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Determine OWA operator weights using kernel
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Mingwei Lina,b , Wenshu Xua,c, Zhanpeng Lina,c and Riqing Chenb

aCollege of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, China; bDigital
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Fuzhou, China; cDigital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian
Normal University, Fuzhou, Fujian, China

ABSTRACT
Some subjective methods should divide input values into local
clusters before determining the ordered weighted averaging
(OWA) operator weights based on the data distribution character-
istics of input values. However, the process of clustering input val-
ues is complex. In this paper, a novel probability density based
OWA (PDOWA) operator is put forward based on the data distri-
bution characteristics of input values. To capture the local cluster
structures of input values, the kernel density estimation (KDE) is
used to estimate the probability density function (PDF), which fits
to the input values. The derived PDF contains the density infor-
mation of input values, which reflects the importance of input
values. Therefore, the input values with high probability densities
(PDs) should be assigned with large weights, while the ones with
low PDs should be assigned with small weights. Afterwards, the
desirable properties of the proposed PDOWA operator are investi-
gated. Finally, the proposed PDOWA operator is applied to handle
the multicriteria decision making problem concerning the evalu-
ation of smart phones and it is compared with some existing
OWA operators. The comparative analysis shows that the pro-
posed PDOWA operator is simpler and more efficient than the
existing OWA operators.
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1. Introduction

During multi-criteria decision making (MCDM) processes (Garg, 2018a; 2018b; 2019;
Lin et al., 2018; Lin et al., 2018), various decision methods can be chosen to handle
the criteria evaluation information of alternatives for ranking them (He et al., 2019a,
2019b; Lin et al., 2019; Lin et al., 2018; Liu et al., 2019;; Wei et al., 2019; Zeng et al.,
2019). The aggregation operators are considered as a simple yet efficient MCDM
method (Garg, 2018c; Garg & Kaur, 2020), which aggregate the criteria evaluation
information of alternatives into the overall criteria values (Lin et al., 2020; Lin et al.,
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2018; Roy et al., 2019; Tang et al., 2019). According to the overall criteria values of
alternatives, all the alternatives can be ranked and then the optimal one can be
obtained (Mi et al., 2019). To improve the ranking results of MCDM problems, a var-
iety of aggregation operators have been proposed (Kang et al., 2018; Liu et al., 2020;
Riaz & Tehrim, 2019; Wei et al., 2019), such as weighted averaging operator,
weighted geometric operator, and ordered weighted averaging (OWA) operator (Yager,
1988; 2019). The OWA operator was proposed by Yager (1988). It is a parameterized
class of the mean type aggregation operators. If the OWA operator weights are deter-
mined, then special aggregation operators will be obtained, such as max, arithmetic
average, and min operators (Amarante, 2018; Gong et al., 2019; Jin et al., 2019a;
Merig�o & Yager, 2019; Yager, 2019; Yi & Li, 2019). Since it appeared, it has attracted
much attention from a large number of well-known research scholars (Beliakov et al.,
2018; Leite & �Skrjanc, 2019; Li et al., 2020; Mesiar et al., 2018). Due to its practicality,
it has been widely applied in various fields such as machine learning (Maldonado et al.,
2018), EEG signal improvement (Pander, 2019), time series data fusion (Liu & Xiao,
2019), and risk assessment (Lin et al., 2020; Ma & Cong, 2019).

The implementation process of the OWA operator is composed of three steps: (1)
The input values are rearranged in the descending order. (2) The weights of the rear-
ranged input values are determined using an efficient method. (3) Finally, according
to the derived weights, these rearranged input values are aggregated into a single
value (Yager, 1988). How to determine the weights of rearranged input values is
important for the OWA operator since using different weight information to aggre-
gate rearranged input values may derive different ranking results (Casanovas et al.,
2020; Jin et al., 2019b; Liu et al., 2019). How to derive the weights of the OWA oper-
ator has become a hot research topic in the decision making analysis field and a large
quantity of methods have been put forward, such as constraint optimization models
(Filev & Yager, 1995; Fuller & Majlender, 2001), quantifier functions (Yager, 1999;
Yager & Filev, 1994), and distribution assumption (Lenormand, 2018; Sadiq &
Tesfamariam, 2007; Sha et al., 2019; Xu, 2005). For these methods, the weights of the
OWA operator are determined in an objective way. They do not consider the com-
plex data distribution characteristics of input values. For the distribution assumption
methods, it is assumed that the distribution of the OWA operator weights follows
various types of commonly used probability density functions. Although they own
solid theoretical foundations and have desirable properties, the ideal hypothesis is
unrealistic since the real OWA operator weights usually cannot fit the probability
density functions in the practical situations.

Based on the data distribution characteristics of input values, several methods
(Boongoen & Shen, 2008; Li et al., 2016; Xu, 2006; Yager, 1993) have been devised.
The argument-dependent method (Xu, 2006; Yager, 1993) assigns the input values far
away from the average value with small weights and the input values close to the
average value with large weights. It treats all the input values as only one cluster,
whose average value is solely used to derive the OWA operator weights. However, in
the practical cases, the input values show complex data distribution characteristics,
where there may exist two or more local clusters. To identify these local clusters, an
agglomerative hierarchical clustering method was modified by Boongoen and Shen
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(2008) to partition the input values into multiple local clusters. After that, a clus-
DOWA operator was proposed to derive the weights of input values based on their
distances to their nearest local clusters. Using the concept of majority clusters, a
majority clusters DOWA (MC-DOWA) operator was proposed by Li et al. (2016). It
computes the weights based on the ratio of the number of input values in the local
clusters to the number of all the input values. The clus-DOWA and MC-DOWA
operators are capable of generating relatively reasonable ranking results by consider-
ing the complex data distribution characteristic of the input values, but they have
high time complexity since classification methods should be first adopted to partition
input values into some local clusters before calculating the weights. Moreover, for the
MC-DOWA operator, the weights of different input values within the same local clus-
ters are assigned with equal weights. It does not make sense.

To overcome these drawbacks, a novel probability density method is proposed to
derive the weights of the OWA operator. A powerful mathematical tool, called the ker-
nel density estimation (KDE), is introduced to estimate the probability density function
(PDF) for fitting all the input values. The KDE can effectively capture the complex
data distribution characteristic of input values without using complicated classification
methods. According to the derived PDF, the input values with high probability den-
sities are assigned with large weights, while the input values with low probability den-
sities are assigned with small weights. Based on the probability density method, a novel
probability density based OWA (PDOWA) operator is proposed in this paper and its
desirable properties are investigated. An application is also developed to implement the
processes of reordering, weighting, and aggregating input values of the proposed
PDOWA operator. Finally, a practical MCDM example of evaluating smart phones is
provided to show the application of the proposed PDOWA operator in the MCDM
problem and then the comparative analysis is also given.

The rest of this paper is organized as follows: Some basic knowledge of the OWA
operator is provided in Section 2. Section 3 proposes a novel probability density
method to determine the OWA weights. Section 4 presents a novel probability dens-
ity based OWA (PDOWA) operator and develops a smart application for the pro-
posed PDOWA operator. In Section 5, an illustrative MCDM example concerning the
evaluation of smart phones is provided and then the comparative analysis is also
given. Finally, the valuable conclusions are drawn in Section 6.

2. Preliminaries

An OWA operator (Yager, 1988) is actually a mapping function OWA : Rn ! R,
which is associated with a weight vector W ¼ w1,w2, . . . ,wn½ � satisfying wj 2 0, 1½ �
and

Pn
j¼1 wj 2 0, 1½ �:

OWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj

where I1, I2, . . . , In are the input values to be aggregated and vj denotes the j th larg-
est one among the input values I1, I2, . . . , In:
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By assigning special values to the OWA operator weights, some special operators
can be derived from the OWA operator as follows (Yager, 1988):

(1) When W ¼ 1, 0, . . . , 0½ �, then the OWA operator reduces to the max operator
and

OWA I1, I2, . . . , Inð Þ ¼ max I1, I2, . . . , Inð Þ;

(2) When W ¼ 0, 0, . . . , 1½ �, then the OWA operator reduces to the min operator
and

OWA I1, I2, . . . , Inð Þ ¼ min I1, I2, . . . , Inð Þ;

(3) When W ¼ 1
n ,

1
n , . . . ,

1
n

� �
, then the OWA operator reduces to the arithmetic

averaging operator and

OWA I1, I2, . . . , Inð Þ ¼ 1
n

Xn
i¼1

Ii:

If an aggregation operator is considered as the OWA operator, then it should have
the following four properties (Yager, 1988):

(1) Boundedness: The aggregated value from an OWA operator should fall in
between the minimum value and maximum value among the input values, namely

min I1, I2, . . . , Inð Þ � OWA I1, I2, . . . , Inð Þ � max I1, I2, . . . , Inð Þ

(2) Monotonicity: If Bi � Si for 8i, then we have

OWA B1,B2, . . . ,Bnð Þ � OWA S1, S2, . . . , Snð Þ

(3) Commutativity: If ~I1,~I2, . . . ,~In is any permutation of I1, I2, . . . , In, then we
have

OWA I1, I2, . . . , Inð Þ ¼ OWA ~I1,~I2, . . . ,~In
� �

(4) Idempotency: If I1 ¼ I2 ¼ � � � ¼ In ¼ I, then we have

OWA I1, I2, . . . , Inð Þ ¼ I

Two important measures have been defined by Yager (1988) to characterize the
OWA operators, which are the orness and dispersion. The former measure, also
called attitudinal character, is defined as

OðWÞ ¼ 1
n� 1

Xn
j¼1

n� jð Þwj (1)

where OðWÞ denotes the orness of the OWA operator.
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Yager (1988) gave the orness measures of max, min, and arithmetic averaging
operators as

O Wmaxð Þ ¼ 1,O Wminð Þ ¼ 0,O Waað Þ ¼ 0:5

where Wmax, Wmin, Waa denote the weight vectors of max, min, and arithmetic aver-
aging operators.

It can be noted that the value of orness measure of the OWA operator falls in the
unit interval [0,1] and the orness measure of the OWA operator actually characterizes
its similarity degree to the max operator.

The latter measure, also called entropy, is defined as

EðWÞ ¼ �
Xn
j¼1

wj ln wjð Þ (2)

where EðWÞ denotes the dispersion of the OWA operator. It characterizes how uni-
formly the input values are being used.

3. Probability density method

As demonstrated in Figure 1, the implementation process of the proposed probability
density based OWA (PDOWA) operator works as follows:

1. A given set of input values I1, I2, . . . , Inf g are reordered in descending order
as m1, m2, . . . , mnf g;

2. The mathematical tool of kernel density estimation (KDE) is used to estimate a
probability density function (PDF), which can describe how the input values are
distributed;

3. The estimated probability density function is used to compute the OWA operator
weights;

Figure 1. The flow chart of the probability density based OWA operator. Source: The authors’ data.
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4. The reordered input values associated with their weights are aggregated into a
single value.

The key to the PDOWA operator is how to identify the data distribution charac-
teristics of input values. In the OWA operator studied by Xu (2005), the input values
are supposed to be independent and identically distributed and follow the normal dis-
tribution. Nevertheless, in the real situations, the input values are often distributed
irregularly and they cannot follow the ideal normal distribution. Therefore, it is
unreasonable to assume that the input values follow the normal distribution. To avoid
the unreasonable assumption, a novel probability density method is proposed, which
uses the kernel density estimation to estimate the probability density function that
describes how the input values are distributed. As a nonparametric method, the ker-
nel density estimation can estimate the probability density function of the given input
values without the priori knowledge about the data distribution characteristic. Based
on the kernel density estimation, the probability density function of the reordered
input values m1, m2, . . . , mnf g can be estimated as

p̂ðmÞ ¼ 1
nh

Xn
i¼1

K
m�mi
h

� �
(3)

where p̂ðvÞ denotes the estimated probability density function of the random variable
v, n denotes the number of input values, h is a smoothing parameter, also called
bandwidth, Kð�Þ is a kernel.

The kernel Kð�Þ has the following three features: (1) KðxÞ is symmetric; (2)Ð1
�1 KðxÞdx ¼ 1; and (3) KðxÞ � 0 for all x: As depicted in Figure 2, there are some
classical kernel functions: normal (Gaussian), uniform, and Epanechnikov. Because of
its desirable mathematical properties, the Gaussian kernel is chosen in this paper,
which is defined as KðxÞ ¼ 1ffiffiffiffi

2p
p e�

1
2x

2
, where x ¼ v�vi

h :

Figure 2. The graphical representation of some classical kernel functions. Source: The authors’ data.
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From Equation (3), it is seen that the accuracy of the estimated probability density
function depends on the smoothing parameter h and kernel function Kð�Þ when the
number of input values are enough large. Through statistical experiments,
Epanechnikov (1969) and Scott (1992) found that different types of kernel functions
have slight influences on the accuracy when the smoothing parameter is fixed.
However, different values for smoothing parameter show great impacts on the accur-
acy. The smoothing parameter h governs the smoothness degrees of the estimated
probability density functions. Large values generate oversmoothed estimations, while
small values generate undersmoothed estimations. Hence, how to choose an appropri-
ate value for the smoothing parameter is crucial to kernel density estimation. To
determine an optimal value for smoothing parameter, there are many methods that
have been put forward such as Scott’s rule (Scott, 1992), Silverman’s rule (Silverman,
1986), and cross validation (Rudemo, 1982). Scott’s rule and Silverman’s rule assume
that the underlying distribution of input values is unimodal and normal, despite
the fact that the real distribution is multimodal and non-normal. Thus, it is to be
expected that the derived optimal value will be too large for the multimodal distribu-
tions. In this case, it will produce the oversmoothed probability density functions.
The cross validation is an empirical method, which can produce more trustworthy
optimal values regardless of the underlying distribution characteristics of the input
values. All of these methods have been implemented in Python. Scott’s rule and
Silverman’s rule are implemented in SciPy module and the cross validation is imple-
mented in the Statsmodels KDEMultivariate class.

Example 1. Suppose that seven experts are invited to provide their preferences for a
cloud storage service production with respect to its criterion performance. The col-
lected preferences are expressed as

I1 ¼ 8:0, I2 ¼ 9:8, I3 ¼ 5:5, I4 ¼ 9:5, I5 ¼ 2:8, I6 ¼ 8:6, I7 ¼ 3:2f g

The above preferences are reordered in descending order as

v1 ¼ 9:8, v2 ¼ 9:5, v3 ¼ 8:6, v4 ¼ 8:0, v5 ¼ 5:5, v6 ¼ 3:2, v7 ¼ 2:8f g

The estimated probability density functions are depicted in Figures 3–5 when dif-
ferent methods are used.

As shown in Figures 3 and 4, it is seen that the estimated probability density func-
tions are oversmoothed and they is incapable of identifying the local cluster structures
of the input values when the Scott’s rule and Silverman’s rule are used to determine
the optimal values for the smoothing parameter. As shown in Figure 5, When the
cross validation is used, two local cluster structures can be identified in the estimated
probability density function. Hence, the optimal value derived from the cross valid-
ation method is more trustworthy.

We can also estimate the desirable probability density function by manually adjust-
ing the value of the smoothing parameter. As the value of the smoothing parameter
varies, various estimated probability density functions can be generated as depicted in
Figure 6.
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As shown in Figure 6, the probability density function shown as the blue curve is
undersmoothed since it fits “biased” data when the value of smoothing parameter
h ¼ 0:6: The probability density function shown as the black curve is oversmoothed
since it is incapable of identifying the underlying local cluster structures of the input
values when h ¼ 2:0: The probability density function shown as the green curve is
considered to be optimally smoothed since it approximates the real data distribution
characteristic of input values when h ¼ 1:4:

Through the above analysis, it can be seen that the estimated probability density
function can not only capture the local densities of given input values, but also iden-
tify their local cluster structures without using time-consuming classification methods.
It is well known that the input values with high probability densities have large import-
ance and the input values with low probability densities have small importance.

Figure 4. The estimated probability density function of input values when using Silverman’s rule.
Source: The authors’ data.

Figure 3. The estimated probability density function of input values when using Scott’s rule.
Source: The authors’ data.
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Following this rule, the input values with high probability densities should be assigned
with large weights and the input values with low probability densities should be
assigned with relatively small weights. Therefore, based on the estimated probability
density function, the weights of the OWA operator can be derived as

wj ¼
p̂ mjð ÞPn
l¼1p̂ mlð Þ ¼

1
nh

Pn
i¼1K

mj�mi
h

	 

Pn

l¼1
1
nh

Pn
i¼1K

ml�mi
h

� �	 


¼
Pn

i¼1K
mj�mi
h

	 

Pn

l¼1

Pn
i¼1K

ml�mi
h

� � ¼ Pn
i¼1e

�1
2

mj�mi
hð Þ2Pn

l¼1

Pn
i¼1e

�1
2

ml�mi
hð Þ2

(4)

Figure 5. The estimated probability density function of input values when using cross validation.
Source: The authors’ data.

Figure 6. The estimated probability density functions for different values of smoothing parameter.
Source: The authors’ data.
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where W ¼ w1,w2, . . . ,wj, . . . ,wn½ � denotes the weight vector of the OWA operator

that satisfies wj 2 0, 1½ � and Pn
j¼1 wj 2 0, 1½ �:

Let dðvjÞ ¼
Pn

i¼1 e
�1

2ð
mj�mi
h Þ2 denote the proximity density (PD) of the input value vj

to the other input values, then we can obtain the following theorem.

Theorem 1. Given a set of input values I1, I2, . . . , Inf g, then its descending ordered set
is m1, m2, . . . , mnf g. If the proximity densities of input values vj and vk satisfy that
dðvjÞ � dðvkÞ, then wðvjÞ � wðvkÞ:

Proof. A ccording to equation (4), we can have

w vjð Þ�w vkð Þ ¼
Pn

i¼1e
�1

2

mj�mi
hð Þ2�Pn

i¼1e
�1

2
mk�mi

hð Þ2Pn
l¼1

Pn
i¼1e

�1
2

ml�mi
hð Þ2 ¼ d vjð Þ�d vkð ÞPn

l¼1

Pn
i¼1e

�1
2

ml�mi
hð Þ2

Since dðvjÞ � dðvkÞ, then wðvjÞ�wðvkÞ � 0: It completes the proof of Theorem 1.
It can be observed that the OWA operator weights of descending ordered input val-
ues depend on their proximity densities.

4. Probability density based OWA operator

Based on the above weight determining method, in this paper, the PDOWA operator
is defined as:

PDOWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj ¼
Xn
j¼1

Xn
i¼1

e�
1
2

mj�mi
hð Þ2vj

 !
=
Xn
l¼1

Xn
i¼1

e�
1
2

ml�mi
hð Þ2 (5)

According to Equations (1) and (2), the orness and dispersion of the PDOWA
operator are computed as

OðWÞ ¼ 1
n� 1

Xn
j¼1

n� jð Þ
Xn
i¼1

e�
1
2

mj�mi
hð Þ2=

Xn
l¼1

Xn
i¼1

e�
1
2

ml�mi
hð Þ2

 !
(6)

EðWÞ ¼ �
Xn
j¼1

Xn
i¼1

e�
1
2

mj�mi
hð Þ2=

Xn
l¼1

Xn
i¼1

e�
1
2

ml�mi
hð Þ2

 !
ln

Xn
i¼1

e�
1
2

mj�mi
hð Þ2=

Xn
l¼1

Xn
i¼1

e�
1
2

ml�mi
hð Þ2

 !

(7)

when I1 ¼ I2 ¼ � � � ¼ In, then we have OðWÞ ¼ 1
2 and EðWÞ ¼ ln n:

In the following part, some properties of the proposed PDOWA operator
are discussed.
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Property 1 (Boundedness) Given a set of input values I1, I2, . . . , Inf g, then we have

min I1, I2, . . . , Inð Þ � PDOWA I1, I2, . . . , Inð Þ � max I1, I2, . . . , Inð Þ

Proof. A ccording to equation (5), we have

PDOWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj ¼
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2vj

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2

�
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2min v1, v2, . . . , vnð Þ

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2

¼
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2min I1, I2, . . . , Inð Þ

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2 ¼ min I1, I2, . . . , Inð Þ

Similarly,

PDOWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj ¼
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2vj

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2

�
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2max v1, v2, . . . , vnð Þ

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2

¼
Xn

j¼1

Xn

i¼1
e�

1
2

mj�mi
hð Þ2max I1, I2, . . . , Inð Þ

� �
Xn

l¼1

Xn

i¼1
e�

1
2

ml�mi
hð Þ2 ¼ max I1, I2, . . . , Inð Þ

which completes the proof of property 1.
Property 2 (Commutativity) If ~I1,~I2, . . . ,~In is any permutation of I1, I2, . . . , In,

then we have

PDOWA I1, I2, . . . , Inð Þ ¼ PDOWA ~I1,~I2, . . . ,~In
� �

Proof. If ~I1,~I2, . . . ,~In is any permutation of given input values I1, I2, . . . , In, then
their descending ordered sets are equal, which is v1, v2, . . . , vn: Therefore, we have

PDOWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj ¼
Pn

j¼1

Pn
i¼1e

�1
2

mj�mi
hð Þ2vj

	 

Pn

l¼1

Pn
i¼1e

�1
2

ml�mi
hð Þ2

¼ PDOWA ~I1,~I2, . . . ,~In
� �

which completes the proof of property 2.
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Property 3 (Idempotency) If I1 ¼ I2 ¼ � � � ¼ In ¼ I, then we have

PDOWA I1, I2, . . . , Inð Þ ¼ I

Proof. If I1 ¼ I2 ¼ � � � ¼ In ¼ I, then we have v1 ¼ v2 ¼ � � � ¼ vn ¼ I:
According to Equation (4), the weights of input values are

wj ¼
Pn

i¼1e
�1

2
m�m
hð Þ2Pn

l¼1

Pn
i¼1e

�1
2

m�m
hð Þ2 ¼

1
n

Using Equation (5), we have

PDOWA I1, I2, . . . , Inð Þ ¼
Xn
j¼1

wjvj ¼
Xn
j¼1

1
n
� I ¼ I:

which completes the proof of property 3.

Example 2. The online reviews of a brand car are collected as
2:7, 3:2, 3:6, 8:2, 8:5, 5:4, 7:6, 3:3f g: When the proposed PDOWA operator is used, the

implementation processes are listed as follows:

1. They are reordered in descending order as 8:5, 8:2, 7:6, 5:4, 3:6, 3:3, 3:2, 2:7f g;
2. The probability density function of the online reviews is estimated as depicted in

Figure 7.
3. The estimated probability density function is used to computed the weights of

the PDOWA operator as

Figure 7. The estimated probability density function fitting online reviews. Source: The authors’ data.

1452 M. LIN ET AL.



w1ðv1Þ ¼ 0:1024, w2ðv2Þ ¼ 0:1078, w3ðv3Þ ¼ 0:1084, w4ðv4Þ ¼ 0:0967,
w5ðv5Þ ¼ 0:1497, w6ðv6Þ ¼ 0:1501, w7ðv7Þ ¼ 0:1491, w8ðv8Þ ¼ 0:1358
(4) The reordered online reviews associated with their weights are aggregated into

a single value as

PDOWA I1, I2, . . . , Inð Þ ¼ 4:9784

To automatically perform the implementation processes of the PDOWA operator,
a smart application is developed using Python. Tkinter, the standard GUI (Graphical
User Interface) library in Python, is adopted to develop the GUI for this smart appli-
cation. As shown in Figure 8, after running the smart application, users can enter a
series of input values separated by commas and specify a value for the smoothing
parameter h: When the button “submit” is clicked, the processes for reordering,
weighting, and aggregating input values can be performed automatically along with
the estimation of probability density function.

5. Illustrative example and comparative analysis

In this section, we present an illustrative example to illustrate the application of the
proposed PDOWA operator in the MCDM problem and then the comparative ana-
lysis is also given.

5.1. Illustrative example

In this subsection, the proposed PDOWA operator is applied to aggregate the evalu-
ation information of multiple experts since the experts usually cannot reach

Figure 8. The smart application performing the implementation processes of the PDOWA operator.
Source: The authors’ data.
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consensus so that their evaluation information shows the complex data distribution
characteristics in terms of local clusters.

Example 3. An organization intends to purchase a batch of smart phones. After
screening, four alternatives a1, a2, a3, a4f g are selected to be further evaluated accord-
ing to four criteria: price (c1), performance (c2), battery life (c3), and after-sale service
(c4). The weight values of these four criteria are ð0:3, 0:3, 0:2, 0:2Þ: Eight experts
e1, e2, . . . , e8f g are called to evaluate these four alternatives with respect to their four

criteria and then all the evaluation information is collected to construct eight decision
matrices as shown in Tables 1–8.

In the following part, we show the application of the proposed PDOWA operator
in this group MCDM problem.

Step 1: The criteria values of four alternatives in the above eight decision matrices
are fused using the following equation:

Table 1. Decision matrix provided by the first expert.
c1 c2 c3 c4

a1 8.0 7.8 7.8 7.5
a2 7.9 7.7 7.5 7.6
a3 8.5 8.3 8.5 8.8
a4 8.7 8.5 8.9 8.8

Source: The authors’ data.

Table 2. Decision matrix provided by the second expert.
c1 c2 c3 c4

a1 8.0 8.0 7.9 8.1
a2 8.1 7.9 7.8 7.7
a3 8.9 8.5 9.0 8.9
a4 8.2 8.6 8.0 8.8

Source: The authors’ data.

Table 3. Decision matrix provided by the third expert.
c1 c2 c3 c4

a1 8.0 7.8 8.2 9.1
a2 7.5 7.9 8.1 8.8
a3 9.2 8.8 8.5 9.5
a4 9.0 8.2 8.0 9.2

Source: The authors’ data.

Table 4. Decision matrix provided by the fourth expert.
c1 c2 c3 c4

a1 8.5 8.3 7.8 9.0
a2 7.9 8.1 8.1 8.9
a3 6.2 6.8 6.1 6.9
a4 6.6 6.6 5.8 7.4

Source: The authors’ data.

Table 5. Decision matrix provided by the fifth expert.
c1 c2 c3 c4

a1 5.4 4.6 4.9 5.1
a2 5.5 4.9 5.4 5.5
a3 5.9 6.9 7.4 7.4
a4 5.7 6.5 7.6 8.1

Source: The authors’ data.
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Iki ¼ xjr
k
ij

where rkij is the evaluation information of alternative ai with respect to criterion cj
that is provided by the kth expert. The term xj denotes the weight value of criterion
cj: The term Iki denotes the aggregated criteria value of alternative ai in the decision
matrix provided by the kth expert.

The aggregated criteria values of four alternatives provided by eight experts are
shown in Table 9. For example, the set 7:8, 8:0, 8:2, 8:4, 5:0, 5:8, 5:5, 6:0f g contains all
the aggregated criteria values of alternative a1 provide by eight experts.

Step 2: All the aggregated criteria values of alternatives provided by eight experts
are reordered in the descending order. The reordered aggregated criteria values are
shown in Table 10.

Table 6. Decision matrix provided by the sixth expert.
c1 c2 c3 c4

a1 5.5 5.9 5.9 6.0
a2 5.1 5.9 5.2 5.8
a3 5.2 4.2 4.9 5.0
a4 5.1 4.5 5.1 5.0

Source: The authors’ data.

Table 7. Decision matrix provided by the seventh expert.
c1 c2 c3 c4

a1 5.8 5.0 5.9 5.4
a2 5.5 5.1 6.2 5.9
a3 5.1 4.7 5.2 5.1
a4 5.2 4.8 5.4 5.6

Source: The authors’ data.

Table 8. Decision matrix provided by the eighth expert.
c1 c2 c3 c4

a1 5.8 6.0 6.4 5.9
a2 5.9 6.1 5.6 5.4
a3 5.2 5.2 4.7 5.2
a4 5.1 5.5 4.8 5.8

Source: The authors’ data.

Table 9. The group aggregated criteria values.
Group aggregated criteria values

a1 fI11, I21, I31, I41, I51, I61, I71, I81g ¼ f7:8, 8:0, 8:2, 8:4, 5:0, 5:8, 5:5, 6:0g
a2 fI12, I22, I32, I42, I52, I62, I72, I82g ¼ f7:7, 7:9, 8:0, 8:2, 5:3, 5:5, 5:6, 5:8g
a3 fI13, I23, I33, I43, I53, I63, I73, I83g ¼ f8:5, 8:8, 9:0, 6:5, 6:8, 4:8, 5:0, 5:1g
a4 fI14, I24, I34, I44, I54, I64, I74, I84g ¼ f8:7, 8:4, 8:6, 6:6, 6:8, 4:9, 5:2, 5:3g
Source: The authors’ data.

Table 10. The reordered group aggregated criteria values.
Reordered group aggregated criteria values

a1 fv11 , v21 , v31 , v41 , v51 , v61 , v71 , v81g ¼ f8:4, 8:2, 8:0, 7:8, 6:0, 5:8, 5:5, 5:0g
a2 fv12 , v22 , v32 , v42 , v52 , v62 , v72 , v82g ¼ f8:2, 8:0, 7:9, 7:7, 5:8, 5:6, 5:5, 5:3g
a3 fv13 , v23 , v33 , v43 , v53 , v63 , v73 , v83g ¼ f9:0, 8:8, 8:5, 6:8, 6:5, 5:1, 5:0, 4:8g
a4 fv14 , v24 , v34 , v44 , v54 , v64 , v74 , v84g ¼ f8:7, 8:6, 8:4, 6:8, 6:6, 5:3, 5:2, 4:9g
Source: The authors’ data.
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Step 3: Using Equation (4), the OWA weights of all the aggregated criteria values
of four alternatives are computed as

w a1ð Þ ¼ 0:1184, 0:1251, 0:1306, 0:1348, 0:1340, 0:1301, 0:1224, 0:1047ð Þ;

w a2ð Þ ¼ 0:1174, 0:1240, 0:1269, 0:1318, 0:1318, 0:1269, 0:1240, 0:1174ð Þ;

w a3ð Þ ¼ 0:1086, 0:1146, 0:1215, 0:1372, 0:1393, 0:1303, 0:1275, 0:1210ð Þ;

w a4ð Þ ¼ 0:1120, 0:1152, 0:1210, 0:1415, 0:1421, 0:1282, 0:1252, 0:1147ð Þ

Step 4: Using Equation (5), the final aggregated criteria values of four alternatives
are computed as

PDOWA a1ð Þ ¼ 6:8714, PDOWA a2ð Þ ¼ 6:7500,PDOWA a3ð Þ ¼ 6:7398,PDOWA a4ð Þ
¼ 6:7748

Therefore, the ranking result of these four alternatives is a1 � a4 � a2 � a3:

5.2. Comparative analysis

To verify the superiority of our proposed PDOWA operator, we also use the normal
distribution based OWA operator (Xu, 2005), clus-DOWA operator (Boongoen &
Shen, 2008), and MC-DOWA operator (Li et al., 2016) to handle the above
MCDM problem.

(1) When the normal distribution based OWA (NDOWA) operator is applied to
process Example 3, the OWA weights of all the aggregated criteria values of four
alternatives are computed as

w a1ð Þ ¼ 0:0588, 0:1042, 0:1525, 0:1845, 0:1845, 0:1525, 0:1042, 0:0588ð Þ;

w a2ð Þ ¼ 0:0588, 0:1042, 0:1525, 0:1845, 0:1845, 0:1525, 0:1042, 0:0588ð Þ;

w a3ð Þ ¼ 0:0588, 0:1042, 0:1525, 0:1845, 0:1845, 0:1525, 0:1042, 0:0588ð Þ;

w a4ð Þ ¼ 0:0588, 0:1042, 0:1525, 0:1845, 0:1845, 0:1525, 0:1042, 0:0588ð Þ

It can be seen that the OWA weights of all the aggregated criteria values of four
alternatives are equal. That is because it assumes that the OWA weights follow the
normal distribution and then the corresponding probability density function is
applied to compute the OWA weights of all the aggregated criteria values of four
alternatives. However, this probability density function is instantiated using the num-
ber of aggregated criteria values of four alternatives instead of their aggregated
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criteria values. Hence, the probability density function cannot identify local clusters
of aggregated criteria values as the proposed PDOWA operator.

The final aggregated criteria values of four alternatives are computed as

NDOWA a1ð Þ ¼ 6:8661,NDOWA a2ð Þ ¼ 6:7500,NDOWA a3ð Þ ¼ 6:7772,NDOWA a4ð Þ
¼ 6:7992

Therefore, the ranking result of these four alternatives is a1 � a4 � a3 � a2:
(2) When the clus-DOWA operator is applied to process Example 3, then the

modified agglomerative hierarchical clustering algorithm should be first used to div-
ide the aggregated criteria values of alternatives into clusters as shown in Table 11.

Then, the OWA weights of aggregated criteria values of four alternatives are com-
puted as

w a1ð Þ ¼ 0:1304, 0:1304, 0:1304, 0:1304, 0:1304, 0:1304, 0:1180, 0:0994ð Þ;

w a2ð Þ ¼ 0:1212, 0:1342, 0:1342, 0:1104, 0:1212, 0:1342, 0:1342, 0:1104ð Þ;

w a3ð Þ ¼ 0:1274, 0:1274, 0:1120, 0:1197, 0:1197, 0:1351, 0:1351, 0:1236ð Þ;

w a4ð Þ ¼ 0:1327, 0:1327, 0:1173, 0:1224, 0:1224, 0:1327, 0:1327, 0:1071ð Þ

For alternative a1, it can be noted that most of the OWA weights are 0.1304
except the weights of the last two aggregated values. It is unreasonable. That is
because the clustering algorithm mistakenly partitions the aggregated criteria values
{8.4, 8.2, 8.0, 7.8} into two clusters: {8.4, 8.2} and {8.0, 7.8}.

Finally, the final aggregated criteria values of four alternatives are computed as

clus�DOWA a1ð Þ ¼ 6:9097, clus�DOWA a2ð Þ ¼ 6:7554, clus�DOWA a3ð Þ
¼ 6:7695, clus�DOWA a4ð Þ ¼ 6:8393

Therefore, the ranking result of these four alternatives is a1 � a4 � a3 � a2:
(3) When the MC-DOWA operator is used to handle Example 3, then the classifi-

cation method should be first used to group the aggregated criteria values of four
alternatives into some clusters. Here, we use the k-means method to divide the aggre-
gated criteria values of four alternatives into clusters as shown in Table 12.

Table 11. The clusters for the clus-DOWA operator.
Clusters

a1 f8:4, 8:2g, f8:0, 7:8g, f6:0, 5:8, 5:5, 5:0g
a2 f8:2, 8:0, 7:9, 7:7g, f5:8, 5:6, 5:5, 5:3g
a3 f9:0, 8:8, 8:5g, f6:8, 6:5g, f5:1, 5:0, 4:8g
a4 f8:7, 8:6, 8:4g, f6:8, 6:6g, f5:3, 5:2, 4:9g
Source: The authors’ data.
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Then, the local weights of the aggregated criteria values of alternative a1 are derived as

wl 8:4ð Þ ¼ wl 8:2ð Þ ¼ wl 8:0ð Þ ¼ wl 7:8ð Þ ¼ 0:25,wl 6:0ð Þ ¼ wl 5:8ð Þ ¼ wl 5:5ð Þ ¼ wl 5:0ð Þ ¼ 0:25

The global weights of two clusters of alternative a1 are derived as

wg 8:4, 8:2, 8:0, 7:8f gð Þ ¼ 0:5,wg 6:0, 5:8, 5:5, 5:0f gð Þ ¼ 0:5

The local weights of the aggregated criteria values of alternative a2 are derived as

wl 8:2ð Þ ¼ wl 8:0ð Þ ¼ wl 7:9ð Þ ¼ wl 7:7ð Þ ¼ 0:25,wl 5:8ð Þ ¼ wl 5:6ð Þ ¼ wl 5:5ð Þ ¼ wl 5:3ð Þ ¼ 0:25

The global weights of two clusters of alternative a2 are derived as

wg 8:2, 8:0, 7:9, 7:7f gð Þ ¼ 0:5,wg 5:8, 5:6, 5:5, 5:3f gð Þ ¼ 0:5

The local weights of the aggregated criteria values of alternative a3 are derived as

wl 9:0ð Þ ¼ wl 8:8ð Þ ¼ wl 8:5ð Þ ¼ 0:33,wl 6:8ð Þ ¼ wl 6:5ð Þ ¼ 0:5,wl 5:1ð Þ ¼ wl 5:0ð Þ
¼ wl 4:8ð Þ ¼ 0:33

The global weights of three clusters of alternative a3 are derived as

wg 9:0, 8:8, 8:5f gð Þ ¼ 0:42,wg 6:8, 6:5f gð Þ ¼ 0:42,wg 5:1, 5:0, 4:8f gð Þ ¼ 0:15

The local weights of the aggregated criteria values of alternative a4 are derived as

wl 8:7ð Þ ¼ wl 8:6ð Þ ¼ wl 8:4ð Þ ¼ 0:33,wl 6:8ð Þ ¼ wl 6:6ð Þ ¼ 0:5,wl 5:3ð Þ ¼ wl 5:2ð Þ
¼ wl 4:9ð Þ ¼ 0:33

The global weights of three clusters of alternative a4 are derived as

wg 8:7, 8:6, 8:4f gð Þ ¼ 0:42,wg 6:8, 6:6f gð Þ ¼ 0:42,wg 5:3, 5:2, 4:9f gð Þ ¼ 0:15

Finally, the final aggregated criteria values of four alternatives are computed as

MC�DOWA a1ð Þ ¼ 6:8375,MC � DOWA a2ð Þ ¼ 6:7500,MC � DOWA a3ð Þ
¼ 6:7655,MC � DOWA a4ð Þ ¼ 6:7590

Therefore, the ranking result of these four alternatives is a1 � a3 � a4 � a2:

Table 12. The clusters for the MC-DOWA operator.
Clusters

a1 f8:4, 8:2, 8:0, 7:8g, f6:0, 5:8, 5:5, 5:0g
a2 f8:2, 8:0, 7:9, 7:7g, f5:8, 5:6, 5:5, 5:3g
a3 f9:0, 8:8, 8:5g, f6:8, 6:5g, f5:1, 5:0, 4:8g
a4 f8:7, 8:6, 8:4g, f6:8, 6:6g, f5:3, 5:2, 4:9g
Source: The authors’ data.
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The ranking results obtained from the above four operators are summarized in
Table 13.

From Table 13, it can be noted that the proposed PDOWA operator obtains the
same best alternative as the NDOWA, clus-DOWA, and MC-DOWA operators. It
shows the effectiveness of the proposed PDOWA operator. However, the ranking
result obtained from the proposed PDOWA operator is different from those that are
obtained from the other operators. The reasons are analyzed as follows:

1. For the NDOWA operator, it is assumed that the OWA weights of aggregated
criteria values follow the normal distribution and the corresponding probability
density function is applied to determine the OWA weights. However, this prob-
ability density function need to be instantiated using the number of aggregated
criteria values instead of aggregated criteria values. Hence, the probability density
function cannot identify local clusters of aggregated criteria values so that it
derives the same set of OWA weights for different sets of aggregated criteria
values with the same number of aggregated criteria values. As depicted in
Example 3, it is noted that the sets of OWA weights for four alternatives
a1, a2, a3, a4f g are equal.

2. For the clus-DOWA operator, the modified agglomerative hierarchical clustering
algorithm should be first used to divide the aggregated criteria values of alterna-
tives into clusters. Nevertheless, the algorithm may derive wrong clustering
results, which greatly influence the OWA weights. For example, it mistakenly
divides the aggregated criteria values {8.4, 8.2, 8.0, 7.8} of alternative a1 into two
clusters: {8.4, 8.2} and {8.0, 7.8}.

3. For the MC-DOWA operator, the aggregated criteria values of each alternative in
the same clusters own the same weight even if the aggregated criteria values in
the same clusters are different. Therefore, the obtained OWA weights are
unreasonable.

4. The proposed PDOWA operator uses the mathematical tool of kernel density
estimation to identify the underlying local cluster structures among the aggre-
gated criteria values. Therefore, it can overcome the defects of the other operators
and the derived OWA weights are more reasonable.

From the above analysis, the advantages of the proposed PDOWA operator are
summarized as follows:

1. The clus-DOWA and MC-DOWA operators use the classification methods to
divide the aggregated criteria values into clusters before deriving the OWA oper-
ator weights. However, the process for clustering aggregated criteria values is

Table 13. The ranking results obtained from different operators.
Operators Ranking results

The proposed PDOWA a1 � a4 � a2 � a3
NDOWA (Xu, 2005) a1 � a4 � a3 � a2
clus-DOWA (Boongoen & Shen, 2008) a1 � a4 � a3 � a2
MC-DOWA (Li et al., 2016) a1 � a3 � a4 � a2
Source: The authors’ data.
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time-consuming. Moreover, additional parameter should be considered during
the clustering process. For example, if the k-means method is used to cluster the
aggregated criteria values, then how to determine the value for the parameter k is
a key problem since it can influence the clustering result. The NDOWA operator
introduces the probability density function of normal distribution to determine
the OWA weights. Since the probability density function only depends on the
number of aggregated criteria values, it is incapable of identifying the local clus-
ter structures of aggregated criteria values. The proposed PDOWA operator is
capable of identifying the underlying local cluster structures among aggregated
criteria values without using the time-consuming classification methods.
Therefore, the proposed PDOWA operator is simple but efficient.

2. The clustering results generated by the modified agglomerative hierarchical clus-
tering algorithm in the clus-DOWA operator may be wrong, which can lead to
unreasonable OWA weights and ranking results. The OWA weights obtained by
the MC-DOWA operator are also unreasonable since the aggregated criteria val-
ues in each cluster are assigned with equal weights. The proposed PDOWA oper-
ator computes the OWA weights of aggregated criteria values according to their
probability densities. Hence, the OWA weights and ranking results obtained from
the proposed PDOWA operator are more reasonable.

6. Conclusions

In this paper, a novel PDOWA operator is proposed to determine the OWA weights
by considering the data distribution characteristics of input values. The kernel density
estimation is first applied to estimate the PDF, which fits to input values. Using the
estimated PDF, the weights of the OWA operator can be derived. Afterwards, some
desirable properties are discussed. Finally, a practical example concerning the evalu-
ation of smart phones is provided to show the application of the proposed PDOWA
operator in MCDM problems.

The proposed PDOWA operator is capable of identifying the underlying local clus-
ter structures among input values without using complicated classification methods.
It is simple but efficient. Moreover, its OWA weights and ranking results are more
reasonable than the existing OWA operators. However, it also has the limitations: 1)
It does not consider the subjective weights of input values when aggregating input
values; 2) It cannot be used to derive the OWA weights for interval-based
input values.

In the future studies, we will extend the OWA operator to process rough sets
(Sharma et al., 2018, 2020) and its applications in multicriteria evaluation (Roy et al.,
2019; Sharma et al., 2018)
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