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ABSTRACT
The valuation of the exposure to real estate market risk has trad-
itionally been difficult due to the lack of appropriate data, returns
that do not follow a normal distribution and a lack of adequate
methodology. However, regulations such as Basel II, Basel III and
Solvency II make it possible to assess real estate market risk using
an internal model and through Value at Risk. The study develops
a procedure to provide an internal model that values real estate
market risk and calculates the capital that guarantees it. Monte
Carlo simulations are used to calculate Value at Risk. As result,
capital requirements can be established from these results to help
with portfolio decision-making of insurance companies that hold
real estate. Data used in the study is taken from the General
Council of Notaries registered dwellings databases from the
Spanish National Statistics Institute covering the time period of
2007–2017. This paper contributes to the literature by proposing
a model that incorporates the characteristics of investments,
allowing a real and market measure of the risk of loss from
real estate.

ARTICLE HISTORY
Received 31 October 2019
Accepted 9 April 2020

KEYWORDS
Real estate valuation;
Monte Carlo; value at risk;
solvency capital
requirement

JEL CODES
G22; K23; R32

1. Introduction

Over the past few decades there have been major changes in the way insurance sector
risks are measured, moving from a measurement of risks based on the volume of pre-
miums or provisions to risk-based systems (Braun et al., 2014; Eling & Holzmueller,
2008; Garayeta & De La Pe~na, 2017). This is due both to the Solvency II and Swiss
Solvency Test regulation systems as well as to the development of accounting stand-
ards. Within the insurance world, the European regulation Solvency II (Solvency II,
2009) seeks to harmonise and modernise insurance sector regulation by two of its
main objectives: to protect policyholders and to increase the stability of the European
financial system. This regulation results from dissatisfaction with the previous
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Solvency I regulation, the influence of the financial regulation (Basel II), the
Lamfalussy procedure – which is an approach for the development of European regu-
lation and the collaboration of other international accounting and actuarial organisa-
tions (Garayeta et al., 2012).

Like Basel II, Solvency II is divided on three pillars, where Pillar I sets the quanti-
tative capital requirements, Pillar II affects the work of the insurance supervisor and
sets the Own Risk and Solvency Assessment (ORSA) to be carried out by all compa-
nies and Pillar III concerns market discipline and financial transparency of insurance
companies, with the insurer making a public assessment of its solvency situation and
its risk-based management system.

Pillar I defines the types of risks, their analysis, quantification and measurement in
order to obtain the Solvency Capital Requirement (SCR) and the Minimum Capital
Requirement (MCR). On the one hand, this pillar proposes that the SCR has to be
calculated by using either a company-specific internal model approved by the super-
visor or by using a standard formula (SF). The latter is aimed at insurers with less
sophisticated risk measurement and management systems. On the other hand, the
purpose of the internal model is to improve insurers’ consistency and transparency,
to adapt to the risk profile assumed by each entity (EC, 2003; Ronkainen et al., 2007)
and to make market capital more efficient (Kaliva et al., 2007).

As a standardised risk measure, Solvency II sets Value at Risk or VaR (Cuoco &
Liu, 2006; Hern�andez & Mart�ınez, 2012) so that this unexpected loss, for practical
purposes, means applying a percentile far from the expected loss (50th percentile).
This is a parameter for the risk measurement rediscovered in the 1990s, becoming
the benchmark for risk assessment, not only in the insurance sector. In this way,
Basel II and Basel III have also adapted this measure of risk impact assessment and
percentiles. In the case of insurance companies, calibration must correspond to a
99.5% percentile for one fiscal year.

One of the risks to which an insurance company is exposed is market risk, that
among European insurers it can reach 70% of Total SCR (Fitch Ratings, 2011). This
risk is understood as the risk of loss due to variation in the different financial and no
financial instruments’ market prices. In this sense, the real estate sector is very pecu-
liar with respect to other financial assets. It is heterogeneous, where each property is
unique; illiquid (matching supply and demand can take months or years); immovable
(goods cannot be moved around); and the property is affected by years of deterior-
ation. On the other hand, real estate is characterised by a high idiosyncratic risk,
which requires a high number of assets to consider a property portfolio efficient
(Byrne & Lee, 2001; Callender et al., 2007).

Perhaps due to the asset�s peculiarity, the lack of data from the sector and the lack
of normal returns on real estate investments, there are few studies on this risk.
Downs et al. (2016) found that flow analysis of this asset typology is not a good pre-
dictor of future returns. In addition, the lack of data causes it to resemble a private
equity market, where the market valuation index contains the aggregate sum of the
few transactions made. However, the basis for these indices not usually produced
daily. All these characteristics ask for a specific tool to measure the risk of loss associ-
ated with these assets.
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And that is precisely the aim of this work: The study develops a procedure to pro-
vide an internal model that values real estate market risk and calculates the capital
that guarantees it. For this purpose, the starting point is the real estate market risk
calibration seeking the statistical distribution that results from the index itself. Then,
Monte Carlo simulations are used to calculate VaR to assess real estate market risk.
As result, capital requirements can be established from these results to help with
portfolio decision-making of insurance companies that hold real estate. So, this may
be useful for regulators and companies and in the case of Spain, the internal model
developed allows insurers to have less capital at risk.

The paper is structured as follows: In section two the risk to be measured is
assessed, with a property valuation literature review that determines the index prob-
lem that reflects its valuation. The third section deals with the methodology for mod-
elling real estate market risk. The unexpected loss calculation is presented with the
internal model proposal through Monte Carlo simulations and is incorporated into
the parametric VaR to quantify, in addition to that loss, the probability that the risk
occurs. The fourth section applies the model to the Spanish market and presents the
results obtained. It ends with the relevant conclusions as well as the references used.

2. Solvency II

2.1. Structure

The Solvency II Directive (DSII) states that insurers must calculate the required eco-
nomic capital or SCR through a methodology based on risk analysis. Insurance com-
panies must use this capital to cover possible losses due to the risks assumed in a
way that guarantees their continuity. In statistical terms, the SCR is equivalent to the
value at risk of a company’s funds with a confidence level of 99.5% over a one-year
time horizon (EIOPA, 2012). They can choose between using a SF proposed by the
European Insurance and Occupational Pensions Authority (EIOPA) or generating an
internal model for the same purpose.

The SCR has a modular approach, establishing different capital needs for each risk
category and aggregating them through correlation matrices which are provided by
the supervisor. Its structure is:

SCRTOTAL ¼ SCRþ SCRoperational þ Adjustment of provisions and deferred risks

being
SCR: Solvency Capital Requirement.
SCRoperational: Capital of basic solvency for operational risk, regulated in art.

107 DSII.
Adjustment of provisions and deferred risks: Amount destined to take into
account the loss absorption capacity of the mathematical provisions and deferred
taxes, regulated in art. 108 DSII.

The SCR calculation is modular in such a way that it is necessary to consider all
the risks that exist in a company as well as the relations between them. Each individ-
ualised component focuses on a specific type of risk (underwriting, mortality, interest
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rate, etc.). Thus, this modular system presented by Granito and De Angelis (2015)
considers macro risks where each i-th generic risk (i¼ 1, … , n) is composed of mi
micro-risk (Figure 1).

The random variable Lij describes the losses for a one-year time horizon, associ-
ated with the j-th micro-risk of the i-th macro-risk. The random variable for unex-
pected losses is given as,

Yij ¼ Lij � E Lij
� �

Generic i-th risk depends on the random variable

Yij ¼
Xmi

j

Yij

And the total risk of a company will be described by the variable

Y ¼
Xn
i¼1

Yi ¼
Xn
i¼1

Xmi

j

Yij

And, therefore, a company’s SCR is defined through the risk measurement of that
random variable.

For the ij-th micro risk, the SCR is determined by the unexpected loss at 99.5% of
the Value at Risk:

SCRij ¼ VaR99:5% Yij
� �

where for an i-th macro-risk, and as a function of the integrated micro-risks, the SCR
is calculated as follows

Figure 1. SCR aggregation diagram.
Source: Granito and De Angelis (2015).
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SCRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmi

x¼1

Xmi

y¼1

SCRix � SCRiy � qix, iy

vuut

where qix, iy represents the linear correlation coefficients proposed by EIOPA.
Eventually, a company’s SCR would turn out:

SCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

x¼1

Xn

w¼1

SCRix � SCRiw � qix, iw

vuut

where qix, iw represents the linear correlation coefficients proposed by EIOPA.
One of these macro-risks is the market risk that covers one of the most important

risks in the insurance sector. Following the same structure, the macro-market risk is
composed, in turn, of micro-risks such as interest rate, variable income, real estate
and credit quality.

In particular, this work focuses on analysing real estate market risk under the
Solvency II regulation with the aim of proposing an internal model to calculate the
value at risk or maximum probable loss that an insurer would suffer at the 99.5%
confidence level.

2.2. Standard formula for buildings

Property risk represents the risk of loss in the value of property that is owned by an
insurer or the adverse change in a property’s market value. To calculate the capital
requirement to meet this risk Solvency II through the standard formula proposes to
apply a fixed percentage of 25% to the real estate value invested in Europe:

SCRSF
ESTATE ¼ 25% �MVESTATE

where,
SCRSF

ESTATE : Solvency capital required for real estate market risk through the stand-
ard formula

MVESTATE : Market value of the properties.
This 25% was determined based on the Investment Property Databank (IPD) UK

Monthly Property Index Total Return, which is only in force in the United Kingdom
(Edelstein & Quan, 2006). For that percentage, Solvency II took a historical series of
7 years in the UK market. This is a very liquid market with a very high volatility rate,
unlike other countries such as Germany or Spain. The capital thus determined is not
very sensitive to risk (Karp, 2007) and it does happen that two companies with differ-
ent structures in different European countries (and with different risk exposure), can
reach the same real estate SCR. This is one of the drawbacks of the standard formula
and the alternative to that 25% is to develop an internal model to reduce the capital
consumption for real estate investment.

Some authors (Devineu & Loisel, 2009; Pfeifer & Strassburger, 2008) indicate that
the standard formula is based on asymmetry and correlation and may not be
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sufficient for the objectives pursued by Solvency II. Moreover, it rarely adequately
reflects the situation to which a company is exposed (Ronkainen et al., 2007). As an
alternative, each company can develop its own internal model, although it involves
costly and complex procedures (Eling et al., 2007). This model determines the capital
that supports the risk, according to each company’s characteristics and the country
characteristics and where the properties are located.

These internal models come from the profit testing used since 1980 (Helfenstein
et al., 2004; Holzheu, 2000; Liebwein, 2006) were developed because of the need for
transparency and supervisory convergence towards solvency and accounting models.
On the other hand, they respond to the premise that there is no single common
model for all insurance companies that quantifies risk management (Kaliva et al.,
2007). Internal models therefore quantify risk to assist in an enterprise’s management
and to provide greater returns to shareholders (Berglund et al., 2006; Liebwein, 2006)
by usually committing less capital. In addition, there is no need to apply an internal
model to a whole company; however, it can be applied to the valuation of certain
market risks, such as real estate market risk.

There are few studies on this risk and perhaps the reason for this is due to these
assets’ peculiarity, the lack of data from the sector and the lack of normal returns on
real estate investments. Real estate is illiquid, has high transaction costs, a high
investment value, is heterogeneous and immovable; and the risk of deterioration
makes the estimation of its returns and volatilities complicated (Clayton et al., 2008;
Geltner et al., 2013). Downs et al. (2016) found that flow analysis of this asset typ-
ology is not a good predictor of future returns. In addition, the lack of data causes it
to resemble a private equity market, where the market valuation index contains the
aggregate sum of the few transactions made. However, the basis for these indices not
usually produced daily. At best, it is quarterly or monthly and lacks sufficient histor-
ical data to make statistical inference. To determine the 99.5% VaR based on histor-
ical data, a minimum of 200 values would be required, asking for a 17-year history
on a monthly basis (Am�ed�ee-Manesme & Barth�el�emy, 2018). It is therefore necessary
to use other methods to calculate VaR.

3. Real estate market risk modelling

The model initially proposed contemplates the index data to be followed so that past
data can be computed. The temporary variations produced (each quarter, month,
etc.) provide the variation amount as well as the frequency of variation per invested
unit. Therefore, a statistical distribution reflecting the intensity of the change can be
obtained, as well as another distribution that reflects the frequency of the change.

The statistical distribution that best reflects the previous frequencies is then deter-
mined, using Monte Carlo simulations, to estimate the Value at Risk of a company’s
own real estate portfolio.

3.1. The expected loss

Capital at risk will depend both on the frequency of the number of cases where there
is a variation in a property’s value and on the intensity of the variation (loss)
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experienced by a property. So, it is necessary to determine both the frequency func-
tion of the claims observed and their severity or intensity (Vegas & Nieto de Alba,
1993). Let�s,

N: The random variable associated with the number of claims occurring in a
time interval [0, t) with a probability distribution PNðnÞ, where n is the real-
isation of the random variable N.

Xi: Thevariable associated with the amount of the i-th claim that carries an asso-
ciated probability V xð Þ ¼ PðXi � xÞ and x is the realization of the random
variable. These variables are independent.

The total amount of claims in that period [0, t), YðtÞ amounts to

YðtÞ ¼ x1 þ x2 þ :::þ xNðtÞ

This is, a stochastic process sum of a random number N(t) of independent and
equally distributed random variables. The expected loss distribution or total damage
in [0, t) is given as

P Y tð Þ � y
� � ¼

X1
n¼0

PN nð Þ � Vn yð Þ

Where,
PN tð Þ : Probability of n claims in the interval [0, t).
Vn yð Þ : Probability that, having n claims, the sum of the same, reaches the

amount y.
The distributions, PN tð Þ and Vn yð Þ are estimated from observed data.
In this way, the stochastic process number of claims N(t) takes a positive natural

number in addition to the null value as there is a possibility that no claims will occur.
Likewise, the other random variable, in this case continuous, X, indicates the intensity
of the claim, under the hypothesis of an equal distribution of all claims. Therefore,
the study of a single variable is sufficient to determine the expected value of a claim.

Once the estimated values have been determined over those observed in the real
estate portfolio and for various distribution functions, it is necessary to carry out an
analysis of the goodness-of-fit. Therefore, for each distribution function value to be
tested, an occurrence probability value similar to those observed must be obtained.
This results in the expected portfolio loss for a given degree of plausibility.

3.2. The unexpected loss: VaR

VaR determines the greatest loss for a given probability and for a given period of
time. Therefore, an estimate is made in a quartile; and a reasonable estimate needs to
be made not only of the distribution mean value but also of the tails. For its defin-
ition (Bertrand & Prigent, 2012; Jorion, 2007; Sharpe, 1995) a portfolio C is consid-
ered at a time T and a probability p, where a level of losses Y, which must be smaller
than or equal to a value, is estimated.
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In this way, knowing the distribution of aggregate loss, which are independent and
identically distributed, the VaR of losses is defined for a 2 0, 1ð Þ, -VARaðYðtÞÞ- as,

P YðtÞÞ<VARaðYðtÞÞ
� � ¼ a

This quantile can be estimated by obtaining the distribution function for the
period of losses P½YðtÞ � y�:

The unexpected loss, for practical purposes, involves applying the above-mentioned
percentile. This method is widely used in the German market (Altuntas et al., 2011).

Although the concept of VaR is very simple, its calculation can become complex.
There is more than one methodology used to calculate it (Abad et al., 2014):

i. Parametric methods. They fit the probability curves to the data and, through
statistical inference, obtain the VaR from a given curve. Riskmetrics (Morgan,
1996) is the first model that used the hypothesis of normal distribution and with
independent and identically distributed variables (iid).

ii. Non-parametric methods. They measure the risk of a portfolio without making
assumptions about the variables’ behaviour. They use historical data under the
assumption that the nearest future is similar to the recent past and, therefore,
past data is used to predict losses in the near future. There are several models
that estimate density function from historical simulations (Barone-Adesi et al.,
1999; Engle & Manganelli, 2004).

iii. Semi-parametric methods. The most significant approaches focus on: Historical
Volatility; Filtered Historical Simulation; Quantile Auto-regressions (CaViaR);
Extreme Value Theory and Monte Carlo Simulation. Of these, the latter repre-
sents perhaps one of the most employed approaches in the insurance sector.

There are works (Deepak & Ramanathan, 2009; Jorion, 2007; Lechner & Ovaert,
2010; Pritsker, 1997; Stambaugh, 1996) that compare the bonanzas by using the his-
torical series, parametric VaR and VaR determined with the Monte Carlo simulation.
They generally conclude that there is no one method better than another. On the one
hand, parametric methods are simple to implement and very useful when the amount
of data is sufficient and the distribution of data follows a normal distribution. On the
other hand, the use of Monte Carlo has the great advantage of increasing the number
of observations, although it needs a strong computer resource. The direct use of his-
torical data is very accurate for past measures but tends to be poor for future esti-
mates. There is no doubt that each method has its weaknesses and strengths
(Stambaugh, 1996), so they should be seen as complementary measures because they
provide a greater degree of information according to the circumstances.

The characteristics, as well as the advantages and disadvantages of VaR have been
widely discussed in the literature (Artzner et al., 1999; Krokhmal et al., 2011; Pflug,
2000; Rodr�ıguez-Mancilla, 2010), which has measured that an amount over a given
horizon and in a given confidence interval will not exceed its losses (Jorion, 2007;
Trainar, 2006).
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VaR has been methodologically used in Real Estate Investment Trusts (REITs)
with the same methodology as that used for bonds and shares. Zhou and Anderson
(2012) analysed the loss behaviour of REITs in extreme market conditions, conclud-
ing that for different assets, different functions are needed. Liow (2008) uses extreme
value theory to assess market risk in ten real estate markets with better results than
classic statistics. Jin and Ziobrowski (2011) examines real estate market risk at the
portfolio level. It looks at downward market risk in residential housing using condi-
tional volatility models. The analysis carried out finds market differences by region.
As an alternative to VaR, real estate market volatility is estimated and predicted using
generalized auto-regression conditional heteroscedasticity (GARCH) models with con-
ditional mean, variance and covariance. To support this, the Office Federal Housing
Enterprise Oversight (OFHEO) Housing Price Index and the Standard and Poor’s
Case-Shiller (S&P/C-S) Index are used as market indices. These indices are available
monthly and with data from June 1991 to October 2007. Therefore, there is sufficient
data for statistical inference. However, there are no studies on how to apply VaR
when there is a lack of data or very little sector data. Even more, VaR jobs in the real
estate market are scarce; they usually focus on risk management to give different
investment patterns to different investors (Booth et al., 2002). Other authors measure
the risk of debt assumed by the purchase of real estate (Gordon & Tse, 2003).

3.3. Parametric VaR

It is also known as VaR calculated through the variance-covariance and delta-normal
methods. It is based on the assumption of a normal distribution for the data and its
calculation is summarised as a VaR that is proportional to the standard deviation of a
portfolio’s performance. Since the portfolio is a linear sum of the data and the data is
normally distributed, the portfolio is also normally distributed:

VARaðYðtÞÞ ¼ Za � rYðtÞ

Za: a percentile of Nð0, 1Þ
rSðtÞ : Standard deviation of the portfolio.
This expression has been widely used to calculate the risk values of financial asset

portfolios (Deepak & Ramanathan, 2009; Lechner & Ovaert, 2010) where yields on
securities follow the normal distribution because they are inappropriate for other
asymmetric distributions.

The characteristic that property losses do not follow a normal distribution is a
relevant issue for the VaR calculation. Studies (Lizieri & Ward, 2000; Young, 2008;
Young et al., 2006) confirm that VaR in buildings is not normal. They would be bet-
ter described as left-skewed distributions with thick tails (leptokurtosis). Chun et al.
(2012) propose to perform regressions by quantiles to estimate the VaR in the last
quantiles. They conclude that the VaR of a property portfolio should therefore be cal-
culated using distribution functions with such characteristics or, where appropriate,
using industry indices. However, it is generally considered that it is not usual for
VaR to follow a normal distribution for high levels of confidence, although this
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hypothesis of normality is applied by allowing fast and easy computer processing of
the data (Am�ed�ee-Manesme et al., 2015, 2017).

3.4. Monte Carlo Simulation

The selection of the Monte Carlo method over an analytical approach is made for
two reasons (Van Bragt et al., 2010):

i. complexity of the options included.
ii. required for solvency reporting and analysis, resulting in more detailed valuations

than if less precise analytical approaches were used.

The Monte Carlo method has been used to set parameters in different market
price models (Hardy, 2002), such as house prices, as well as interest rates to be used
for the valuation of reverse mortgages (Huang et al., 2011; Yang, 2011). It is also
used to contrast new paradigms, such as liability-driven investing, through dynamic
financial analysis (Van Bragt & Kort, 2011).

Thus, DSII bets on the use of Monte Carlo within an Enterprise Risk Management
(ERM) to quantify risks, which even makes it compatible with stress tests (Altuntas
et al., 2011).

To know the random loss variable Y(t), it is necessary to set the random variable
T on which the previous one depends (Pons & Sarras�ı, 2017). This is the index under
which the periodic losses of a real estate portfolio are manifested. The w components
of this random variable T are also random:

T ¼ t1, t2, :::, twð Þ

T is the random index variable and ti is the realisation of the same.
Simulation consists of generating a random number, uniformly distributed between

0 and 1, which will correspond to a certain cumulative probability value of this ran-
dom variable, so that if U is the random number generated in a realisation, then the
simulated value of~t

k
i ¼ s, is:

Xs�1

r¼0

P T ¼ rð Þ < U �
Xs

r¼0

P T ¼ rð Þ

Where~t
k
1 is the performance vector associated with the simulation k-th, with k¼ 1,

2, … , z of the random variable T and that set of values provide the evolution of the
periodic changes of the reference index. Each component~t

k
i with i¼ 1, 2, … , w and

k¼ 1, 2, … , z is obtained by Monte Carlo simulation, the random variable T and z
is the number of different evolution paths.

Therefore, to obtain by simulation the realisation of ~t
k
i consists of generating a

random number, uniformly distributed between 0 and 1. In this way, the probability
associated with each performance is always the same, and its value will depend on
the number of z simulated trajectories:
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P T ¼~t
k
i

� �
¼ 1

z

The number of realisations will depend on the number of simulations. If z is the
number of different evolution trajectories, the realisation of the random variable T
will be given by the following set of values,

~t
1
1,~t

2
2, :::,~t

k
i , :::,~t

z
w

Once the distribution function of the random variable T is known, the function
random variable distribution of losses Y(t) is obtained, which allows for the confi-
dence level of 99.5% to calculate the VaR of the portfolio.

4. A real estate valuation

4.1. An application to the Spanish real estate market

The internal model will be tested in an insurance company’s real estate portfolio. The
objective of this test is to investigate the solvency capital required for this portfolio
by applying it against the standard formula. The assumptions on which it is based are
as follows:

i. The property investment structure of the insurance company is located in a
Spanish town, and its composition does not change over time.

ii. the historical database used has been the annual evolution of the Housing Price
Index (HPI). This index measures the evolution of the housing prices, both new
and second-hand, over time. The data included in the index are acquisitions of
dwellings in the reference period within the national territory made by individu-
als (resident or non-resident in Spain). Purchases and sales made by entities,
including financial institutions, are not part of the index. The information source
is provided by the General Council of Notaries’ registered dwellings databases,
from which the dwellings’ transaction prices, as well as the weightings assigned
to each set of dwellings with common characteristics, are obtained (INE, 2018).
This data has been obtained from the National Statistics Institute (Appendix A).

The variation of the index in Spain shows the fluctuations in the housing prices at
market value (Appendix A, Table A1), with declines marked by the real estate crisis
(Figure 2). From the first quarter of 2014 the variations are positive.

For a property portfolio with a market value of one million euros, these variations
produce a difference in the properties’ value and also generate some negative and
positive differences. Therefore, the economic effect of the variation over a four-month
period is reflected by the intensity of its loss/gain and the magnitude of quarterly
variation in the total of periods contemplated, depending on the frequency in the
period under study.

From the historical data, the observed and accumulated frequencies (Figures 3 and
4) and the classic statistics are obtained (Appendix B, Table B1). Specifically, the
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average variation in the price of the property portfolio per quarter amounts to
e15,522, with a standard deviation of e73,951. That is, a low average but with a great
dispersion. On a portfolio valued at one million euros, the extreme values of max-
imum decrease and maximum quarterly increase would be e152,000 of maximum
decrease; and the greatest quarterly increase would be e131,000.

4.2. The statistics function

The observed frequency is sourced from historical data and is contrasted with the
individual theoretical frequencies of various functions to observe which function most
faithfully reflects reality (Appendix B, Tables B3 and B4). Adjustment to a series of
distributions using the maximum likelihood technique and testing the goodness-of-fit
through various tests such as Kolmogorov-Smirnov, Chi-square and Anderson-
Darling, has been done with code developed in Visual BasicTM, and with the spread-
sheet ExcelTM. As for the severity or intensity of the loss, Figures 5 and 6 indicate
which functions are closest to the observed frequencies. Normal, log-normal and
gamma distribution are highlighted.

After carrying out the distribution goodness-of-fit test (Kolmogorov–Smirnov,
Chi-square and Anderson–Darling tests, whose values are reflected in Appendix B –
Tables B5–B7), it is found that the function that best replicates the frequency of the
number of claims in this case is the Normal one (Table 1).

The distribution function that best represents the real estate prices’ evolution in
Spain is the Normal one. Therefore, the required solvency capital is calculated
based on the standard formula, parametric VaR and the VaR with the Monte
Carlo method.

4.3. Results and discussion

With regard to the standard formula, a value at risk is obtained with a confidence
interval of 99.5% during a financial year of

Figure 2. Annual percentage change in the Housing Price Index-HPI-.
Source: National Statistics Institute (INE, 2018).
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SCRSF
ESTATE ¼ e250, 000

This value is obtained by applying a 25% shock to the properties’ market value.

With respect to parametric VaR, the value at risk is calculated as follows

SCRPVaR
ESTATE ¼ Za � rYðtÞ

where

Figure 3. Theoretical frequencies.
Source: Own work.

Figure 4. Theoretical frequencies.
Source: Own work.
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Figure 5. Theoretical and practical frequencies Variation of the HPI.
Source: Own work.

Figure 6. Cumulative theoretical and practical frequencies variation of the HPI.
Source: Own work.
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Za ¼ F�1
x 0:995ð Þ ¼ 2:576, where F is the distribution of the cumulative function of a

normal random variable and rYðtÞ is the variation in the value of real estate. It turns
out, therefore:

SCRPVaR
ESTATE ¼ e190, 498:06

This is a significantly lower capital requirement. However, although it is a simple
method to implement and the distribution follows a normal distribution, the amount
of data is insufficient to ensure statistical robustness. Therefore, it is evaluated
through Monte Carlo to save the data sufficiency.

The Monte Carlo simulation used 10,000 different scenarios generated with the
distribution obtained through the ExcelTM spreadsheet functions. The obtained value
of the real estate portfolio with a confidence interval of 99.5% during a fiscal year
after the simulation of those scenarios, amounts to e800,400.07. So, the unexpected
loss or value at risk of the real estate investment would be:

SCRIM
ESTATE ¼ e199, 599:93

A value lower than the standard formula is somewhat higher than the parametric
VaR because it contemplates 10,000 different scenarios (Figure 7), however, does con-
template statistical inference, while the former suffered from a number of values suffi-
cient to be statistically significant.

In relative terms, this implies that the consumption of capital by means of an
internal model would be 19.96% as opposed to the 25% established by the stand-
ard formula.

Through the application of stochastic simulation, it is possible to

� determine a specific procedure to provide an internal model that determines the
capital required for solvency in the case of real estate market risk, without making
an assumption about a certain distribution function for historical data. In any
case, the VaR of a real estate portfolio must be calculated using distribution func-
tions resulting from source data analysis. However, Solvency II is committed to
using VaR in general to calculate the capital required for most risks

� obtain probabilistic results, unlike deterministic analysis. In this way, through sto-
chastic simulation, the results show not only what can happen but also how likely
a result will be.

Table 1. Ranking of distributions.
Kolmogorov–Smirnov Chi-2 Anderson–Darling

0,0939 Normal 5 Normal 0,4714 Normal
0,1225 Gamma 6 Gamma 0,4777 Log-normal
0,1518 Log-normal 7 Log-normal 0,5064 Gamma
0,1494 Beta 10 Beta 1,5405 Beta
0,4080 Exponential 77 Exponential 2,2582 Exponential
0,3162 Poisson 77 Geometric 2,2780 Geometric
0,3345 Binomial 48.836.071 Poisson 7,9921 Poisson
0,4097 Geometric 62.593.385.224 Binomial 12,8741 Binomial

Source: Own work.
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� estimate the total amount of claims for every one of the possible scenarios
(according to a certain confidence interval) since the stochastic simulations consist
of thousands of possible claims scenarios. Furthermore, by considering, as well as
quantifying, the amount of the historical data of the claims, it is possible to calcu-
late the probability of every projected scenario.

� know the influence that a specific part of the investment portfolio has, due to its
special characteristics (industrial sector buildings, services, geographical location,
etc.). In this way, it is possible to calculate the unexpected loss according to the
simulation proposed for that portfolio and quantify the influence it has on the
final economic capital of the company. In other words, it assesses the increased
risk effect posed by a specific part of the portfolio.

� use it as a tool for company management to incorporate temporary variation in
parameters, thick tails and extreme scenarios; and, therefore, it can cover a wide
range of risks

� apply this internal model for the specific case of Spain. The internal model devel-
oped has shown that capital consumption for real estate market risk is less than the
25% established in Solvency II, which allows insurers to have less capital at risk.

As limitation of the work, the literature says that property losses do not follow a
normal distribution, however when studying the distribution in Spain, Normal distri-
bution fits the best. It may possibly be due to not having enough data and history in
Spain to know if is this is a characteristic of Spanish property market, or the period
chosen, or the scarce number of observations of the Housing Price Index. In any
case, if the property losses do not follow a normal distribution, expected shortfall
should be used, as Basel III, Basel IV regulations and Swiss solvency test propose.

5. Conclusion

The importance of solvency in the insurance sector has become a fundamental issue
in last years. Recent regulatory has focused in risk valuation in order to assess

Figure 7. Frequency distribution and VaR of the property portfolio.
Source: Own work.
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soundness of insurance companies and at the same time calculate solvency capital
requirements according to the real risk assumed by the firms.

This paper contributes to the literature presenting an internal model to value real
state risk in insurance firms. The aim of this work has been to establish a procedure
to provide an internal model that values real estate market risk and calculates the
capital that guarantees it. This enables the loss distribution function to be incorpo-
rated into the valuation model.

The fact that the real estate market has suffered major crises means that conven-
tional risk measures are not entirely valid and the literature has been delved into to
measure it through VaR. As a response to the standard formula, the proposed
internal model will also be set in a housing price index, but will generate scenarios in
a way that allows statistical inference. This may be useful for regulators
and companies.

A further development of the model may be to segment the information of the
employed HPI index according to the geographical location of the dwellings within
Spain in order to particularize the consumption of capital by real estate investment,
as well as choosing a data period in which there is no economic crisis. This would
make it possible to check whether, in a period without different fluctuations, the vari-
ation in real estate price follows a normal distribution or not.
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Appendix A. Historical sample of the Housing Price Index in Spain

Table A1. Annual percentage change in the Housing Price Index.
Year / Quarter. Q1 Q2 Q3 Q4

2017 5,3 5,6 6,7 7,2
2016 6,3 3,9 4 4,5
2015 1,5 4 4,5 4,2
2014 �1,6 0,8 0,3 1,8
2013 �14,3 �12 �7,9 �7,8
2012 �12,6 �14,4 �15,2 �12,8
2011 �4,1 �6,8 �7,4 �11,2
2010 �2,9 �0,9 �2,2 �1,9
2009 �7,6 �7,7 �7 �4,3
2008 2,8 �0,3 �3 �5,4
2007 13,1 11,6 9,2 5,7

Source: National Statistics Institute (INE, 2018).
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Appendix B. Statistics and goodness-of-fit

From historical data, the classic statistics (mean, variance, etc.) are obtained from the varia-
tions experienced by the housing price index.

The data is adjusted to a series of distributions using the maximum likelihood technique
and testing the goodness-of-fit through various tests such as Kolmogorov–Smirnov, Chi-square
and Anderson–Darling.

Each data series is adjusted to a series of distributions (Table B2) depending on the data
characteristics with respect to distributions. Goodness-of-fit is analysed, such that

p ¼ maxjFn xð Þ � F xð Þj

where Fn corresponds to the values of the empirical and adjusted distributions, respectively.
Calculation of the individual and cumulative theoretical frequencies of the variation of the

housing price index.

Table B1. HPI statistics.
Average Typical Deviation Variance a-Gamma

�1.552273 7.395111 54.687669 0.044060

b- Gamma Log-normal Media Typical Log-normal Dev. k-Exponential

�35.230709 1.515018 0.944659 �0.644217

Source: Own work.

Table B2. Common distributions in the insurance sector.
Discrete Continuous

Binomial
Poisson
Binomial
Negative

Gamma
Beta
Pearson
Log-gamma
Normal
Log-normal

Source: Own work.

Table B3. HPI variation statistics.
Average Typical deviation a-Gamma b-Gamma Media log-normal

�1.552273 7.395111 47.215223 73.951.111644 1.515018
Min �15.200000 a-Beta a-Gamma Typical deviation

Log-normal
Max 13.100000 1.309944 0.000033 0.944659
Difference

between legs
5 Average-Beta b-Gamma k-Exponential

No. of sections 6 0.416272 �47.640.540444 �0.644217

Interannual
variation

Frequency
accumulated

Frequency
Individual

Frequency
acumulated (%)

Frequency

�10.48 7 7 0.225806 0.225806
�5.77 14 7 0.451613 0.225806
�1.05 22 8 0.709677 0.258065
3.67 28 6 0.903226 0.193548
8.38 29 1 0.935484 0.032258
13.10 31 2 1.000000 0.064516

Source: Own work.
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Table B4. Theoretical frequencies of the HPI variation.
Individual frequencies (%)

Observed Normal Gamma Log-normal Beta Exponential Poisson Binomial Geometric

0.0313 0.0449 0.0266 0.0344 0.0000 0.4392 0.0000 0.0000 0.4409
0.1563 0.1120 0.1269 0.1499 0.0770 0.0882 0.0000 0.0000 0.0881
0.0938 0.2182 0.2503 0.2487 0.1818 0.0744 0.0511 0.0234 0.0742
0.3750 0.2695 0.2671 0.2358 0.2480 0.0627 0.9213 0.9674 0.0625
0.1875 0.2108 0.1846 0.1610 0.2746 0.0528 0.0276 0.0092 0.0527
0.1563 0.1045 0.0925 0.0901 0.2185 0.0445 0.0000 0.0000 0.0444

Cumulative Frequencies (%)

Observed Normal Gamma Log-normal Beta Exponential Poisson Binomial Geometric

0.0313 0.0449 0.0266 0.0344 0.000000 0.4392 0.0000 0.0000 0.4409
0.1875 0.1569 0.1535 0.1843 0.077017 0.5275 0.0000 0.0000 0.5290
0.2813 0.3751 0.4038 0.4331 0.258805 0.6018 0.0511 0.0234 0.6032
0.6563 0.6446 0.6708 0.6689 0.506852 0.6645 0.9724 0.9908 0.6657
0.8438 0.8554 0.8555 0.8299 0.781453 0.7173 1.0000 1.0000 0.7184
1.0000 0.9598 0.9480 0.9200 1.000000 0.7618 1.0000 1.0000 0.7627

Source: Own work.

Table B5. Goodness-of-fit of the HPI variation. Test Kolmogorov–Smirnov.
Kolmogorov–Smirnov

Normal Gamma Log-normal Beta Exponential Poisson Binomial Geometric

0.094 0.123 0.152 0.149 0.408 0.316 0.335 0.410
Level 0.1%. 0.220 Ok Ok Ok Ok x x x x
Level 0.05%. 0.240 Ok Ok Ok Ok x x x x
Level 0.01%. 0.288 Ok Ok Ok Ok x x x x

Source: Own work.

Table B6. Goodness-of-fit of the HPI variation. Test Chi-2.
Chi-2

Normal Gamma Log-normal Beta Exponential Poisson Binomial Geometric

4.690 6.176 7.414 9.968 76.981 48.836.070 62.593.385.223 77.281
Level 0.1%. 7.78 Ok Ok Ok x x x x x
Level 0.05%. 9.49 Ok Ok Ok x x x x x
Level 0.01%. 13.28 Ok Ok Ok Ok x x x x

Source: Own work.

Table B7. Goodness-of-fit of the HPI variation. Anderson test–Darling.
Anderson–Darling

Normal Gamma Log-normal Beta Exponential Poisson Binomial Geometric

0.471 0.506 0.478 1.541 2.258 7.992 12.874 2.278
Level 0.1%. 1.929 Ok Ok Ok Ok x x x x
Level 0.05%. 2.502 Ok Ok Ok Ok Ok x x x
Level 0.01%. 3.907 Ok Ok Ok Ok Ok x x x

Source: Own work.
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