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Abstract: Current estimates of the actual productivity of 
heavy construction machinery at a construction site are 
not supported by an appropriate and widely used meth-
odology. Recently, for the purpose of estimating the actual 
productivity of heavy construction machinery, vision-
based technologies are used. This paper emphasizes the 
importance of estimating actual productivity and presents 
a way (i.e. a research framework) to achieve it. There-
fore, the aim of this paper is to propose a simple research 
framework (SRF) for quick and practical estimates of 
excavator actual productivity and cycle time at a construc-
tion site. The excavator actual productivity refers to the 
maximum possible productivity in real construction site 
conditions. The SRF includes the use of a video camera 
and the analysis of recorded videos using an advanced 
computer program. In cases of continuous application 
of SRF, a clear and transparent base for monitoring and 
control of earthworks can be obtained at an observed con-
struction site.

Keywords: earthworks, excavator, actual productivity, 
cycle time, video analysis, SRF

1  Introduction
Planning earthworks performance is a difficult and 
demanding task. When planning earthworks, the planner 
is faced with the problem of having to split up the required 
work into manageable activities, because earthworks 

activities are influenced by many factors, including site 
layout, machinery selection, weather characteristic, and 
condition of haul road (Mawdesley et al. 2002). A major 
risk in any civil engineering project is that the contractor 
may, during the course of construction, encounter phys-
ical obstructions or conditions on the site (e.g. ground 
conditions, sub-surface water, foundation rock) that 
are unexpected and unforeseeable at the time of tender 
and may delay his work or cause an increase in costs 
(Ndekugri and Mcdonnell 1999). Actual productivities 
achieved in earthworks are considerably different from 
the theoretical productivity values assumed at the plan-
ning stage (Hola and Schabowicz 2010). Construction is 
generally considered to be conducted in highly challeng-
ing site conditions, because of the machineries involved 
in operation, transfer of materials, moving workers, and 
changing status (Kim H. et al. 2014). It is difficult to accu-
rately estimate the productivity of an earthwork, because 
earthwork productivity varies depending on the unique 
geologic conditions, types of earthwork equipment, and 
equipment allocation plan (Kim H. et al. 2018a). There-
fore, when planning the performance of earthworks, it is 
quite a challenging task to accurately predict and estimate 
soil and rock categories, weather impact, productivity of 
construction machinery, as well as required time and cost. 
Also, construction site represents a unique, dynamic, and 
complex environment with possible occurrence of unfore-
seen circumstances and dangers that can negatively affect 
the work performance. Hence,  when earthworks begin at a 
construction site, deviations in the plan may be expected.

Productivity performance of heavy construction 
machinery (e.g. loaders, excavator, hauling trucks) has a 
significant role in the earthworks operation (Salem et al. 
2017). Productivity monitoring of heavy equipment, which 
is a process of measuring, analyzing, and improving the 
operational efficiency and performance of the equipment, 
is a major task for managing and completing earthmoving 
projects successfully (Kim J. and Chi 2020). Monitoring the 
earthworks progress and accurate estimation of construc-
tion machinery productivity provides a detailed insight 
into the performance, feedback on the correctness of the 
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decisions made, more accurate report of the time and cost 
necessary for the activity, early detection of low produc-
tivity, as well as any other possible defects (Šopić et al. 
2018). For proper construction site management and plan 
revisions during construction, it is necessary to under-
stand a construction site’s status in real time (Kim H. et al. 
2018b). Earthworks operation needs an automated system 
to capture job-site data, with the capability of handling a 
large volume of data in near real time to make a correct 
productivity estimation, and to calculate the time needed 
as well as the cost (Montaser and Moselhi 2014). There is 
a need for low cost, reliable, and automated method for 
activity analysis of the construction machinery at the con-
struction site that can be widely applied across all con-
struction projects (Golparvar-Fard et al. 2013). Therefore, 
estimating the actual achieved productivity of construc-
tion machinery at a construction site may reduce wrong, 
inaccurate, and subjective estimates that were assumed at 
the time of planning the performance of earthworks.

Lately, for the purpose of estimating the actual pro-
ductivity of construction machinery at a construction site, 
researchers use a variety of methods and tools of fast-
growing wireless technologies, such as (non-vision-based) 
sensing and tracking technologies (Montaser and Moselhi 
2012-2014; Montaser et al. 2012; Ibrahim and Moselhi 
2014; Alshibani and Moselhi 2016), and vison-based 
technologies (Bügler et al. 2017; Chen et al. 2020; Kim J. 
and Chi 2020). The vision-based methods can visualize 
the equipment state directly from images and videos, 
so that it becomes easy to identify false recognition and 
analyze the reasons behind low productivity, whereas the 
non-vision-based methods have difficulty in categorizing 
the activities in detail and they require attaching sensors 
to monitor the equipment (Chen et al. 2020). Different 
approaches are available to monitor earthworks equipment 
using computer vision; the first approach is to develop (or 
use) software to analyze the visual capture from common 
electronic tools, such as video cameras, and the second 
method is to employ other sensing devices together with 
video cameras to obtain more data from the scene (Rezaza-
deh Azar et al. 2013). This paper will be oriented toward 
researches that involve video camera and video analysis.

Visual recording devices, such as video camera, 
have been broadly used to facilitate work progress or 
safety monitoring in construction sites (Chi and Caldas 
2011). Operation-level visual monitoring is commonly 
conducted to better understand on-site productivity and 
safety (Kim  J. et al. 2019). The productivity analysis and 
optimization could be made with the surrounding infor-
mation provided by the videos (Chen et al. 2020). The use 
of visual tracking, to track construction equipment and 

workers, has been recently promoted to facilitate con-
struction automation (Xiao and Zhu 2018).

The aim of this paper is to propose a simple research 
framework (SRF) for quick and practical estimates of 
excavator actual productivity and cycle time at a construc-
tion site during earthworks. This SRF includes the use of 
a video camera for the purpose of recording excavator 
during earthworks at a construction site and the analysis 
of recorded videos using an advanced computer program.

2  Background

2.1  �Artificial intelligence, machine learning, 
and deep learning

Automatic detection, recognition, and tracking of various 
objects and activities of construction resources (i.e. equip-
ment and/or workers) in videos can be possible with arti-
ficial intelligence (AI) or, more precisely, with machine 
learning (ML) and deep learning (DL). The meaning of AI, 
in a simplified and figurative manner, suggests the assign-
ment of “cognitive” ability to machines. ML is a subfield 
of AI, and the meaning of ML, in a simplified and figu-
rative manner, suggests training the machines to achieve 
“learning” abilities. ML can be broadly defined as com-
putational method using past information available to the 
learner (e.g. electronic data collected and made available 
for analysis, such as digitized human-labeled training 
sets) to improve performance or to make accurate predic-
tions (Mohri et al. 2018). The emphasis is on “automatic,” 
i.e. ML is concerned about general purpose methodolo-
gies that can be applied to many datasets, while produc-
ing something that is meaningful (Deisenroth et al. 2020). 
Some ML algorithms used to build models are Hidden 
Markov Model (HMM), Gaussian mixture model (GMM), 
support vector machine (SVM), Histogram of Oriented 
Gradients (HOG), etc. HOG is an algorithm used for fast 
and accurate object (or edge) recognition and detection in 
computer vision or image processing (i.e. an image feature 
descriptor). SVM is a supervised learning algorithm (i.e. 
training algorithm to make predictions, by labeling all the 
data) for classification, nonlinear regression, and outli-
er’s challenges, using a “learned” pattern and data anal-
ysis. GMM is unsupervised (i.e. training algorithm to find 
hidden patterns), probabilistic and modeling algorithm 
for density estimation and data clustering, with a notable 
application for object detection and object tracking. HMM 
is a probabilistic, graphical, and modeling algorithm with 
prominent application for speech and image processing, 
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handwriting, text and gesture recognition, machine main-
tenance, and activity analysis in videos.

DL is a subfield of ML. The “deep” in DL comes from 
the many (hidden) layers that are built into the DL models, 
which are typically neural networks (Wehle 2017). One of 
the names that DL has gone by is Artificial Neural Net-
works (ANNs) (Goodfellow et al. 2016). ANNs are known 
as universal function approximators because they are able 
to learn any function, no matter how wiggly, with just a 
single hidden layer (Maini and Sabri 2017). Therefore, one 
hidden layer or more hidden layers refer to one or more 
layers between input and output data in an algorithm. 
When an ANN has two or more hidden layers, it is called 
deep neural network (DNN) (Géron 2017). DL, as a new 
generation of ANN (Ghorbani et al. 2020), is in the inter-
sections among the research areas of neural networks, 
artificial intelligence, graphical modeling, optimization, 
pattern recognition, and signal processing (Deng and Yu 
2014). Some DL algorithms (i.e. neural network architec-
tures) are Convolutional Neural Network (CNN, ConvNet) 
and Recurrent Neural Networks (RNN). CNN and RNN 
have great abilities to represent complex relationships 
between input data (e.g. images) and output data (e.g. 
object classes) (Kim J. and Chi 2019). CNN is one of the 
most popular DL approaches in the field of graphic pro-
cessing as CNN performs well in image processing and 
directly deals with raw images (Liu et al. 2019). Therefore, 
CNN is a powerful algorithm, used for analysis of visual 
imagery and for performing tasks such as detection, rec-
ognition, segmentation, and classification of object or 
features in an image. RNN is a powerful algorithm used 
for classification, labeling, and generation. In RNN, the 
output from the previous task is fed as input to the current 
task. Long Short Term Memory (LSTM) is a type of RNN, 
useful in time series prediction.

Building models with ML or DL algorithms is possi-
ble in advanced computer programs (i.e. environments), 
such as MATrix LABoratory (MATLAB) (Cleve Moler, 
MathWorks), Python (Guido van Rossum), and Visual 
Studio (Microsoft). This kind of advanced computer pro-
grams may provide numerous analysis (of data, video, or 
graphics), advanced model development or simulation for 
solving mathematical, engineering, and scientific prob-
lems, as well as provide designing visualizations and help 
in building or training applications.

2.2  Literature review

One of the significant importance of video analysis is 
reflected in the application of ML and DL. ML and DL 

allow automatic recognition of various construction oper-
ational resources and activities. However, video analysis 
indicates some weaknesses in implementation, consid-
ering estimations of the actual productivity of construc-
tion machinery at jobsites. Other limitations, when using 
a video camera and video analysis include video length, 
overlapping of resources, camera motion, background 
cluster (i.e. background data set), bad weather conditions, 
poor lighting conditions, etc. This paper is dealing with 
one of the problems in using video camera and video anal-
ysis, more precisely, the problem of estimating the actual 
productivity of an excavator at a construction site.

2.2.1  Classical Computer Vision

Zou and Kim (2007) presented an image processing system 
for effective measurement of hydraulic excavator idle 
time. Their system was developed in MATLAB, using Hue 
Saturation and Value (HSV) color space (i.e. color param-
eters for image processing and analysis). Gong and Caldas 
(2011) analyzed 12-minute video record of a bobcat loader 
(i.e. three cycle time) during earthworks. They devel-
oped a prototype program called “Construction Video 
Analyzer,” written using C++ programming language, 
which integrated several commercial strength libraries, 
such as Microsoft Foundation Class, DirectX, and Intel 
Open Source Computer Vison Library. The purpose of their 
video interpretation was to automatically monitor the 
bobcat’s time utilization, production cycle, and abnormal 
production scenarios.

2.2.2  Machine Learning

Rezazedeh Azar and McCabe (2012) presented two 
approaches to detect and distinguish off-highway dump 
trucks from other earthmoving machines in digital con-
struction videos, with HOG detector as the main descrip-
tor. Rezazadeh Azar et al. (2013) presented a vision-based 
framework that can recognize and estimate dirt loading 
cycles. In their research, some of the techniques used were 
the HOG descriptor and SVM classifier, which they imple-
mented using Open Source Computer Vision Library (i.e. 
OpenCV) in Visual C++ environment. Golparvar-Fard et al. 
(2013) presented a computer vision-based algorithm for rec-
ognizing every single action of earthmoving construction 
equipment (i.e. for excavator and dump truck). Their pro-
posed method was based on the HOG descriptor and SVM 
classifier, which they trained using MATLAB. Memarzedeh 
et al. (2013) presented a computer vision-based algorithm 
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for automated detection of construction workers and 
equipment from site video streams. Their method was 
based on using HOG descriptor with Hue-Saturation-Value 
(HSV) colors (which they denoted as HOG+C) and SVM 
classifier. Implementation of their proposed algorithm 
was in MATLAB with several components in C++ for faster 
computation. Rezazadeh Azar (2016) developed a moni-
toring system to identify dump trucks and excavators in 
construction jobsites, using HOG for object detection or 
recognition and SVM classifier. Implementation of their 
developed system was in Visual C++ express environment 
with the use of three open-source libraries. Bügler et al. 
(2017) proposed a methodology using the combination of 
two different visual technologies, more precisely, through 
combination of photogrammetry and video analysis. The 
purpose of their methodology was to monitor the pro-
gress and estimate the productivity of earthworks when 
deep (large) amounts of excavation is necessary. In their 
research, target detection was performed using GMM. 
Kim  J. et al. (2018) pointed out that an essential step to 
measure and monitor the performance of earthworks is the 
activity identification. For that, they developed a method-
ology for automatic activity identification of the excavators 
and dump trucks in videos during earthworks. The auto-
matic activity identification in their paper referred to the 
“work,” “work (move),” “work (stop),” and “idle” activity 
status of the excavators and dump trucks, according to the 
types of operational process at a construction site. For their 
research, they adapted a Tracking-Learning-Detection 
system (TLD), developed by Kalal et al. (2011), which is the 
evolving technology of the TLD Vision (an AI company). 
Also, they used advanced computer programs, more pre-
cisely, C++ programming language with Visual Studio and 
MATLAB. They highlighted that their methodology may be 
improved using CNN tracking algorithms.

2.2.3  Deep Learning

Kim H. et al. (2018b) proposed a deep convolutional net-
work-based construction object-detection method to accu-
rately recognize construction equipment (i.e. dump truck, 
excavator, loader, concrete mixer truck, and road roller). In 
their study, the construction equipment detection model 
was the region-based fully convolutional network (R-FCN) 
(i.e. region proposal approach). Their model was trained 
with a relatively small amount of data by applying transfer 
learning. Roberts and Golparvar-Fard (2019) presented a 
vision-based baseline system for detection, tracking, and 
activity analysis for construction resources, with particu-
lar attention to excavators and dump trucks. Their system 

enabled automatic identification of visually distinctive 
working activities of excavators and dump trucks from 
individual frames of video sequence. Working activities 
for excavator were referring to “idling,” “loading bucket,” 
“swinging bucket,” “dumping,” and “moving” activities, 
while working activities for dump trucks were referring to 
“idling,” “moving,” and “filling” activities. Their system 
was based on CNN, HMM, GMM, and SVM classifiers, 
which they trained using MATLAB. Kim J. and Chi (2019) 
proposed a vision-based action recognition framework 
(i.e. excavator detection, excavator tracking, and excavator 
action recognition), considering the excavators’ two types 
of sequential working patterns (visual features and opera-
tion cycles), for automated earthworks operation analysis. 
In their research, they used a Tracking-Learning-Detec-
tion (TLD) system to track excavators, while sequential 
working patterns (visual features and operation cycles) 
were learned with CNN and Double-Layer Long Short-
Term Memory (DLSTM). They highlighted that one of the 
limitations of their DL model was excessive computational 
training time and a large amount of training data to build 
the model. Chen et al. (2020) pointed out some limitations 
of vision-based methods that were present at the time of 
writing their paper. More precisely, they pointed out that 
previous vision-based methods primarily focused on 
automatic recognition of working activities of construc-
tion equipment with little discussion of their practical 
values, such as using vision-based methods for produc-
tivity control of earthworks. Other limitations that they 
pointed out include difficulties for automatic recognition 
of working activities if the video sequence is long, or in 
cases when multiple construction machinery are simulta-
neously captured. To overcome some of those limitations, 
Chen et al. (2020) presented a framework that automati-
cally recognized activities and analyzed the productivity 
of multiple excavators. They used three CNNs to detect, 
track, and recognize the activities of excavators. They also 
developed an algorithm to analyze the activity recognition 
results and calculate the productivity of the excavators. 
Their activity recognition model was developed in Python 
environment. Chen et al. (2020) highlighted some limita-
tions in their research, such as overlapping in the detec-
tion and tracking results, and light condition of the video 
(i.e. too bright or too dark). They pointed out that some 
limitations of their method could be improved using more 
than one camera, and that the video should be pre-pro-
cessed by adding a filter. Also, they pointed out that the 
process of validation of long videos (i.e. about an hour 
duration) is intensive in terms of time and labor, but they 
will still test more long videos in the future. Kim J. and Chi 
(2020) proposed a multi-camera vision-based productivity 
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monitoring methodology that analyzed videos captured 
from multiple non-overlapping cameras at the jobsites. In 
their research, earthworks equipment was tracked using 
TLD system, whereas sequential working pattern of earth-
works equipment was learned and analyzed using CNN 
and DLSTM models. Their model was able to recognize the 
individual actions of excavators (i.e. “digging,” “swinging 
full,” “dumping,” “swinging empty,” “moving,” and “stop-
ping”) and dump trucks (i.e. “moving” and “stopping”). 
Kim J. and Chi (2020) pointed out that their methodology, 
to their knowledge, is the first attempt in monitoring the 
productivity of earthworks equipment using multiple 
(non-overlapping) cameras and that findings of their 
study can contribute in developing more reliable auto-
mated productivity monitoring of earthworks operations. 
Also, they highlighted that shortcomings of their vision-
based monitoring (such as occlusion and tracking errors) 
can be resolved through the integration with the Internet-
of-Things-based (IoT) system, such as Global Positioning 
System (GPS), Radio Frequency Identification (RFID), and 
accelerometers.

3  Methodology
This paper proposes an SRF for quick and practical estima-
tion of excavator actual, maximum possible, productivity 
and cycle time at a construction site during earthworks. 
This SRF includes the use of a video camera at a con-
struction site and the analysis of recorded videos using 
an advanced computer program. A particular highlight in 
using video camera is to record the excavator during exca-
vation and loading of materials into the tipper truck. As 
the length of the video may present a problem in video 
analysis, we recommend to record only a few short videos. 
More precisely, to record, and then analyze, the excava-
tor when performing excavation and loading of materials, 
from the beginning of loading into the empty box bed of 
the tipper truck, until the box bed of the tipper truck is 
fully loaded. The required number of this kind of (short) 

videos depends on each situation at a construction site. As 
the application of SRF implies an estimate of the excava-
tor actual, maximum possible, productivity and cycle time 
of one of the stages of earthworks within good operating 
conditions, it is not necessary to record more than five to 
ten videos and analyze two to five of them.

In SRF, the advanced computer program used to 
analyze recorded videos is MATLAB. MATLAB is, at the 
same time, a software package for numerical computing 
and modeling, and also a higher programming language 
for various scientific and technical applications (Kovačić 
2013). Video analysis in SRF includes manual input of 
appropriate labels of excavator working activities using 
a specific label automation algorithm that is built in 
MATLAB. A specific label automation algorithm speeds 
up the input of labels by interpolating the locations of 
region of interest (ROI) across the time interval. Other-
wise, just about every frame in the video would have to be 
processed with labels. Labels of excavator working activ-
ities imply repetition of excavator working cycles during 
excavation and loading of materials into the tipper truck. 
Therefore, the labels of excavator working activities (i.e. 
cycles) can be named as “excavation,” “swingBucket-
Full,” “loadingTipperTruck,” and “swingBucketEmpty.” 
After labeling excavator working activities, labels from 
video can be extracted, enabling some insights into the 
earthworks. More precisely, by extracting and displaying 
labeling results, it is possible to notice, calculate, or esti-
mate some earthworks information, such as total duration 
of loading materials into a tipper truck, the number of 
excavator buckets used to load a tipper truck, excavator 
actual productivity, duration of excavator cycle time. Also, 
the results of labeling can serve as a clear and transpar-
ent base for monitoring and control of earthworks if some 
excavator working activities are (suddenly) justifiably or 
unjustifiably longer than usual. Figure 1 shows the SRF 
diagram with goals.

Alshibani (2018) points out that measuring the actual 
productivity of earthworks operation, which involve heavy 
machines, can be a complex task and it can be defined as 

Fig. 1: SRF diagram with goals.
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a measure of the output of machines in a certain period 
of time (i.e. m3/h). Radujković et al. (2015) provide a 
similar formula (Eq. 1) for productivity, where the pro-
ductivity measure (P) is the ratio of production quantity 
(Q) and time spent (T). Mentioned formula (Eq. 1) and 
unit measure (m3/h) are proposed to be used within SRF. 
However, mentioned formula (Eq. 1) can be transformed 
into a similar formula (Eq. 2) to better suit SRF. Therefore, 
in transformed formula (Eq. 2) the actual, maximum pos-
sible, productivity (P) is still the ratio of production quan-
tity (Q) and time spent (T), but, the production quantity 
(Q) (numerator) is the product of the bucket capacity (q) 
in m3, with the number of loaded buckets (nq); and the 
time spent (T) (denominator) is time, in hours, when exca-
vator is performing earthworks. In formula (Eq. 2), the 
number of loaded buckets refers to the number of neces-
sary buckets to fully load tipper truck; and time, in hours, 
when excavator is performing earthworks, refers to exca-
vation and loading materials into the tipper truck, until 
the tipper truck is fully loaded.
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Similar to the excavator actual productivity (P) esti-
mate, duration of the excavator one cycle time (t) can also 
be estimated. One repetitive excavator cycle time (t) con-
sists of the excavation, swinging the full excavator bucket 
to the tipper truck (or near the pit), loading of material 
into the tipper truck (or disposing near the pit), and 
swinging back the empty excavator bucket for the excava-
tion. Therefore, to estimate the duration of the excavator 
one cycle time (t), a formula (Eq. 3) is proposed to be used 
within SRF. In the proposed formula (Eq. 3), the duration 
of the excavator one cycle time (t) is the ratio of time (T), 
in seconds, when excavator is performing earthworks, 
and number of excavator working cycles (nwc). In the pro-
posed formula (Eq. 3) the time, in seconds, when excava-
tor is performing earthworks, refers to the time required 
for excavation and loading materials into the tipper truck, 
until the tipper truck is fully loaded. When an excavator is 
loading materials into a tipper truck, it is assumed that the 
number of excavator working cycles (nwc) will be equal to 
the number of loaded bucket (nq).
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For the practical application of SRF, we selected 
one construction site, located in Rijeka (Croatia), where 
earthworks were performed at the time of recording. We 
recorded five short videos of the excavator during exca-
vation and loading of materials into the tipper truck. At 
the observed construction site, for performing the earth-
works, one excavator and one tipper truck were activated. 
The excavator and tipper truck were in good shape and 
well-maintained. Manufacturer of the excavator was 
Hyundai and the model was 220LC-9, with bucket capac-
ity of 0.9 m3, whereas manufacturer of the tipper truck was 
MAN and the model was TGA 35.350 M 8 × 4, with the box 
bed capacity of 15 m3. At the observed construction site, 
the operating conditions of the machines were good, the 
use of working time was excellent, and the weather was 
sunny. Before excavation, the material was broken using 
a hydraulic hammer.

For video analysis, we selected two characteristics and 
common videos from the observed construction site. The 
duration of the first video was about 8 minutes, whereas 
the duration of the second video was about 10  minutes. 
Each video was showing excavation and loading of mate-
rials by excavator, from the beginning of loading into the 
empty box bed of the tipper truck until the box bed of the 
tipper truck was fully loaded. In MATLAB, we manually 
inputted labels, associated with appropriate excavator 
working activities (i.e. cycles) using label automation algo-
rithm. As written earlier, the labels of excavator working 
activities (i.e. cycles) were named “excavation,” “swing-
BucketFull,” “loadingTipperTruck,” and “swingBuck-
etEmpty.” After labeling excavator working activities, 
MATLAB also provides a preview of processed videos, 
in which we can see appropriate appearance of inputted 
labels, linked with certain excavator activity in progress. 
Here, Figure 2 shows some (cropped) pictures from the 
first video (8  minute video duration) with labels dis-
played, and Figure 3 shows some (cropped) pictures from 
the second video (10 minute video duration) with labels 
displayed.

4  Results
After labeling the excavator working activities, we can 
extract the labels from both videos to see the results 
(Figures 4 and 5). By displaying the results of labeling from 
the first video (Figure 4) we can enumerate that tipper 
truck was loaded with 11 buckets of the excavator. Also, 
we can enumerate 11 repeated excavator working cycles, 
which is, obviously, matching with the number of loaded 
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bucket of the excavator. However, we can notice that there 
is an exception, or deadlock, in working cycles of the 
excavator. The exception is caused by the site manager 
who came to convey some information to the operator of 
the excavator. Although the deadlock was justified, the 
duration of the excavation and loading of materials by 
excavator into the tipper truck was extended.

By displaying the results of labeling from the second 
video (Figure 5) we can enumerate that the same tipper 
truck was loaded with 15 buckets of the excavator, which 
is 4 additional buckets than in the first video. The exact 
reason for the difference in the number of buckets is 
unknown. This can happen if the excavator buckets were 
not completely filled, or if there is a difference in mate-
rial class and content. However, in some cases, the earth-
works are paid by the number of (completely) filled tipper 
trucks that transport material from the construction site to 
the dump place. So, if every tipper truck is not completely 
filled, it may cause higher price for the earthworks!

From the second video, we can also enumerate 15 
repeated excavator working cycles. But, as in the first 
video, there are exceptions in working cycles of the exca-
vator. Those two exceptions were caused by the large 
stones that were excavated and disposed near the pit. 
Although these deadlocks, as in the first video, are justi-
fied, they again extended the duration of the excavation 
and loading of materials by excavator into the tipper truck.

With the purpose to estimate actual, maximum pos-
sible, productivity of the excavator at the observed con-
struction site, we can use the results of labeling (Figures 
4 and 5). In this case, the actual, maximum possible, pro-
ductivity of the excavator is presenting uninterrupted and 
continuous work operation by excavator at the observed 
construction site in Rijeka. Figures 4 and 5 are showing 
the duration length of works (in seconds) when the exca-
vator is performing earthworks and the duration length 
(in second) of all exceptions. All the duration lengths are 
simplified and rounded, in a way that the last number is 

Fig. 2: Four (cropped) pictures from the first video with the display of labels.



2348   Šopić et al., Excavator actual productivity at the construction site

0 or 5. Therefore, the estimates of the actual, maximum 
possible, productivity of the excavator at the observed 
construction site in Rijeka, from the first and the second 
video are given below. The first calculation is from the first 
video, and the second one is from the second video.
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The calculations of the estimated average excavator 
cycle time, using the results of labeling (Figures 4 and 5) 
are given later. The first calculation is from the first video, 

and the second is from the second video. The estimated 
average excavator cycle time refers to the continuous work 
operation by excavator, without exceptions or deadlocks, 
in working activities of the excavator.
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From the previous calculations, it can be concluded 
that the estimated actual, maximum possible, productiv-
ity of the excavator, at the observed construction site in 
Rijeka, is 108  m3/h. Furthermore, estimated duration of 
the average excavator cycle time is 30 seconds. Excavator 
actual, maximum possible, productivity and cycle time 

Fig. 3: Four (cropped) pictures from the second video with the display of labels.
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refer to one of the stages of earthworks. The calculations 
of the excavator estimated actual productivity and average 
cycle time are valuable inputs for managing earthworks. 
However, some exceptions, or deadlocks, while excavator 

is performing earthworks, as we have seen in both the 
videos, may be expected. The (un)justified exceptions 
are extremely important. The way exceptions will be pro-
cessed or calculated depends on the project manager.

Fig. 4: The results of labeling from the first video.

Fig. 5: The results of labeling from the second video.
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5  Discussion
This paper proposes an SRF for quick and practical esti-
mation of excavator actual, maximum possible, pro-
ductivity and cycle time at a construction site during 
earthworks, using video analysis of recorded videos. The 
benefits of using a video camera to record earthworks 
are reflected in visual reproductions of the real circum-
stances in which heavy construction machines operated 
at a construction site during recording. Furthermore, 
when a video camera is used, heavy machines can be 
recorded from a great distance. Also, the use of a video 
camera does not interfere the normal operation of the 
heavy machines and does not require installation of 
some specific tools on the observed heavy machines. By 
visual insight into real, realistic, and true situations at a 
construction site, the possibilities of inaccurate interpre-
tation of the collected data is reduced. However, it is nec-
essary to find a position that allows a clear and noticeable 
representation of earthworks operations. Overlapping of 
heavy construction machines in videos can cause incor-
rect data generation in video analysis. Adverse weather 
conditions, such as rain, fog, snow, or strong wind, as 
well as conditions with poor natural or artificial light-
ing, result in videos with reduced sharpness or blurry 
content. Recorded videos should be with appropriate 
quality and length, as the computer configuration, as 
well as advanced computer program for video analysis, 
may limit the possibilities of video analysis. Therefore, 
one should be extra careful when selecting the subject to 
be recorded, as well as during recording.

By applying SRF it is possible to notice, calculate, or 
estimate some earthworks information, such as total dura-
tion of loading materials into a tipper truck, the number of 
excavator buckets used to load a tipper truck, excavator 
actual productivity, duration of excavator cycle time. Also, 
the application of SRF can serve as a clear and transpar-
ent base for monitoring and controlling of earthworks if 
some of the excavator working activities are (suddenly) 
justifiably or unjustifiably longer than usual. This type of 
research framework can also be applied for a tipper truck 
in cases when the dump site is at a same construction site, 
close to the excavation (Šopić and Vukomanović 2019). 
Label session can be also used in the form of a training 
data set (i.e. ground truth label data) to train some kind 
of object detector. Object detector can be a machine or a 
DL detector, depending on the training functions (algo-
rithms) used.

In cases of SFR application to only one of the stages 
of earthworks, the simplicity of SRF is also reflected in 
the number of videos that needs to be analyzed from the 

construction site. As previously mentioned, the applica-
tion of SRF implies an estimate of the excavator actual, 
maximum possible, productivity and cycle time. There-
fore, at the construction site where good operation con-
ditions prevail and with excellent use of working time of 
good shape and well-maintained machines there is no 
need to analyze more than a couple of videos. The first 
one is to estimate the excavator actual, maximum possi-
ble, productivity and cycle time, and the second one is to 
confirm the estimates from the first video. Selected videos 
should visualize a characteristic and common scene from 
an observed construction site. In cases where two consec-
utive measurements show significantly deviating values, 
it is recommended to analyze more than two videos, using 
an arithmetic mean or some other statistical data process-
ing. In case of poor working conditions at the construc-
tion site, it is recommended to better organize the working 
conditions, as much as possible, and then to apply SRF.

Applying SRF at the observed construction site in 
Rijeka, it was calculated that the estimate of the excava-
tor actual, maximum possible, productivity is 108  m3/h. 
Using the methodology for calculating the excavator 
planned work efficiency described in Tijanić et al. (2019) 
research, it can be calculated that the excavator planned 
work efficiency for the same conditions would be less than 
60 m3/h. Difference between planned work efficiency and 
actual productivity indicates the importance of estimating 
actual productivity.

Although SRF presents practical, simple, and quick 
research framework for estimates of excavator actual, 
maximum possible, productivity and cycle time, further 
research and improvements to SRF are necessary. 
Improvements should be geared toward integrating SRF 
with non-vision-based technologies (such as GPS, RFID, 
accelerometers, sensors). Also, improvements should be 
directed toward developing a fully automated and auton-
omous system that will be able to first detect the heavy 
machine, then recognize the machine’s working activi-
ties, and finally estimate its actual productivity.

6  Conclusion
This paper proposes an SRF. The main contributions of 
SRF are explicit values of an excavator actual, maximum 
possible, productivity and cycle time related to one of the 
stages of earthworks at a construction site. SRF should 
be applied at the beginning of earthworks and after any 
significant change in performance of earthworks. With an 
insight into the productivity it is possible to estimate the 
required time and cost of the activity.
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In cases of continuous (daily) application of SRF, a 
clear and transparent base for monitoring and control 
of earthworks can be obtained. In good operating condi-
tions, continuous application means the daily recording 
of five to ten videos and the analysis of two to five videos 
during the performance of earthworks. The main focus of 
continuous application of SRF is to detect if some exca-
vator working activity is (suddenly) justifiably or unjus-
tifiably longer than usual and exceptions, or deadlocks, 
in working activities of the excavator. Continuous applica-
tion of SRF enables enhanced supervision of works. Early 
detection of an unusual work performance offers the pos-
sibility to implement appropriate and corrective measures 
in time. Therefore, with continuous insight into produc-
tivity and deadlocks, it is possible to track the dynamics 
of performance and timely detect unfavorable and unac-
ceptable actions. However, if SRF is applied continuously, 
care should be taken to ensure that SRF does not become 
time-consuming.
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