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Pythagorean fuzzy combinative distance-based
assessment with pure linguistic information
and its application to financial strategies
of multi-national companies

Jinming Zhoua , Kevin W. Lib , Tomas Bale�zentisc and Dalia Streimikienec

aSchool of Mathematics and Physics, Anhui Polytechnic University, Wuhu, China; bOdette School of
Business, University of Windsor, Windsor, Ontario, Canada; cDivision of Farm and Enterprise
Economics, Lithuanian Institute of Agrarian Economics, Vilnius, Lithuania

ABSTRACT
This article addresses the issue of selecting Financial Strategies in
Multi-National companies (F.S.M.). The F.S.M. typically has to con-
sider multiple factors involving multiple stakeholders and, hence,
can be handled by applying an appropriate Multi-Criteria Group
Decision-Making (M.C.G.D.M.) approach. To address this issue, we
develop an M.C.G.D.M. framework to tackle the F.S.M. problem. To
handle inherent uncertainty in business decisions as reflected by
linguistic reasoning, we embark on constructing a Linguistic
Pythagorean Fuzzy (L.P.F.) M.C.G.D.M. framework that is capable
of tackling both uncertain decision information and linguistic vari-
ables. The proposed approach extends the combinative distance-
based assessment (C.O.D.A.S.) method into the L.P.F. environment,
and processes decision input expressed as Pythagorean fuzzy sets
(P.F.S.) and pure linguistic variables (rather than converting lin-
guistic information into fuzzy numbers). The developed L.P.F.-
C.O.D.A.S. technique aggregates the L.P.F. information and is
applied to the F.S.M. problem with uncertain linguistic informa-
tion. A comparative analysis is carried out to compare the results
obtained from the proposed L.P.F.-C.O.D.A.S. approach with those
from other extensions of C.O.D.A.S. Furthermore, a sensitivity ana-
lysis is conducted to check the impact of changes in a distance
threshold parameter on the ranking results.
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1. Introduction

Multi-criteria group decision-making (M.C.G.D.M.) methods are important in solving
managerial problems in many areas, ranging from location selection, to supply chain
management and financial management (Dorokhov et al., 2018; Liu, He, & Xu, 2019;
Pongpimol et al., 2020). These problems are often too complex to be defined in crisp
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values. In addition, a single estimate is often unavailable to describe the properties of
the alternatives involved in an analysis. Under these circumstances, subjective expert
assessments can be exploited. Within the aforementioned context, multi-faceted prob-
lems require both proper theoretical concepts and quantitative techniques. The fuzzy
set theory and M.C.G.D.M. techniques can be convenient tools to solve managerial
problems involving varying degrees of uncertainty. Due to increasing complexity of
the real world decision problems, different M.C.D.G.M. methods have been proposed
to cope with uncertainty characterised by the fuzzy information (Chen, 2000; Wang
& Chang, 2005; Keshavarz Ghorabaee et al., 2016; Gao, Lu, & Wei, 2019). They have
been employed to identify the most desirable solutions in many different applications
(Aliakbari Nouri, Khalili Esbouei, & Antucheviciene, 2015; Vinodh, Sai Balagi, &
Patil, 2016; Hosseini et al., 2016). More detailed surveys on theoretical and applied
advancements in the area of fuzzy M.C.G.D.M. were presented by Kahraman, Onar,
and Oztaysi (2015).

The crisp set theory characterises either completely certain membership or non-
membership to a certain set. M.C.G.D.M. models based on this input requires precise
data (i.e., crisp numbers). The fuzzy set theory (Zadeh, 1965) relaxed those assump-
tions by allowing for partial membership degrees between 0 and 1. In this instance,
M.C.G.D.M. models can handle vague information. Yet another improvement in
accounting for uncertainty was offered by Atanassov (1986) who introduced the intui-
tionistic fuzzy sets (I.F.S.s). In the I.F.S. setting, one can take into account of indeter-
minacy on top of membership and non-membership (Wu, Gao, & Wei, 2019). In this
case, the values of the membership, non-membership and indeterminacy functions
are assumed to add up to unity at each data point. In practice, this assumption may
be violated. For instance, experts may fail to consider the constraints on the degrees
of membership, non-membership and indeterminacy when providing information on
the performance of the alternatives under consideration. Although the I.F.S. allows
for more flexibility in describing fuzzy input, some situations may still require add-
itional considerations.

An extension of I.F.S.s was furnished by Yager (2013), who introduced the
Pythagorean fuzzy set (P.F.S.) relaxes the restrictive assumption on the degrees of
membership, non-membership and indeterminacy in I.F.S.s. The correspondence
between the P.F.S. membership degrees and complex numbers was established by
Yager (2016). He showed that the P.F.S. membership degrees can be considered as a
sub-class of the complex numbers. Garg (2016) proposed correlation coefficients for
P.F.S.s. Beliakov and James (2014) discussed the averaging operators and their per-
formance in the P.F.S. environment. Wei (2019) proposed the extension of the
Hamacher power operator. Lu et al. (2019) applied the P.F.S. with the bidirectional
projection approach for the M.C.G.D.M. Tang and Wei (2019) applied the dual hesi-
tant P.F.S. for the decision-making.

By capitalising on the notion of linguistic P.F.S.s proposed by Garg (2018), this art-
icle extends the so-called combinative distance-based assessment (C.O.D.A.S.) method
and proposes a linguistic Pythagorean fuzzy (L.P.F.) C.O.D.A.S. (L.P.F-C.O.D.A.S.)
framework. This group decision model can handle pure linguistic variables and is more
flexible in dealing with uncertainty inherent in decision-making processes.
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The rest of the article proceeds as follows: Section 2 furnishes a literature review of
related works. Section 3 introduces the basic concepts to make the article self-contained.
Section 4 proposes a new decision framework, the so-called L.P.F.-C.O.D.A.S. An applica-
tion of the L.P.F.-C.O.D.A.S. is illustrated by examining the selection of financial strat-
egies in a multi-national company (F.S.M.) in Section 5. Section 6 conducts sensitivity
and comparative analyses, followed by conducting remarks in Section 7.

2. Related works

As decision-making processes can be further improved by applying P.F.S.s, different
scholars proposed various aggregation operators and M.C.D.G.M. techniques with
this type of information. P.F.S.-based aggregation operators were put forward by
Yager (2014), Zhou, Su, Bale�zentis, and Streimikiene (2018), Wang, Gao, and Wei
(2019), Zeng (2017), Wei (2019) among others. M.C.G.D.M. approaches involving
P.F.S.s have also been developed (Peng & Selvachandran, 2019). Ren, Xu, and Gou
(2016) established a T.O.D.I.M. (an acronym in Portuguese for Interactive Multi-
Criteria Decision-Making) technique based on P.F.S.s. Peng and Yang (2016) offered
an Multi-Attributive Border Approximation Area Comparison (M.A.B.A.C.) tech-
nique with P.F.S. and Choquet integral. Bolturk (2018) proposed a C.O.D.A.S.
method based on the P.F.S.s. Liang, Xu, and Darko (2017) defined Pythagorean fuzzy
numbers and developed T.O.P.S.I.S. based on P.F.S.s. Reformat and Yager (2014) dis-
cussed the possibilities of applying P.F.S.s for content-based recommender systems.
Garg (2018) put forward the concept of linguistic P.F.S.s (L.P.F.S.s). In this case, lin-
guistic terms are used to describe the membership degrees with cardinality of the lin-
guistic term set being the restrictive factor. Thus, P.F.S.s have been applied for
different aggregation rules and case studies. These generic M.C.G.D.M. models are
applicable to decision processes in a wide range of areas including financial problems
such as F.S.M. in this research. F.S.M. plays a significant role for a firm to expand its
market globally. When a multinational firm plans its financial strategies, it has to
accommodate different perspectives and interests. M.C.G.D.M. approaches are con-
venient tools for handling F.S.M. problems.

The C.O.D.A.S. method (Ghorabaee et al., 2016) relies on the Euclidean and Hamming
distances that are calculated with respect to the negative-ideal point. The Euclidean dis-
tance is applied first and the Hamming distance is applied second if two alternatives can-
not be distinguished by the former. Table 1 lists studies on the theoretical development
and applications of the C.O.D.A.S. method. As one can note, there have been a number
of extensions of the C.O.D.A.S. method. They differ in terms of decision input and spe-
cific techniques. As Table 1 shows, there is still a lack of C.O.D.A.S. based on L.P.F.S.s
introduced by Garg (2018), which can increase the applicability of C.O.D.A.S. as L.P.F.S.s
can exploit uncertainty in the decision process with higher flexibility.

3. Preliminaries

The complexity of business decisions often makes it hard to use exact information to
describe all possible criteria of alternatives under consideration. Therefore, multi-
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criteria analysis typically involves uncertain data that can be handled by fuzzy set the-
ory. In this article, we resort to the L.P.F.S. to characterise decision input
(Garg, 2018).

In order to exploit this type of information, one needs to apply the relevant arith-
metic operations and laws of comparison. This section begins with presenting the
basic notions of the P.F.S. and linguistic sets along with the L.P.F.S. that integrates
the former two concepts. The theoretical preliminaries presented in this section are
then used to construct the M.C.G.D.M. approach based on the L.P.F.S.-C.O.D.A.S.
The following notations used in this article are listed in Table 2.

3.1. Pythagorean fuzzy sets

The I.F.S. provides the core foundation of uncertain decision-making when there is
not only uncertainty on the membership of a given element to a certain set, but also
a kind of indeterminacy. The indeterminacy may be related to the confidence of the
decision-maker (expert) in the context of group decision-making. For instance, some
experts may have stronger background in economics rather than in technologies. In
the latter instance, they may exert higher degree of indeterminacy when providing

Table 2. List of notations.
Notation Explanation

A ¼ fhx, lAðxÞ, mAðxÞijx 2 Xg an intuitionistic fuzzy set, 0 � lAðxÞ þ mAðxÞ � 1
S ¼ fshjh ¼ 0, 1, . . . , tg a collection of linguistic terms
A ¼ fhx, lAðxÞ, mAðxÞijx 2 Xg a Pythagorean fuzzy set, ðlAðxÞÞ2 þ ðmAðxÞÞ2 � 1

SðaÞ ¼ l2A�m2A, SðaÞ 2 ½�1, 1� score function

HðaÞ ¼ l2A þ m2A ,HðaÞ 2 ½0, 1� accuracy function

Tð�, �Þ t-norm function
Sð�, �Þ t-conorm function
A
W
B the generalised intersection operators

A
V
B the generalised union operators

A ¼ fðx, shðxÞ, srðxÞÞjx 2 Xg a linguistic Pythagorean fuzzy value, h2 þ r2 � t2

EDi the Euclidean distance
HLDi the Hamming-like distance
NS ¼ ½nsj�1�n the negative ideal solution

Source: Designed by the authors.

Table 1. Some fuzzy extensions and applications of C.O.D.A.S.
Reference Information type Case study Methods

Ghorabaee et al., 2017 TFNs Market segment selection CODAS
Panchal et al., 2017 FLNs Optimal maintenance strategy selection AHP, CODAS
Bolturk, 2018 PFS Supplier selection problem CODAS
Ren, 2018 IFNs Ranking of energy storage technologies AHP, CODAS
Pamucar et al., 2018 LNFNs Selection of power-generation technologies PW, CODAS
Peng and Garg 2018 IVFNs Evaluation and decision of emergency plans WDBA, CODAS
Bolturk and Kahraman, 2018 IVIFNs Selection among wave energy plant locations CODAS
Peng and Li, 2019 IVPFNs Emergency decision-making of mine explosions Entropy, CODAS
Fatma and G€okhan, 2018 IVAIFNs Selection problem for an engineering position VIKOR, CODAS

Note: TFNs – trapezoidal fuzzy numbers; FLNs – fuzzy linguistic numbers; PFNs – Pythagorean fuzzy numbers;.
IFNs – Intuitionistic fuzzy numbers; LNFNs – linguistic neutrosophic fuzzy numbers;.
IVFNs – interval-valued fuzzy numbers; IVNFNs – interval-valued neutrosophic fuzzy numbers;.
IVIF – interval-valued intuitionistic fuzzy numbers; IVPF – interval-valued Pythagorean fuzzy numbers;.
IVAIF – interval-valued Atanassov intuitionistic fuzzy numbers.
Source: Designed by the authors.
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rating on technological criteria of alternatives under consideration. By introducing
the degree of indeterminacy, Atanassov (1986) proposed the following definition of
the I.F.S.:

Definition 3.1. Let X denote a universe of discourse. An I.F.S. A in X is then defined
in terms of element x 2 X and the corresponding degrees of membership and non-
membership as:

A ¼ fhx, lAðxÞ, mAðxÞijx 2 Xg (3.1)

where x is a certain element of X, lAðxÞ and mAðxÞ are the degrees of membership
and non-membership with 0 � lAðxÞ þ mAðxÞ � 1: The indeterminacy is character-
ised by pAðxÞ ¼ 1�lAðxÞ�mAðxÞ:

In the definition of the I.F.S., the values of the membership and non-membership
functions are expressed in real numbers. However, decision-makers may be unable
to furnish real numbers in a meaningful manner. To further improve the decision-
making process, linguistic information can be introduced in the computations. We
will next present the concept of linguistic sets and then show how it can be further
extended into the L.P.F.S. environment following Garg (2018).

A linguistic sets comprises different labels corresponding to different levels of per-
formance. The labels are assumed to be ordered so that operations with different
labels are possible. Furthermore, labels are represented by indexes that can then be
mapped on a continuous line. Linguistic fuzzy sets can be further integrated into the
other types of fuzzy sets to establish concepts relevant for group decision-making
under linguistic uncertainty. A linguistic set is defined as follows:

Definition 3.2. Let S ¼ fshjh ¼ 0, 1, . . . , tg be a collection of linguistic terms and
assume that the cardinality of S is an odd number, where sh is a feasible linguistic
term in S (Herrera & Mart�ınez, 2001). S is called a linguistic set if it satisfies the fol-
lowing relationships:

1. elements of the set can be ordered: si>sj () i>j;
2. a negation operator can be applied on the elements of S: NegðsiÞ ¼ sj,

where j ¼ t�i;
3. max operator can be used to compare elements of S: maxðsi, sjÞ ¼ si () i � j;
4. min operator can be used to compare elements of S: minðsi, sjÞ ¼ si () i � j;

One can consider the following set as an example of a linguistic set with seven
terms:

S ¼ fs0, s1, s2, s3, s4, s5, s6g ¼ fnone, verylow, low,medium, high, veryhigh, perfectg:

In real-world applications, the use of discrete linguistic labels may be feasible at
the stage of data collection. However, it is unlikely that the resulting calculations
would also yield discrete labels. Therefore, a discrete linguistic set S can be extended
to a continuous linguistic term set �S ¼ fsajs0 � sa � st , a 2 ½0, t�g with its elements
satisfying conditions outlined in Definition 3.2 (Xu, 2004).
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Yager (2013) proposed a generalisation of the I.F.S. by allowing for more flexibility
in the membership degree. The restriction on the degrees of membership and non-
membership provided in Definition 3.1 is relaxed in the case of the P.F.S., as given in
Definition 3.3.

Definition 3.3. For a universe of discourse X, a P.F.S. A is defined as a set of
elements in X along with the associated degrees of membership and non-
membership, i.e.:

A ¼ fhx, lAðxÞ, mAðxÞijx 2 Xg (3.2)

where the values of the membership and non-membership functions at x 2 X are
given by, lA : X ! ½0, 1� and mA : X ! ½0, 1�, respectively, and sat-
isfy ðlAðxÞÞ2 þ ðmAðxÞÞ2 � 1:

The degree of indeterminacy for a P.F.S. can be calculated residually based on

the values of the membership and non-membership degrees, i.e., pAðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðlAðxÞÞ2�ðmAðxÞÞ2

q
: For sake of brevity, a Pythagorean fuzzy number was

introduced by Yager (2013) which comprises the degrees of membership and non-
membership, a ¼ hlA, mAi, where lA, mA 2 ½0, 1�, l2A þ m2A � 1:

Comparison of two P.F.N.s requires special rules based on the score and accuracy
functions, which are defined below:

Definition 3.4. For a given P.F.N., a ¼ hlA, mAi, its score function S takes the follow-
ing form (Zhang and Xu, 2014):

SðaÞ ¼ l2A�m2A, SðaÞ 2 �1, 1½ �: (3.3)

For the same P.F.N. a, its accuracy function H is given as follows:

HðaÞ ¼ l2A þ m2A, HðaÞ 2 0, 1½ �: (3.4)

Definition 3.4 indicates that information on the membership and non-membership
is exploited to calculate the values of the score function. This calculation is not
affected by the degree of indeterminacy. As for the accuracy function, even though
the calculation is based on the membership and non-membership degrees, it impli-
citly accounts for the degree of indeterminacy due to the constraint of the member-
ship and non-membership degrees given in Definition 3.3.

The interaction between two P.F.S.s can be modeled by considering the intersec-
tion and union operators. These results can also be used for the case of the P.F.N.s.
Thus, we discuss the notions of the intersection and generalised union of two P.F.S.s
as follows:

Definition 3.5. For two P.F.S.s, A and B, the generalised intersection ðVÞ and gener-
alised union ðWÞ operators are defined as follows (Deschrijver & Kerre, 2002):
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A
_

B ¼ fðx,TðlAðxÞ, lBðxÞÞ, SðmAðxÞ, mBðxÞÞjx 2 Xg, (3.5)

A
^

B ¼ fðx, SðlAðxÞ, lBðxÞÞ,TðmAðxÞ, mBðxÞÞÞjx 2 Xg: (3.6)

where Tð�, �Þ and Sð�, �Þ are any t-norm and t-conorm functions, respectively.
Algebraic sum � and product � can be given as the instances of t-conorm and t-
norm, respectively. In the case of the P.F.S.s, they are defined in the following man-
ner:

Sða, bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2�a2b2

p
, Tða, bÞ ¼ ab: (3.7)

Note that S(a, b) given in Eq. (3.7) is a t-conorm satisfying the follow-
ing properties:

a. Boundedness: Sð1, 1Þ ¼ 1, Sðx, 0Þ ¼ Sð0, xÞ ¼ x;
b. Monotonicity: If x1 � y1 and x2 � y2, then Sðx1, x2Þ � Sðy1, y2Þ;
c. Commutativity: Sðx1, x2Þ ¼ Sðx2, x1Þ;
d. Associativity: Sðx1, Sðx2, x3ÞÞ ¼ SðSðx1, x2Þ, x3Þ:

T(a, b) given in Eq. (3.7) is a t-norm satisfying the following properties:

a. Boundedness: Tð0, 0Þ ¼ 0,Tðx, 1Þ ¼ Tð1, xÞ ¼ x;
b. Monotonicity: If x1 � y1 and x2 � y2, then Tðx1, x2Þ � Tðy1, y2Þ;
c. Commutativity: Tðx1, x2Þ ¼ Tðx2, x1Þ;
d. Associativity: Tðx1,Tðx2, x3ÞÞ ¼ TðTðx1, x2Þ, x3Þ:

The concepts of the intersection and union of the P.F.S.s can be exploited to define
interactions between P.F.N.s. These are important in decision-making as aggregation
of decision information relies on arithmetical operations among the arguments to be
aggregated. In the case of P.F.N.s, the following operations are defined by a scalar
and exponent of a scalar:

Definition 3.6. Denote three P.F.N.s by a1 ¼ hl1, m1i, a2 ¼ hl2, m2i, and a ¼ hl, mi
along with a real number k>0: For operations with these variables, the following
operational laws hold (Yager, 2014):

i. a1�a2 ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�l21Þð1�l22Þ

p
, m1m2i;

ii. a1 � a2 ¼ hl1l2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�m21Þð1�m22Þ

p
i;

iii. ka ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�l2Þk

q
, mki;

iv. ak ¼ hlk,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�m2Þk

q
, i:

The complement of a fuzzy number is important as it acts as a negation operator
in the decision process. Next we define the rules for P.F.N. complement, subset,
equivalence, intersection and union as:
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Definition 3.7. Denote three P.F.N.s by a1 ¼ hl1, m1i, a2 ¼ hl2, m2i, and a ¼ hl, mi
along with a real number k>0: The following operational laws hold (Yager, 2014):

i. ac ¼ hm, li;
ii. a1 	 a2, if l1 � l2 and m1 � m2;
iii. a1 ¼ a2, if a1 	 a2 and a2 	 a1;
iv. a1 \ a2 ¼ hminðl1, l2Þ,maxðm1, m2Þi;
v. a1 [ a2 ¼ hmaxðl1, l2Þ,minðm1, m2Þi;

ka ¼ h k
ffiffiffiffiffiffiffiffi
1�l2

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2m

p
i, if k 2 ð0, 1Þ;

h 1
k

� � ffiffiffiffiffiffiffiffi
1�l2

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1kÞ2m

q
i, if k � 1:

8<
: (3.8)

The operational laws discussed in this sub-section can be applied to aggregate of
the expert assessments expressed as P.F.N.s. They can also be adapted to the case of
linguistic reasoning discussed next.

3.2. Linguistic Pythagorean fuzzy numbers

The need for the use of linguistic information in decision-making roots in both
human nature and complexity of socio-economic phenomena. Accordingly, linguistic
term sets can be employed by decision-makers to express their ratings. In addition,
the degree of indeterminacy should be attached to linguistic ratings in order to
increase the effectiveness of decision-making. The concept of I.F.S.s allows one to
accommodate this along with a linguistic rating. As an extension of I.F.S.s, P.F.S.s can
also handle linguistic with indeterminacy under more relaxed constraint on member-
ship and non-membership degrees. Thus, the concepts of the linguistic term set and
P.F.S. are integrated into a new notion of an L.P.F.S. (Garg, 2018).

The key feature of a P.F.S. is the degree of indeterminacy and the relaxed con-
straint on the membership and non-membership degrees (Definition 3.3). As for a
linguistic set, the use of linguistic labels is the character (Definition 3.2). An L.P.F.S
combines these two features and is defined as follows:

Definition 3.8. Let �S ¼ fsajs0 � sa � st , a 2 ½0, t�g be a continuous linguistic
term set. For a finite universe of discourse X, L.P.F.S. A is defined for x 2 X and the
associated membership and non-membership degrees expressed in linguistic terms
from �S :

A ¼ fðx, shðxÞ, srðxÞÞjx 2 Xg, (3.9)

where shðxÞ, srðxÞ 2 �S are the linguistic membership degree and non-membership
degree of element x to A, respectively. For any x 2 X, the degrees of membership

and non-membership are constrained by h2 þ r2 � t2: The degree of linguistic inde-
terminacy pðxÞ, describing the hesitancy of x to A is defined as follows: pðxÞ ¼
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2�h2�r2
p : The degrees of membership and non-membership can be used to
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represent the underlying L.P.F.S. in a shorthand notation. Specifically, a pair describ-
ing membership and non-membership of x in A is denoted as ðshðxÞ, srðxÞÞ: Then,
A ¼ ðsh, srÞ is called a linguistic Pythagorean fuzzy value (L.P.F.V.) or linguistic
Pythagorean fuzzy number (L.P.F.N.) (Garg, 2018).

Linguistic reasoning requires comparison of the values. For L.P.F.N.s, the linguistic
membership and non-membership degrees can be exploited to compare any two
L.P.F.V.s as shown below.

Definition 3.9. For a certain L.P.F.V. A ¼ ðsh1 , sr1Þ with its membership and non-
membership degrees belonging to a P.F.L.S., i.e., shðxÞ, srðxÞ 2 �S, its score function is
defined in terms of the difference between the squared degrees of membership and
non-membership as follows:

SðAÞ ¼ s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2þh21�r2

1Þ=2
p , (3.10)

whereas the accuracy function is defined in terms of the sum of the squared degrees
of membership and non-membership as follows:

HðAÞ ¼ s ffiffiffiffiffiffiffiffiffiffi
h21þr2

1

p (3.11)

It can be verified that 0 � ðt2 þ h21�r2
1Þ=2 � t2 and h21 þ r2

1 � t2 which implies
that s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt2þh21�r2
1Þ=2

p , s ffiffiffiffiffiffiffiffiffiffi
h21þr2

1

p 2 �S:

Given the functions defined in Definition 3.9, any two L.P.F.V.s, A and B, can be
compared by following procedure (Garg, 2018):

1. If SðAÞ>SðBÞ, then A 
 B where ''
00 means” preferred to”;
2. If SðAÞ ¼ SðBÞ, and

� HðAÞ ¼ HðBÞ, then A ¼ B;
� HðAÞ>HðBÞ, then A 
 B

The decision-making process requires aggregating L.P.F.N.s. In order to do so,
arithmetic operations have to be carried out for these numbers. Thus, the following
operations can be defined for L.P.F.N.s (Garg, 2018):

Definition 3.10. For any two L.P.F.N.s denoted by A ¼ ðsh1 , sr1Þ and B ¼ ðsh2 , sr2Þ,
the following rules are introduced:

i. A¼B, if sh1 ¼ sh2 and sr1 ¼ sr2 ;
ii. Ac ¼ ðsr1 , sh1Þ, where Ac is the complement of A;
iii. Intersection: A \ B ¼ ðminðsh1 , sh2Þ,maxðsr1 , sr2ÞÞ;
iv. Union: A [ B ¼ ðmaxðsh1 , sh2Þ,minðsr1 , sr2ÞÞ;
v. A<B, if sh1<sh2 and sr1>sr2 :

The addition and multiplication operations are crucial for aggregating L.P.F.N.s.
First, these operations can be defined for the linguistic variables by exploiting the
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notions of t-norm and t-conorm. Following Garg (2018), we introduce the following
laws of operations hold:

Definition 3.11. For any two L.P.F.N.s sa, sb 2 �S: The addition and the multiplication
operations of two linguistic variables are defined as follows:

sa�sb ¼ sb�sa ¼ stSða=t,b=tÞ (3.12)

sa � sb ¼ sb � sa ¼ stTða=t,b=tÞ (3.13)

where Sða=t, b=tÞ and Tða=t, b=tÞ are t-conorm and t-norm, respectively,
which lies between ½0, 1� and hence tSða=t, b=tÞ, tTða=t, b=tÞ 2 ½0, t�:
Thus, stSða=t,b=tÞ, stTða=t,b=tÞ 2 �S:

Based on Definition 3.11, we can get the operational laws for L.P.F.N.s as follows
(Garg, 2018).

Definition 3.12. Let A ¼ ðsh1 , sr1Þ and B ¼ ðsh2 , sr2Þ be two L.P.F.N.s, where
sh1 , sr1 , sh2 , sr2 2 �S ¼ fsajs0 � sa � st , a 2 ½0, t�g with k>0 being a real number, then

i. A�B ¼ ðs
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21=t

2þh22=t
2�h21h

2
2=t

4
p , stðr1r2=t2ÞÞ;

ii. A� B ¼ ðstðh1h2=t2Þ, st ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir2
1=t

2þr2
2=t

2�r2
1r

2
2=t

4
p Þ;

iii. kA ¼ s
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�h21=t

2Þk
p , stðr1=tÞk

� �;
iv. Ak ¼ stðh1=tÞk , st

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�r2

1=t
2Þk

p� �
:

It can also be shown that the outcome of calculations based on Definitions 3.12
above is also an L.P.F.N. Formally, the following Lemma states this result:

Lemma 3.1. Let Ai ¼ ðshi , sriÞði ¼ 1, 2Þ be any two L.P.F.N.s. Then, the values resulting
from applications of the fuzzy addition A�B, fuzzy multiplication A� B, multiplication
by a scalar kA and exponent of a scalar Ak are also L.P.F.N.s with k>0 (Garg, 2018).

4. L.P.F. M.C.G.D.M. model

In this section, we present a decision-making approach based on L.P.F.N.s and the
L.P.F.N.-C.O.D.A.S. technique. In addition, an A.H.P.-like method based on pair-wise
comparisons of criteria in terms of linguistic variables is used to derive crite-
ria weights.

4.1. Determining criteria weights using L.P.F.N.s and pair-wise comparison

Criteria weights used in the decision-making comprise and important element of the
overall process. Thus, it is critical to apply a technique that allows for an effective
analysis of priorities of criteria. In this sub-section, we describe an A.H.P.-like
approach that takes L.P.F.N.s and pair-wise comparisons as decision input. This set-
ting allows D.M.s for more flexibility in assessing the importance of criteria as well as
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their confidence. In addition, different weights can be assigned to different experts to
reflect their importance in the decision-making process. Criteria weight determination
proceeds as follows (Pamu�car et al., 2018):

Step 1. Given m experts in set fe1, e2, . . . , emg and n criteria in set C ¼
fc1, c2, . . . , cng: Each expert provides pair-wise comparison for each pair of criteria
under consideration. The results of the assessment are the elements of a pair-wise com-
parison matrix for the l-th expert. We allow for differences in the importance of the
D.M.s by assigning them weights fd1, d2, . . . , dmg, 0 � dl � 1, ðl ¼ 1, 2, . . . ,mÞ such
that

Pm
l¼1 dl ¼ 1: The pair-wise comparison is given as L.P.F.N.s with elements of lin-

guistic term set �S ¼ fsaja 2 ½0, t�g being used for membership and non-membership
degrees. Thus, the resulting expert-specific assessment matrix takes the following form:

NðlÞ ¼ nðlÞij
h i

n�n
¼

nðlÞ11 nðlÞ12 � � � nðlÞ1n
nðlÞ21 nðlÞ22 � � � nðlÞ2n
..
. ..

. . .
. ..

.

nðlÞn1 nðlÞn2 � � � nðlÞnn

0
BBBB@

1
CCCCA ¼

ðsðlÞh11 , s
ðlÞ
r11Þ ðsðlÞh12 , s

ðlÞ
r12Þ � � � ðsðlÞh1n , s

ðlÞ
r1nÞ

ðsðlÞh21 , s
ðlÞ
r21Þ ðsðlÞh22 , s

ðlÞ
r22Þ � � � ðsðlÞh2n , s

ðlÞ
r2nÞ

..

. ..
. . .

. ..
.

ðsðlÞhn1 , s
ðlÞ
rn1Þ ðsðlÞhn2 , s

ðlÞ
rn2Þ � � � ðsðlÞhnn , s

ðlÞ
rnnÞ

0
BBBBB@

1
CCCCCA:

where elements nðlÞij are L.P.F.N.s based on linguistic variables from S ¼ fsaja 2
½0, t�g, sðlÞhij , s

ðlÞ
rij 2 �S and hij,rij 2 ½0, t�: The diagonal elements of NðlÞ, i.e., nðlÞij , 8i ¼ j are

equal to the midpoint of the linguistic term set, nðlÞij ¼ ðsðlÞt=2, sðlÞt=2Þ, 8i ¼ j: As the pair-

wise matrix needs to be reciprocal, D.M.s need only to furnish half of the off-diagonal
elements (either upper or lower part). Assume that the experts provide the upper part

of the pair-wise comparison matrix as nðlÞij ¼ ðsðlÞhij , s
ðlÞ
rijÞ, 8i<j: Then, the elements in the

lower diagonal part of the matrix are obtained by applying the following rule:

nðlÞji ¼ sðlÞhji ¼ sðlÞrij

sðlÞrji ¼ sðlÞhij

0
@

1
A, 8j<i:

Note that L.P.F.N. nðlÞij ¼ ðsðlÞhij , s
ðlÞ
rijÞ, gives the membership and non-membership

degrees to which criterion i is more important than criterion j based on expert
e0s assessment.

Step 2. Expert opinions can be aggregated into a single matrix by applying either
arithmetic or geometric averaging. This can also take into account of the importance
of D.M.s. The aggregated decision matrix is defined as:

N ¼ nij
� �

n�n
¼

n11 n12 � � � n1n
n21 n22 � � � n2n
..
. ..

. . .
. ..

.

nn1 nn2 � � � nnn

0
BBB@

1
CCCA ¼

ðsh11 , sr11Þ ðsh12 , sr12Þ � � � ðsh1n , sr1nÞ
ðsh21 , sr21Þ ðsh22 , sr22Þ � � � ðsh2n , sr2nÞ

..

. ..
. . .

. ..
.

ðshn1 , srn1Þ ðshn2 , srn2Þ � � � ðshnn , srnnÞ

0
BBB@

1
CCCA:

with its elements nij ¼ ðshij , srijÞ being the results of the aggregation based upon the
L.P.F. weighted averaging operators which can be either arithmetic or geometric. The
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use of an arithmetic aggregation operator increases substitution among the expert
opinions, whereas the adoption of a multiplicative aggregation operator decreases the
compensatory effect. For instance, the L.P.F. weighted arithmetic averaging
(LPFWAA) operator can be applied to obtain the elements of N:

nij ¼ LPFWAAðnð1Þij , nð2Þij , . . . , nðmÞ
ij Þ ¼ �m

l¼1n
ðlÞ
ij dl ¼ s

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�
Qm
l¼1

ð1�h2ijl=t
2Þdl Þ

r , s
t
Qm
l¼1

ðrijlt Þdl
 !

:

(4.14)

Similarly, the L.P.F. weighted geometric averaging (L.P.F.W.G.A.) operator can be
exploited to aggregate the expert opinions into the elements of an aggregated pair-
wise comparison matrix as follows:

nij ¼ LPFWGAðnð1Þij , nð2Þij , . . . , nðmÞ
ij Þ ¼ �m

l¼1ðnðlÞij Þdl ¼ s
t
Qm
l¼1

ðhijlt Þdl
, s

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�
Qm
l¼1

ð1�r2
ijl=t

2Þdl Þ
r !

:

(4.15)

In Eqs. (4.14) and (4.15), nðlÞij ¼ ðsðlÞhij , s
ðlÞ
rijÞ are the elements of the expert e0s pair-

wise comparison matrix.
Step 3. The differences among the elements of the aggregated pair-wise compari-

son matrix N is calculated at the element, criterion and matrix level.
At the element level, the differences are calculated for each nij with respect to

nik ð1 � k � nÞ: These calculations are carried out for each criterion cj ðj ¼
1, 2, . . . , nÞ as follows:

cijðcijÞ ¼
Xn
k¼1

dðnij, nikÞ ¼
Xn
k¼1

1
3
ðjuðs2hijÞ�uðs2hikÞj þ juðs2rij

Þ

�uðs2rik
Þj þ juðs2pijÞ�uðs2pikÞjÞ,

(4.16)

where dðnij, nikÞ stands for the distance between elements of the aggregated pair-wise
comparison matrix, nik ð1 � k � nÞ and nij ð1 � j � nÞ:

At the criterion level, the differences obtained by Eq. (4.16) are aggregated across
the columns of N for each criterion ciði ¼ 1, 2, . . . , nÞ as follows:

ciðciÞ ¼
Xn
j¼1

cijðcijÞ ¼
Xn
j¼1

Xn
k¼1

1
3
ðjuðs2hijÞ�uðs2hikÞj

þ juðs2rij
Þ�uðs2rik

Þj þ juðs2pijÞ�uðs2pikÞjÞ:
(4.17)

Finally, the matrix-level difference is calculated as the sum of deviations in
Eq. (4.17):
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cðcÞ ¼
Xn
i¼1

ciðciÞ ¼
Xn
i¼1

Xn
j¼1

cijðcijÞ ¼
Xn
i¼1

Xn
j¼1

Xn
k¼1

dðnij, nikÞ

¼
Xn
i¼1

Xn
j¼1

Xn
k¼1

1
3
ðjuðs2hijÞ�uðs2hikÞj þ juðs2rij

Þ�uðs2rik
Þj þ juðs2pijÞ�uðs2pikÞjÞ:

(4.18)

It is clear that, cðcÞ summarises the total difference in N and can be used as a
normalisation.

Step 4. The criteria weights are obtained by normalising the criterion-specific val-
ues ci from Eq. (4.17) by the overall deviation c from Eq. (4.18):

wi ¼
Pn

j¼1

Pn
k¼1

1
3 ðjuðs2hijÞ�uðs2hikÞj þ juðs2rij

Þ�uðs2rik
Þj þ juðs2pijÞ�uðs2pikÞjÞPn

i¼1

Pn
j¼1

Pn
k¼1

1
3 ðjuðs2hijÞ � uðs2hikÞj þ juðs2rij

Þ � uðs2rik
Þj þ juðs2pijÞ � uðs2pikÞjÞ

,

(4.19)

where wi, i ¼ 1, 2, . . . , n, satisfies
Pn

i¼1 wi ¼ 1:

4.2. An L.P.F.-C.O.D.A.S. approach

In this sub-section, we propose an approach to deal with M.C.G.D.M. problems
involving uncertain linguistic assessment. The decision information is provided in
terms of the L.P.F.N.s. The C.O.D.A.S. method (Keshavarz Ghorabaee et al., 2016) is
extended to handle the L.P.F.N.s and referred to as L.P.F.-C.O.D.A.S. Note that the
C.O.D.A.S. technique provides an effective approach for M.C.G.D.M. by introducing
a threshold for distances among the items under consideration that activates the use
of an additional distance measure. The L.P.F.-C.O.D.A.S. proceeds as follows:

Step 1. The aggregated decision matrix N is constructed to assess the performance
of b alternatives denoted by set A ¼ ða1, a2, . . . , abÞ with respect to n criteria denoted
by set C ¼ ðc1, c2, . . . , cnÞ: The assessment of the performance of the alternatives
against the criteria is provided by the experts. Denote the m experts by set
fe1, e2, . . . , emg: These experts are associated with different weights arranged into vec-
tor fd1, d2, . . . , dmg, 0 � dl � 1, ðl ¼ 1, 2, . . . ,mÞ so that

Pm
l¼1 dl ¼ 1:

First, each expert provides assessments of the alternatives under consideration in the
form of L.P.F.N.s. The ratings are arranged into expert-specific decision matrices NðlÞ, l ¼
1, 2, . . . ,m: The elements of NðlÞ are nðlÞij , corresponding to the rating of the i-th alternative
against the j-th criterion. Thus, the decision matrix for expert l takes the following form:

NðlÞ ¼ nðlÞij
h i

b�n
¼

nðlÞ11 nðlÞ12 � � � nðlÞ1n
nðlÞ21 nðlÞ22 � � � nðlÞ2n
..
. ..

. . .
. ..

.

nðlÞb1 nðlÞb2 � � � nðlÞbn

0
BBBB@

1
CCCCA ¼

ðsðlÞh11 , s
ðlÞ
r11Þ ðsðlÞh12 , s

ðlÞ
r12Þ � � � ðsðlÞh1n , s

ðlÞ
r1nÞ

ðsðlÞh21 , s
ðlÞ
r21Þ ðsðlÞh22 , s

ðlÞ
r22Þ � � � ðsðlÞh2n , s

ðlÞ
r2nÞ

..

. ..
. . .

. ..
.

ðsðlÞhb1 , s
ðlÞ
rb1Þ ðsðlÞhb2 , s

ðlÞ
rb2Þ � � � ðsðlÞhbn , s

ðlÞ
rbnÞ

0
BBBBB@

1
CCCCCA:

with nðlÞij belonging to the continuous linguistic term set �S ¼ fsaja 2 ½0, t�g, i.e.,
sðlÞhij , s

ðlÞ
rij 2 �S and hij,rij 2 ½0, t�: Note that L.P.F.N., nðlÞij ¼ ðsðlÞhij , s

ðlÞ
rijÞ, is used to describe
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the extent to which expert l agrees or disagrees that alternative i satisfies criterion j as
well as the implied indeterminacy.

Aggregation operators can be applied to derive an aggregated decision matrix N.
The aggregated decision matrix N comprises b� n elements, assessing the overall per-
formance of the alternatives under consideration based on the expert ratings:

N ¼ nij
� �

b�n
¼

n11 n12 � � � n1n
n21 n22 � � � n2n
..
. ..

. . .
. ..

.

nb1 nb2 � � � nbn

0
BBB@

1
CCCA ¼

ðsh11 , sr11Þ ðsh12 , sr12Þ � � � ðsh1n , sr1nÞ
ðsh21 , sr21Þ ðsh22 , sr22Þ � � � ðsh2n , sr2nÞ

..

. ..
. . .

. ..
.

ðshb1 , srb1Þ ðshb2 , srb2Þ � � � ðshbn , srbnÞ

0
BBB@

1
CCCA:

In case of a geometric aggregation, the LPFWGA operator is applied. Thus, the fol-
lowing weighted geometric mean is determined for nðlÞij ¼ ðsðlÞhij , s

ðlÞ
rijÞ, l ¼ 1, 2, . . . ,m :

nij ¼ LPFWGAðnð1Þij , nð2Þij , . . . , nðmÞ
ij Þ ¼ �m

l¼1ðnðlÞij Þdl ¼ s
t
Qm
l¼1

ðhijlt Þdl
, s

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�
Qm
l¼1

ð1�r2
ijl=t

2Þdl Þ
r !

,

(4.20)

with nðlÞij ¼ ðsðlÞhij , s
ðlÞ
rijÞ being the values from the decision matrix of the l-th expert.

Step 2. The cost and benefit criteria have different directions of optimisation (cost
criteria are minimised, whereas benefit criteria are maximised when identifying the
best-performing alternative). Therefore, the decision matrix needs to be unified in
this regard prior to further processing. The cost and benefit criteria are unified by
means of the complements of the P.F.L.N.s. The normalised matrix Ŷ comprises ele-
ments ŷij defined as follows:

ŷij ¼ ð̂shij , ŝrijÞ ¼
ŝhij ¼ srij , ŝrij ¼ shij , if j 2 C;
ŝhij ¼ shij , ŝrij ¼ srij , if j 2 B;

	
(4.21)

where B and C represent the sets of benefit and cost criteria, respectively, and the ele-
ments of N are used for determining the normalised values.

Step 3. The criteria considered in the M.C.G.D.M. problem are attributed to differ-
ent importance by assigning them different weights. Thus, the normalised decision
matrix, Ŷ is weighted and, consequently, the weighted normalised matrix G is
obtained. Matrix G comprises L.P.F.N.s., i.e., G ¼ ½gij�b�n ¼ ½ðs�hij , s�rij

Þ�b�n which
obtained by exploiting the arithmetic operator for L.P.F.N.s as follows:

gij ¼ ðs�hij , s�rij
Þ ¼ wjð̂shij , ŝrijÞ ¼ s�

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�ð1�h2ij=t

2Þwj Þ
p , s�

tðrijt Þwj
� �

: (4.22)

Step 4. The weighted normalised decision matrix is then employed to identify the
theoretical (negative ideal) alternative that defines the lowest level of performance
given the decision input. The negative ideal solution is defined by vector NS ¼
½nsj�1�n with its elements defined as the minima of the columns of the weighted nor-
malised decision matrix:
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nsj ¼ min1�i�bðgijÞ (4.23)

where nsj is an LPFN denoted by nsj ¼ ðs�hj , s�rj
Þ:

Step 5. The distance between the negative ideal solution NS and the elements of
the weighted normalised decision matrix G is calculated by measuring the perform-
ance of each alternative with regard to the worst possible situation. The L.P.F.
Euclidean and L.P.F. Hamming-like distances are applied as the measures of distance
here; the obtained measures are denoted by EDi and HLDi respectively. Both of the
distances are calculated as follows. First, the Euclidean distance is defined as the fol-
lowing sum:

EDi ¼
Xn
j¼1

dEðgij; nsjÞ, (4.24)

where dEðgij; nsjÞ is the Euclidean distance of the j-th alternative from the negative
ideal solution with respect to the i-the criterion, which is defined as:

dEðgij; nsjÞ ¼ 1
3
ðjuðs�hijÞ�uðs�hjÞj2 þ juðs�rij

Þ�uðs�rj
Þj2 þ juðs�pijÞ�uðs�pjÞj2Þ

	 
1
2

: (4.25)

Similarly, the Hamming-like distance is given as the following sum:

HLDi ¼
Xn
j¼1

dHLðgij; nsjÞ, (4.26)

where dHLðgij; nsjÞ is the Hamming-like distance of the i-th alternative from the nega-
tive ideal solution with respect to the i-the criterion, which is defined as:

dHLðgij; nsjÞ ¼ 1
3
ðjuðs�hijÞ�uðs�hjÞj þ juðs�rij

Þ�uðs�rj
Þj þ juðs�pijÞ�uðs�pjÞjÞ: (4.27)

Note that uðsiÞ ¼ i=t and the degree of indeterminacy, s�pij and s�pj , are obtained
following Definition 3.8.

Step 6. The Euclidean and Hamming-like distances are applied to assess the dis-
tances among the alternatives. The obtained distances are arranged into matrix Q ¼
½Qik�b�b with its elements being defined as

Qik ¼ ðEDi�EDkÞ þ ðqðEDi�EDkÞ � ðHLDi�HLDkÞÞ (4.28)

where k 2 f1, 2, . . . , bg keeps tracks of the alternatives under comparison and q
denotes the binary threshold function that may involve the Hamming-like distance in
the analysis. The threshold function is defined as (Keshavarz-Ghorabaee et al., 2016):

qðxÞ ¼ 1, if jxj � e;
0, if jxj<e:

	
(4.29)
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where e is a given threshold parameter. We pick e ¼ 0:02 for the analysis in the case
study in Section 5.

Step 7. The distances obtained in Step 6 are further aggregated to obtain the utility
scores for each alternative i. The utility scores Si are obtained as:

Si ¼
Xb
k¼1

Qik: (4.30)

The higher the value, the better the performance of the alternative, thus alterna-
tives are arranged in a descending order of Si.

In summary, the procedure of the proposed method is given in Figure 1.

5. A case study

The increasing complexity of business environment and emergence of new business
models based on new types of information require complex approach towards per-
formance assessment (Iqbal, Chu, & Hali, 2019; Rondovic et al., 2018; Knezevic, 2018;
Pan et al., 2019). The proposed decision framework outlined in Section 4 is applied
to the case of selecting financial strategies in a multinational firm that involves mul-
tiple criteria and DMs (Garg, 2018). The application of the P.F.L.N.s is relevant in
this case as the D.M.s may not be experienced enough to respect the constraints asso-
ciated with I.F.S.s. In addition, the use of linguistic information allows one to assess

Figure 1. The procedure of the proposed LPFN-CODAS method. Source: Designed by the authors.
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different alternatives (i.e., investment strategies) that can only be defined in approxi-
mate terms due to inherent uncertainties and complexity. Thus, this case study of
selecting financial strategies allows the experts to exploit both quantitative and quali-
tative assessment information to find a best solution.

Assume that a company is about to choose a proper investment strategy at different
geographical locations. Specifically, it considers expanding its operations to Asia, Africa
or Northern America (these alternatives are denoted by fA1,A2,A3g). In addition, sim-
ultaneous expansion to all the three regions is included in the analysis as A4. An expert
group is established to identify the most promising investment strategy.

The alternatives under consideration are evaluated with respect to the four criteria
representing the prospect in the short, medium and long run (denoted as
fC1,C2,C3g) along with the risk profile attached to the alternatives (criterion C4).
Obviously, the first three criteria are benefit ones as the company seeks to enhance
the prospect of the investment, whereas the fourth criterion is a cost one as the com-
pany seeks to minimise the risk associated with the alternatives. Furthermore, the dif-
ferences in the importance of the benefit criteria exist as the discount rate affects the
preferences of the D.M.s with respect to fC1,C2,C3g: Thus, the identification of the
investment strategy constitutes an M.C.G.D.M. problem.

The expert group comprises three D.M.s. Due to differences in their background,
the experts taking part in the M.C.G.D.M. are assigned with different importance as
reflected in the weight vector ðd1, d2, d3Þ ¼ ð0:243, 0:514, 0:243Þ: The experts
are denoted as fD1,D2,D3g: The decision-making proceeds by providing the
linguistic ratings from the linguistic term set S ¼ fs0, s1, s2, s3, s4, s5, s6, s7, s8g ¼
fextremely poor, very poor, poor, slightly poor, fair, slightly good, good, very
good, extremely goodg: These terms are applied to assess the performance of the
alternatives with regards to the criteria.

5.1. Determination of criteria weights

We assume that the weights of criteria are unknown. Thus, the procedure given in
Section 4.1 is applied to derive the weights from pair-wise comparisons between each
pair of criteria. Each expert taking part in the M.C.G.D.M. procedure provides his/
her assessment on the perceived importance of the criteria in a pairwise manner. The
detailed procedure is given as follows:

Step 1. Each expert provides his/her preferences in regard to the importance of a
certain criterion Ci, i ¼ 1, 2, 3, 4 with respect to each of the other three criteria
by conducting pair-wise comparisons. The comparison is based on the linguistic
labels from �S ¼ fsaja 2 ½0, 8�g: The results of pair-wise comparisons are given in
Tables 3–5.

Table 3. The pair-wise comparison of the importance of criteria by expert D1.
Criteria C1 C2 C3 C4
C1 (s4, s4) (s6, s6) (s5, s3) (s6, s5)
C2 (s6, s6) (s4, s4) (s4, s4) (s6, s2)
C3 (s3, s5) (s4, s4) (s4, s4) (s3, s3)
C4 (s5, s6) (s2, s6) (s3, s3) (s4, s4)

Source: Designed by the authors.
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Step 2. The results provided by the three experts are aggregated into a single pair-
wise comparison matrix N. In order to aggregate the information across the experts,
the L.P.F.W.G.A. operator Eq. (4.15) is utilised. The resulting aggregated pair-wise
comparison matrix is shown below:

N ¼
ðs4:0000, s4:0000Þ ðs3:5503, s5:5499Þ ðs4:7575, s2:6748Þ ðs2:8824, s5:5774Þ
ðs6:0000, s4:1619Þ ðs4:0000, s4:0000Þ ðs3:2172, s4:7939Þ ðs3:5504, s5:8802Þ
ðs2:2971, s6:1238Þ ðs4:7361, s3:2848Þ ðs4:0000, s4:0000Þ ðs2:0185, s4:2318Þ
ðs5:4912, s3:8970Þ ðs3:8079, s4:1619Þ ðs3:9008, s3:7346Þ ðs4:0000, s4:0000Þ

0
BB@

1
CCA:

Step 3. The weights of criteria are established on the basis of the variation of the
data within matrix N. Therefore, Eqs (4.16)–(4.18) are applied in order to calculate
the overall measures of differences:

c1 ¼ ð1:3210, 1:03666, 1:5628, 1:4157Þ,
c2 ¼ ð1:1700, 1:1700, 1:0079, 1:4586Þ,
c3 ¼ ð2:1934, 1:7476, 1:5657, 1:3275Þ,
c4 ¼ ð0:7579, 0:7584, 0:7905, 0:7821Þ:

Step 4. Finally, the measures obtained in Step 3 are further aggregated by
means of Eq. (4.19) to derive criteria weights: w ¼ ðw1, w2, w3, w4ÞT ¼
ð0:2659, 0:2396, 0:3406, 0:1539Þ:

5.2. Ranking the alternatives

The criteria weights determined by pair-wise comparisons in Section 4.1 can be fur-
ther used to aggregate preference data on alternatives against criteria provided by the
experts. In this sub-section, we focus on the multi-criteria assessment of the alterna-
tives following the procedure outlined in Section 4.2. As an outcome, the four invest-
ment strategies are assigned with utility scores and ranked accordingly.

The three experts provide their assessments on alternatives A1, . . . ,A4 with regards
to criteria C1, . . . ,C4: The linguistic ratings indicate how well a given alternative per-
form on a certain criterion. The degrees of satisfaction and dissatisfaction are
expressed in the nine-point scale with possible hesitancy due to the nature of

Table 4. The pair-wise comparison of the importance of criteria by expert D2.
Criteria C1 C2 C3 C4
C1 (s4, s4) (s3, s5) (s7, s3) (s2, s6)
C2 (s6, s3) (s4, s4) (s3, s5) (s3, s7)
C3 (s3, s7) (s5, s3) (s4, s4) (s1, s5)
C4 (s6, s2) (s7, s3) (s5, s1) (s4, s4)

Source: Designed by the authors.

Table 5. The pair-wise comparison of the importance of criteria by expert D3.
Criteria C1 C2 C3 C4
C1 (s4, s4) (s3, s6) (s2, s1) (s3, s5)
C2 (s6, s3) (s4, s4) (s3, s5) (s3, s2)
C3 (s1, s2) (s5, s3) (s4, s4) (s6, s3)
C4 (s5, s3) (s2, s3) (s3, s6) (s4, s4)

Source: Designed by the authors.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 991



L.P.F.N.s (i.e., degree of indeterminacy is allowed for). Specifically, the following
linguistic term set is used: S ¼ fs0, s1, s2, s3, s4, s5, s6, s7, s8g ¼ fextremely poor, very
poor, poor, slightly poor, fair, slightly good, good, very good, extremely goodg:

Step 1. The experts provide their ratings for each alternative according to the four
criteria in linguistic terms in S. The results are arranged into individual decision
matrices Nð1Þ,Nð2Þ,Nð3Þ in Tables 6–8. The resulting data are further processed by
applying an appropriate aggregation operators (the L.P.F.W.G.A. is used here).

Step 2. The ratings provided by the three experts are aggregated into an aggregated
decision matrix N. This is accomplished applying the L.P.F.W.G.A. operator Eq.
(4.20). The assessment of the investment strategies depends on both benefit and cost
criteria. In this case, the data need to be normalised as Eq. (4.21), resulting in the
normalised aggregated decision matrix below:

Ŷ ¼
ðs3:5504, s2:1342Þ ðs3:4781, s2:8160Þ ðs3:5504, s3:3161Þ ðs1:6900, s4:9381Þ
ðs3:9008, s2:6771Þ ðs2:2071, s2:9664Þ ðs2:4634, s3:9044Þ ðs2:2071, s4:5672Þ
ðs2:2071, s2:6748Þ ðs2:4634, s3:6617Þ ðs1:7056, s2:6771Þ ðs2:7185, s2:6748Þ
ðs5:2265, s1:8123Þ ðs3:4502, s3:2848Þ ðs5:2265, s1:8123Þ ðs4:8380, s1:3200Þ

0
BB@

1
CCA:

Step 3. The criteria have different importance based on the expert ratings discussed
in Section 5.1. Accordingly, the normalised aggregated decision matrix Ŷ should be
further processed to incorporate the criteria weight information. In this case study we
apply arithmetic operator for the P.F.L.N.s Eq. (4.22). The resulting weighted decision
matrix is given in Table 9. These values will be employed to identify the theoretical
worst-performing alternative.

Step 4. The C.O.D.A.S. relies on the reference point the worst-performing (nega-
tive ideal) alternative, which is defined by the minimum elements of the columns of
the weighted matrix G. For this case study, the negative ideal alternative is given by

Table 6. Decision matrix Nð1Þ provided by expert D1.
C1 C2 C3 C4

A1 (s6, s1) (s3, s1) (s3, s3) (s1, s6)
A2 (s3, s4) (s3, s4) (s2, s5) (s2, s4)
A3 (s1, s3) (s2, s3) (s3, s2) (s6, s1)
A4 (s6, s2) (s4, s3) (s5, s1) (s7, s1)

Source: Designed by the authors.

Table 7. Decision matrix Nð2Þ provided by expert D2.
C1 C2 C3 C4

A1 (s3, s2) (s4, s1) (s3, s4) (s2, s3)
A2 (s5, s2) (s2, s1) (s3, s4) (s2, s5)
A3 (s2, s3) (s3, s3) (s1, s2) (s3, s3)
A4 (s5, s2) (s3, s3) (s5, s2) (s4, s1)

Source: Designed by the authors.

Table 8. Decision matrix Nð3Þ provided by expert D3.
C1 C2 C3 C4

A1 (s3, s3) (s3, s5) (s6, s1) (s2, s6)
A2 (s3, s2) (s2, s4) (s2, s1) (s3, s4)
A3 (s6, s1) (s2, s5) (s3, s4) (s1, s3)
A4 (s5, s1) (s4, s4) (s6, s2) (s5, s2)

Source: Designed by the authors.
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vector NS ¼ ½nsj�1�4: By Eq. (4.22), the elements of N.S. are obtained as: ns1 ¼
ðs1:1546, s5:9796Þ, ns2 ¼ ðs1:0966, s6:6339Þ ns3 ¼ ðs1:0030, s6:2659Þ, ns4 ¼ ðs0:6694, s7:4275Þ,

Step 5. The distances between the alternatives and the negative ideal solution are
measured to identify the deviations from the worst-performing case. These will be
used as the relative measures of the performance of the alternatives. The C.O.D.A.S.
involves both Euclidean and Hamming-like distances. Accordingly, Eqs (4.24) and
(4.26) are utilised to obtain the distances from the negative ideal solution, EDi and
HLDi, respectively. The data in G are used to obtain the distances given in Table 10.

Step 6. The distances obtained in Step 5 are employed to compare the alternatives
against each other (with the negative ideal solution acting as a reference point) like in
a pair-wise manner Eq. (4.28). The resulting matrix Q summarises the comparison
result. Table 11 presents the results.

Step 7. The distances describing the relative performance of the alternative are
aggregated to obtain the utility scores for the alternatives. The analysis proceeds by
adding up the elements within each row of matrix Q as outlined in Eq. (4.30). The
utility scores Si are obtained. These are reported in the second column from the right
in Table 10. A higher value of Si implies a higher distance from the negative ideal
alternative. Therefore, we rank the alternatives in descending order of Si. As a result,
the mixed strategy (simultaneous expansions in Asia, Africa, and Northern America)
is the most preferred. The overall ranking is A4 
 A2 
 A3 
 A1:

6. Comparative analysis

The results of M.C.G.D.M. are often sensitive to different aggregation operators.
Accordingly, we conduct a comparative analysis to ascertain whether the results

Table 10. LPF Weighted Euclidean and Hamming-like distances.
HLD ED

C 1 C2 C3 C4 C1 C2 C3 C4
A1 0.0625 0.0561 0.0953 0.0000 A1 0.0663 0.0599 0.1038 0.0000
A2 0.0797 0.0272 0.0382 0.0176 A2 0.0976 0.0333 0.0468 0.0187
A3 0.0001 0.0110 0.0630 0.0558 A3 0.0001 0.0135 0.0771 0.0599
A4 0.1510 0.0548 0.1934 0.1176 A4 0.1634 0.0604 0.2072 0.1417

Source: Designed by the authors.

Table 11. Relative assessment matrix (Q).
Alternatives A1 A2 A3 A4 Si Rank

A1 �0.1635 �0.0787 0.0000 �0.8093 21.0515 4
A2 0.1291 0.0000 0.1245 0.0895 0.3430 2
A3 0.0000 0.0848 0.1635 �0.6458 20.3975 3
A4 0.6458 0.7306 0.8093 0.0000 2.1857 1

Source: Designed by the authors.

Table 9. The weighted normalised aggregated decision matrix G.
Alternatives C1 C2 C3 C4
A1 ðs1:9042, s5:6299Þ ðs1:7701, s6:2294Þ ðs2:1464, s5:9268Þ ðs0:6694, s7:4275Þ
A2 ðs2:1112, s5:9796Þ ðs1:0966, s6:3075Þ ðs1:4612, s6:2659Þ ðs0:8804, s7:3388Þ
A3 ðs1:1546, s5:9783Þ ðs1:2286, s6:6339Þ ðs1:0030, s5:5101Þ ðs1:0942, s6:7587Þ
A4 ðs2:9671, s5:3904Þ ðs1:7547, s6:4634Þ ðs3:3244, s4:8245Þ ðs2:0810, s6:0627Þ
Source: Designed by the authors.
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obtained by the L.P.F.-C.O.D.A.S. are comparable in the context of other M.C.D.M.
techniques. This kind of analysis allows one to draw conclusions on the validity of
the proposed approach.

We compare the results from our proposed L.P.F.-C.O.D.A.S. with those obtained
F.L.N.s-A.H.P., I.F.S.-A.H.P., L.N.F.-P.W., I.V.F.-W.D.B.A. and I.V.P.F.-Entropy
methods. As there have been different variations of the A.H.P. method in the litera-
ture, we follow the proposed version by Panchal et al. (2017). We apply the same
decision data in Section 5 for this comparative analysis. The results are given in
Table 12. Obviously, the best- and worst-ranked alternatives remain the same across
the comparative approaches, and the middle two alternatives are also ranked the
same in our proposed approach with five of the seven other approaches, suggesting
that ranking result by the L.P.F.-C.O.D.A.S. is reliable.

The C.O.D.A.S. method applies an additional distance measure, the Hamming-
like distance, if two alternatives cannot be distinguished by the Euclidean distance,
i.e., the Euclidean distance between these two alternatives does not exceed the
threshold parameter e; see Eq. (4.28). As the threshold parameter is given exogen-
ously, it is important to carry out a sensitivity analysis to check if the ranking is
affected by the changes in the threshold parameter. In order to proceed with the
sensitivity analysis, we select different values of the threshold parameter and repeat
the L.P.F.-C.O.D.A.S. procedure. Fifteen values of the threshold parameter in [0.01,
1] are selected for this exercise and ranking result are given in Table 13, and visu-
ally displayed in Figure 2.

The results in Table 13 and Figure 2 indicate the ranking results by the L.P.F.-
C.O.D.A.S. remain the same when the threshold parameter e ranges from 0.01 to 0.3.
For e>0:3, the most preferred alternative remains the same (A4), but the ranking
results of the other three alternatives become different. This sensitivity analysis indi-
cates that the L.P.F.-C.O.D.A.S. is not so sensitive to the threshold parameter, espe-
cially in terms of the most preferred alternative.

Table 12. Comparison of ranking results with various fuzzy extensions of C.O.D.A.S.
Methodology Ranking of alternatives Best alternatives Worst alternatives

FLNs-AHP A4 
 A3 
 A2 
 A1 A4 A1
IFS-AHP A4 
 A3 
 A2 
 A1 A4 A1
LNF-PW A4 
 A2 
 A3 
 A1 A4 A1
IVF-WDBA A4 
 A2 
 A3 
 A1 A4 A1
IVNF-TOPSIS A4 
 A2 
 A3 
 A1 A4 A1
IVPF-Entropy A4 
 A2 
 A3 
 A1 A4 A1
IVAIF-VIKOR A4 
 A2 
 A3 
 A1 A4 A1
Proposed approach A4 
 A2 
 A3 
 A1 A4 A1
Source: Designed by the authors.

Table 13. Ranking results with different values of threshold e.
e

Alter. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.30 0.50 0.70 0.90 1.00

A1 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3
A2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4
A3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
A4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Source: Designed by the authors.
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7. Conclusion

This article proposes an extension of the C.O.D.A.S. technique for M.C.G.D.M., so-
called L.P.F.-C.O.D.A.S. This proposed approach takes the L.P.F. numbers as basic
decision input, which allows D.M.s express their ratings more conveniently.
Furthermore, the linguistic information is maintained throughout the aggrega-
tion process.

A case study of investment strategy selection is implemented to demonstrate the
operationality of the C.O.D.A.S. method. A comparative analysis and sensitivity ana-
lysis are carried out to check the performance of the proposed method. Results of the
comparative analysis suggest that the results obtained by the L.P.F.-C.O.D.A.S. are
consistent with the other M.C.G.D.M. methods. Sensitivity analysis confirms that the
ranking results of our approach remains the same for a wide range of the threshold
parameter values.

Further research can be carried out to apply different distance functions and
threshold rules in the decision-making process. Monte Carlo simulations can also be
carried out to identify the best performing settings. The proposed method can be
applied for solving problems in different domains.
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Figure 2. Ranking results with various values of parameter e.
Note: Cases 1–15 correspond to the different values of e 2 ½0:01, 1:00� as shown in Table 13.
Source: Designed by the authors.
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