible to defi ne or identify such a point. Given 
that the question of emulation is useless, then the idea of human la-
bour being superseded is also meaningless. The rise of machine intel-
ligence will not eliminate the value of human labour, but rather shift it 
away from repetitive formal tasks towards more complex psycho-social 
activities that are not as easily automated (see Turing 1951). 

The focus in philosophy on directly contrasting human and machine 
intelligence has proved misguided. Over the past three decades a para-
digm shift has occurred in the fi eld of AI, with the focus moving away 
from a theory-driven quest to emulate the wholesale architecture of the 
mind, towards a data-driven approach which aims to achieve practical 
results in restricted domains (Cristianini 2014). A machine does not 
need to represent the full range of human abilities for it to be smart in 
some way. Human intelligence is social, embodied, and enactive, and 
very poorly described as symbol-processing or rule-following. AI, by 
contrast, aims to automate those aspects of human behaviour that are 
not unduly sophisticated.

AI is mostly developed and applied in limited domains, where com-
puters’ superior abilities in dealing with vast amounts of data quickly 
and following rules exactly are of greatest benefi t. The performance of 
these systems is often already so far beyond human ability that com-
paring human and machine becomes wholly irrelevant. In other do-
mains, poorer performance by machines will be tolerated as long as the 
“digital labour” is cheaper and more reliable. The question of who does 
the job better thus becomes moot.

Over the last 80 years, the process of computation defi ned by 
Church and Turing has proved extraordinarily useful to humans, and 
transformed modern society. In contrast, endless debates on whether 
the human mind can be matched or surpassed by AI are guaranteed to 
lead nowhere. Thus, the relevant questions for philosophy are not “is 
the mind a machine?” or “will there be a technological singularity”, but 
rather, “how useful will machines be?” and “how will they change our 
lives?”
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