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Optineurin dysfunction in amyotrophic lateral  
sclerosis: why so puzzling?

Abstract

Mutations in optineurin have been linked to amyotrophic lateral sclero-
sis (ALS) a decade ago, but its exact role in the neurodegenerative process is 
still unclear. As a lysine 63 (K63)- and methionine (M1)-linked polyubiq-
uitin-binding protein, optineurin has been reported to act as an adaptor in 
inflammatory signaling pathways mediated via nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and interferon regulatory fac-
tor 3 (IRF3), as well as in membrane-associated trafficking events including 
autophagy, maintenance of the Golgi apparatus, and exocytosis. Other stud-
ies have demonstrated its role in other processes such as regulation of mitosis, 
transcription, necroptosis and apoptosis. However, many of the reported 
effects in cell models have been proven difficult to reproduce in optineurin 
animal models, demonstrating the challenges of extrapolation between 
model systems. Knowing that multifunctional proteins present a “nightmare” 
for researchers, to help navigating through this field, we address the most 
common controversies, open questions, and artefacts related to optineurin 
and its role in pathogenesis of ALS and other neurodegenerative diseases. 

INTRODUCTION

The optineurin protein has initially been discovered in 1998 as a 
second adenoviral E3-14.7K-interacting protein, and was thus 

termed FIP-2. Since then, optineurin has been reported to participate 
in an unusually wide number of cellular functions including inflamma-
tory signaling, vesicular trafficking, maintenance of the Golgi appara-
tus, autophagy, regulation of transcription, mitosis, apoptosis and 
necroptosis (reviewed in (1, 2)). It takes part in these processes by inter-
acting with a large number of proteins via its ubiquitin-binding domain, 
microtubule-associated protein 1A/1B-light chain 3 (LC3)-interacting 
region (LIR), Tank-binding kinase 1 (TBK1)-interacting domain and 
others, and is thus considered to be an adaptor protein. Via its coiled-coil 
(CC) domains it oligomerizes with self, TBK1 and perhaps other pro-
teins. Optineurin function is regulated by posttranslational modifica-
tions, most importantly phosphorylation by TBK1, ubiquitination by 
HECT domain and ankyrin repeat containing E3 ubiquitin protein 
ligase 1 (HACE1) and deubiquitination by cylindromatosis tumor sup-
pressor protein (CYLD) (3–6). To reflect its many functions and cel-
lular partners, its name has been changed several times, finally settling 
on optineurin, for optic neuropathy inducing, because of the optineurin 
mutations reported in primary open angle glaucoma patients (7). Of 
note, optineurin mutations are found specifically in normal tension 
glaucoma (NTG), a subset of glaucoma that arises without an increase 
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in intraocular pressure. In addition, optineurin mutations 
distinct from those previously found in NTG have been 
subsequently found in amyotrophic lateral sclerosis (ALS) 
and frontotemporal dementia (8–10). Moreover, poly-
morphisms resulting in lower level of optineurin expres-
sion have been found in Paget’s disease of the bone and 
Crohn’s disease (11, 12). Various optineurin patient muta-
tions were proposed to act by loss-of-function, haploinsuf-
ficiency, gain-of-function or dominant negative effects, 
suggesting that the regulation of cellular processes by 
optineurin is complex, and might differ in various cell 
types and/or pathogenic processes. We will address com-
mon open questions, controversies and artefacts related 
to optineurin in pathogenesis of neurodegeneration, 
mostly focusing on ALS, in which more than 40 optineu-
rin mutations have been reported thus far (1, 2). 

“Nomen est omen”?

Optineurin has been discovered as an interacting part-
ner to various cellular proteins, hence its many names. It 
was initially characterized upon being fished out in a 
yeast-two-hybrid screen with an adenoviral E3-14.7K-
interacting protein as a bait (13). Next, it was pulled out 
from a database search for proteins homologous to nucle-
ar factor κB essential modulator (NEMO), and was 
named NEMO-related protein. It harbors 53% homology 
to NEMO, which is most prominent in its ubiquitin-
binding C-terminus (14). In 2000, optineurin was termed 
transcription factor IIIA-interacting protein upon being 
identified as an interacting partner of transcription factor 
IIIA, which in eukaryotic cells activates transcription of 
5S RNA (15). The name optineurin was finally adopted 
in 2002 when its mutations were found to cause a he-
reditary NTG (7). Since then, optineurin has been 
mapped as interacting partner of many other proteins, 
and its mutations and polymorphisms have shown prom-

inent roles in other diseases (1). Although its current name 
does not accurately represent all the roles that optineurin 
has and/or all the diseases that its mutations or polymor-
phisms are associated with, it bares reference to the first 
disease that it was linked to. 

Optineurin protein-protein interactions 

Optineurin is a non-enzymatic protein that harbors 
several functional domains and interacts with a large 
number of proteins (16). It has an LC3 and TBK1 binding 
regions in its N-terminus, and an ubiquitin-binding do-
main in the C-terminus (Figure 1). In addition, CC do-
mains cover a large part of optineurin (around 70%), and 
mediate its self-oligomerization and oligomerization to 
other proteins harboring CC domains. Optineurin regu-
lates protein degradation, cell trafficking and signal trans-
duction through binding linear lysine 63 (K63)- and 
methionine (M1)-linked ubiquitin. The ubiquitin-bind-
ing domain of optineurin is highly homologous to sev-
eral regulators of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway: a positive 
regulator NEMO and negative regulators A20 binding 
and inhibitor of NF-κB (ABIN) proteins, and is thus 
named ubiquitin-binding domain in ABIN proteins and 
NEMO (UBAN) (17). The high specificity for linear 
ubiquitin is provided by the zinc finger domain (ZF), lo-
cated distally to UBAN (18). Some of the ubiquitinated 
proteins that optineurin binds are receptor interacting 
protein kinase 1 (RIPK1), which controls NF-κB activa-
tion, and myosin VI, a motor protein important in vesicle 
trafficking and autophagy. During autophagy, optineurin 
also recognizes ubiquitinated intracellular bacteria, pro-
tein aggregates and damaged mitochondria (3, 19, 20). 
To function as an autophagy receptor, optineurin bridges 
ubiquitinated cargo to autophagosomes via its LIR do-
main (3). Notably, LIR is fully functional only upon 

Figure 1. Schematic representation of optineurin domains and interacting partners. N-terminus of optineurin possesses coiled-coil domain 
1 (CC1) that interacts with TBK1, LC3-interacting region (LIR) that harbors Ser177, which is phosphorylated by TBK1 to enhance binding 
between optineurin and LC3. Optineurin ubiquitination is mediated by an ubiquitin ligase HACE1, which ubiquitinates optineurin on Lys193. 
This posttranslational modification is required for p62 binding to optineurin. Coiled-coil 2 (CC2) domain is crucial for self-oligomerization 
of optineurin, which is important for binding to linear ubiquitin. Ubiquitin-binding domain (UBAN), important for binding polyubiquiti-
nated cargo including intracellular bacteria, protein aggregates and damaged mitochondria, is located at the C-terminus. UBAN is also im-
portant for binding RIPK1, regulator of the NF-κB pathway, and myosin VI, a motor protein important in vesicle trafficking and autophagy. 
Zinc finger domain (ZF) maps distally to UBAN. Phosphorylation on Ser473 enhances optineurin binding to ubiquitin. Rab8 and caspase 8 
bind to the N-terminus, transcription factor IIIA (TFIIIA) to the intermediate region, and CYLD deubiquitinase and huntingtin (htt) to 
C-terminus of optineurin. Remark: the domain sizes are not drawn to scale to accommodate their designations. 
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phosphorylation of Ser177 by TBK1. The complexity of 
the interaction between optineurin and TBK1 is also seen 
in the signaling pathway necessary for IFN-b production, 
whereby their stable interaction is inducible upon cell ac-
tivation by pathogen associated molecular patterns. This 
process was reported to be bipartite: the two proteins ini-
tially associate via N-terminal CC1 domain of optineurin 
and C-terminal CC2 of TBK1, and this is stabilized upon 
TBK1 ubiquitination, which allows its binding to opti-
neurin UBAN domain (4, 21). Phosphorylation of opti-
neurin by TBK1 may also be required for stabilization of 
this interaction. Similarly, self-oligomerization of opti-
neurin via the CC2 domain, was found to be crucial for 
binding of linear ubiquitin (22). 

The role of optineurin self-oligomerization has been 
debated for a long time because it could potentially lead 
to protein aggregation. Native gel electrophoresis sug-
gested that endogenous optineurin forms hexamers (23). 
Moreover, oxidative stress has been proposed to trigger 
cross-linking of optineurin oligomers (24). However, op-
tineurin ALS mutations were not detected in aggregates, 
suggesting that it does not act by gain-of-function i.e. 
toxicity. In contrast, immunohistochemical analysis of 
sporadic ALS cases, showed aggregation of wild-type op-
tineurin in skein-like inclusions and round hyaline inclu-
sions in the spinal cord, suggesting that optineurin ap-
pears to be a general marker for ALS (25). Optineurin 
presence in aggregates was demonstrated in several other 
neurodegenerative diseases including Alzheimer’s, Par-
kinson’s (PD) and Huntington’s disease. The role of wild-
type optineurin in these aggregates has not been conclu-
sively clarified.

Optineurin cellular localization 

Optineurin is a widely expressed cytoplasmic protein. 
Many studies confirmed that optineurin is prominently 
present in the perinuclear region around the Golgi ap-
paratus (26). One of the proposed candidates accountable 
for driving this localization is huntingtin (htt), an adaptor 
protein preferentially located at the Golgi apparatus. Mu-
tations of htt caused by polyglutamine repeats take part 
in intracytoplasmic inclusions in Huntington’s disease, a 
neurodegenerative disease characterized by involuntary 
movements and various cognitive and behavioral defects. 
In cells harboring mutated htt, optineurin binding to the 
htt and Golgi was reduced (27). This led to impaired re-
cruitment of Rab8 to the Golgi apparatus, and partial 
blockade of the Rab8/optineurin-mediated secretion, 
while Rab8 was still bound to optineurin but not at the 
right location. Furthermore, upon activation of pathogen 
recognition receptors by viral sensing, optineurin was re-
ported to serve as a recruitment platform for TBK1 activa-
tion at the Golgi apparatus (4). Prerequisite for TBK1 
recognition by optineurin was TBK1 polyubiquitination 
on conserved lysines 30 and 401. Interestingly, this path-
way is apparently hijacked by viruses because NS3 protein 

of the Bluetongue virus acts as a decoy for optineurin, 
thereby diminishing TBK1 recruitment to the Golgi ap-
paratus and its subsequent activation and downstream 
signaling. 

Only one optineurin patient mutation, which harbors 
a two base pair AG insertion changing the open reading 
frame (691_692insAG), localizes to the nucleus (28). 
ALS-linked ubiquitin-binding mutations Q398X and 
E478G show abnormal diffuse cytoplasmic distribution 
in non-vesicular manner and elicit Golgi fragmentation 
in motor neuron-like NSC-34 cells (28, 29). Wild-type 
optineurin also colocalizes with ubiquitinated cellular 
cargo destined for degradation, whereas many ubiquitin-
binding mutants fail to do so (3). However, ubiquitin-
binding mutants do not completely lose their ability to 
bind to cargo so it is possible that they partially retain 
their normal location by piggybacking to endogenous 
optineurin or some of its protein partners (19, 30). Some 
uncertainties about optineurin location remain because 
immunostaining patterns depend on antibodies, tags and 
washing procedures. For example, adding glycine in a 
washing step that has been used previously for antigen 
retrival, can result in uncovering new epitope(s) and thus 
different immunostaining patterns (26). Thereby, a dif-
fuse, cytoplasmic distribution of optineurin was present 
when cells were washed in glycine, whereas without that 
step, the cytoplasmic staining was low and optineurin was 
located in the perinuclear area overlapping with the  Golgi 
marker GM130. Other inconsistencies in optineurin 
staining in overexpression models could also be attri buted 
to supraphysiological level of binding to ubiquitin, p62 
and other targets. 

Optineurin as one of many amyotrophic 
lateral sclerosis-linked genes

ALS, also known as Lou Gehrig’s disease, is a hetero-
geneous neurodegenerative disease characterized by the 
death of motor neurons at three levels: the primary motor 
cortex, brainstem and spinal cord (31). In up to 50% of 
patients it can also affect cognition and behavior by tar-
geting neurons in the frontal and temporal cortex (32). 
Loss of motor neurons leads to skeletal muscle weakness, 
problems in swallowing and talking, which rapidly prog-
ress to complete muscle paralysis and death, most often 
due to inability to breathe (31). ALS has a complex ge-
netic background (32, 33). Only 10% of cases are famil-
ial, although the genetic component is high even in spo-
radic cases. The discrepancy in the frequency of familial 
and genetic cases is due to de novo mutations, incomplete 
penetrance and misdiagnosis, among others. Despite an 
enormous progress in finding ALS-linked mutations, 
which encompass more than 30 genes so far, understand-
ing their mechanism of action has proved to be a great 
challenge. One of the most prominent features of ALS is 
protein aggregation but its direct mechanistic link to neu-
ronal dysfunction is debated (34). Other proposed mech-



Nikolina Prtenjača et al. Optineurin in ALS

26 Period biol, Vol 121–122, No 1–2, 2020.

anisms include impaired aggregate disposal via autophagy 
or proteasomes, defective RNA metabolism/stress granule 
formation, mitochondrial dysfunction, enhanced excito-
toxic death, impaired nucleocytoplasmic transport, cyto-
skeletal and axonal defects, impaired DNA repair, and 
defects in vesicle trafficking (32, 35). Moreover, neuronal 
dysfunction is accompanied by inflammatory processes 
and proliferation of glial cells (32). In this respect it is 
perhaps not surprising that the direct link to disease is 
unclear for optineurin mutations as well. As an adaptor 
in inflammatory signaling, autophagy, and exocytosis, 
optineurin could contribute to neurodegeneration in sev-
eral of the above-mentioned pathways. 

Around 40 optineurin mutations have been found in 
hereditary and sporadic ALS patients. The majority are 
point mutations, including both missense and nonsense 
mutations. Most of them are in ubiquitin-binding region 
or CC domains, suggesting that binding of ubiquitin, 
oligomerization, and protein-protein interactions are re-
sponsible for the disease pathogenesis (26). Because mu-
tated optineurin was not detected in aggregates, as dis-
cussed above, it is thought that optineurin mutations give 
rise to the loss of its functions rather than new toxic func-
tions (1). The first optineurin mutations with proven 
pathogenicity were a homozygous null mutation of exon 
5, a homozygous nonsense Q398X and a heterozygous 
E478G missense point mutation (8). Homozygous muta-
tions of exon 5 and a Q398X nonsense mutation that 
encodes for a premature stop codon suggest that disease 
occurs when both alleles are affected leading to loss of 
complete protein or its ubiquitin-binding region. 

Cellular and animal models for 
optineurin research

Some of the initial approaches in studying protein 
function include protein-protein interactions in yeast or 
bacterial systems, often followed by overexpression stud-
ies in cellular models. All of these have been used in op-
tineurin research. Very often the cell line studied is se-
lected based on its ease of transfectability, availability, and 
not on its relevance for a particular disease. Those include 
HEK293 and HeLa cells, which might be problematic 
when analyzing potential cell-specific effects. Further-
more, various ALS or glaucoma patient mutations, as well 
as artificial mutations that include constitutively active 
variants, point mutations in relevant domains which lead 
to loss-of-function or dominant negative effects, have 
been used in optineurin overexpression studies. However, 
overexpressed proteins do not necessarily replicate the 
interactions and/or oligomerization patterns of proteins 
expressed at physiologic levels. In particular, because more 
than 70% of optineurin is predicted to form CC domains, 
it has a high propensity for oligomerization or self-oligo-
merization. Oligomerization, combined with overexpres-
sion that makes proteins supersaturated, would thus fa-
cilitate non-physiologic aggregation of optineurin (36). 

Therefore, it is possible that some optineurin patient mu-
tations that were reported to aggregate in in vitro systems 
do not behave the same in vivo. It must also be noted that 
some cellular functions are particularly difficult to study. 
For example, when studying autophagy, one has to be 
aware of a number of potential artefacts that could lead 
to data misinterpretation, which will be discussed later.

The first attempts to analyze optineurin function in vivo 
were in zebrafish. Morfolino-induced optineurin silencing 
in mutated superoxide dismutase 1 (SOD1G93A) model, 
harboring the most researched aggregation-prone ALS 
patient mutation, resulted in cell death, motor axonopathy, 
but no motor phenotypes were noted (19). After that, sev-
eral optineurin mouse models were designed to mimic the 
pathogenic ALS-linked mutations (Table 1). The first de-
veloped was the mouse knock-in model harboring a 
D477N optineurin (OptnD477N) point mutation, which 
mimics the E478G mutation found in ALS patients and 
lacks the ubiquitin-binding activity (37). In the same line 
was the optineurin truncation 1-470 (Optn470T), which 
lacks whole ubiquitin-binding domain (UBAN and ZF), 
and the distal part of CC2 domain, and as such perhaps 
best mimics Q398X truncation in humans (38). Another 
model, an N-terminal deletion (OptnΔ157) that lacks the 
TBK1-binding region, was designed to study the relevance 
of optineurin interaction to TBK1 (21). Finally, several 
groups generated and/or analyzed optineurin deficiency 
mouse models (Optn-/-), which best mimic null mutations 
of optineurin in ALS patients (39–41). Optineurin mouse 
models have shown surprisingly little functional defects, 
if any. One group reported axonal degeneration and de-
fects in vertical rearing activity (40), but this was not con-
firmed in a follow-up study (42). Analyses of cellular func-
tions in primary cells from optineurin animal models will 
be further discussed in the subsequent specialized chapters. 

Given the poor overlap between optineurin models 
and patients, one could pose a question whether mouse 
models are relevant in optineurin or ALS research in gen-
eral. To answer this, we would argue that the absence of 
an ALS-like motor phenotype in optineurin models is 
perhaps not surprising given that mice live on average 
30-fold shorter than humans, and do not replicate many 
of the age-related phenomena present in humans (43). 
Indeed, the optineurin deficiency and insufficiency mouse 
models substantially differ from classical toxic prion-like 
ALS models (44). For example, the first and the most used 
ALS transgenic model carries the human several-fold 
overexpressed aggregate-prone mutation SOD1G93A, and 
exhibits early motor neuron death, neuroinflammation 
and subsequent paralysis (45). However, all preclinical 
studies for ALS therapies were performed in these mice, 
and so far most of them failed (44, 46). Although attrac-
tive, this may not be an adequate model of ALS, particu-
larly not for its sporadic form. For this reason, the emerg-
ing ALS models in other ALS-linked genes are highly 
sought after (44). These models will likely be valuable 
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even if the impact of a particular mutation is not seen in 
unmanipulated mice, because they could in turn be used 
to analyze the cumulative effects of other ALS-predispos-
ing factors, both environmental and genetic. This is like-
ly particularly important for loss-of-function models, 
which are less likely to exhibit functional defects than 
transgenic (overexpression) models. 

It is notable that neither animal- nor patient-induced-
pluripotent stem cell models are available for most optineu-
rin patient mutation missense mutations. For this reason, 
they are still analyzed only in cellular models. For example, 
some mutations including R96L, E478G and V295F were 
analyzed in functional studies by in vitro overexpression 
(28, 47). Altogether, in vivo models are considered more 
relevant for addressing physiologic functions of particular 
genes, whereas the in vitro research is valuable for initial 
characterizations of molecular mechanisms. However, 
limitation of each model must be taken into account.

Inflammatory signaling

The first reported mutations in optineurin were pro-
posed to trigger excessive inflammatory responses, which 
is an attractive hypothesis for neurodegeneration (8). In-
deed, ever since activated microglia and astrocytes were 
reported to inflict collateral damage to neighboring neu-
rons in ALS and other neurodegenerative diseases (48, 
49), it was unclear if this was exclusively an aftermath of 
neuronal damage or if glial cells could also be the pri-
mary trigger of neuronal death. Optineurin and several 
of its interacting proteins such as TBK1 and RIPK1, are 
key regulators of innate immune responses. Importantly, 
mutations in TBK1, which result in its haploinsufficiency 
have also been recently described in ALS patients, open-
ing a possibility that innate immune responses could par-
ticipate in ALS initiation and/or progression (50, 51).

Optineurin in NF-κB signaling pathway

Activation of the NF-κB pathway via Toll-like recep-
tors or other pathogen or damage sensors leads to proin-
flammatory cytokine secretion (52). Inflammatory signal-
ing is highly regulated to orchestrate the appropriate 
magnitude of response to an individual threat. Thus, 
various feedback loops either amplify or block signaling 
in immune cell subsets to avoid, on one hand, suboptimal 
responses incapable of clearing the damage, as well as 
exaggerated responses leading to autoimmunity and/or 
autoinflammation. Due to its high homology to NEMO, 
optineurin was initially proposed to block the NF-κB 
pathway by competitively binding to polyubiquitinated 
RIPK1 (14, 53). RIPK1 normally gets ubiquitinated upon 
pathogen or damage sensing, which allows docking of 
NEMO, a regulatory component of the IκB kinase com-
plex. IκB kinase complex then gets activated and phos-
phorylates the inhibitor of κB (IκB), which leads to its 
degradation and allows NF-κB translocation to the nu-
cleus, thus triggering the secretion of proinflammatory 
cytokines such as interleukin 1b and tumor necrosis fac-
tor (TNF). For these reasons, the possibility that hyper-
activation of the NF-κB could trigger neurodegeneration 
was studied as a potential mechanism of action of opti-
neurin mutations.

In vitro studies showed that overexpressed optineurin 
inhibited NF-κB activation by competing with NEMO in 
HEK293 cells (53). Conversely, overexpression of patient 
ALS mutation E478G, which is deficient in ubiquitin 
binding, was incapable of NF-κB inhibition in NSC-34 
and neuroblastoma Neuro2A mouse cell lines (8, 54). Un-
like these results in cell lines though, the investigations in 
primary murine cells from several models of optineurin 
deficiency and insufficiency (Optn470T, OptnD477N and 
OptnD157), showed no influence of optineurin on the acti-

Table 1. Optineurin mouse models.

Mouse 
model Domain/mutation

Related 
human 
mutation

Functional readouts in primary cells or in vivo

OptnD477N

Point mutation in ubiquitin-bind-
ing region 
→ lacks the ubiquitin-binding 
activity

E478G 
  impaired TBK1 activation, IRF3 phosphorylation and IFN-b production 
 reduced phosphorylation of OPTND477N by TBK1 
 no direct differences in NF-κB activation

Optn470T

Truncation of ubiquitin-binding 
region and the distal part of CC2
→ lacks the ubiquitin-binding 
activity; lower expression level

Q398X 
  impaired TBK1 activation, IRF3 phosphorylation and IFN-b production 
   disbalance in gene expression of pro- and anti-inflammatory factors
 no direct differences in NF-κB activation

OptnΔ157 N-terminal deletion
→ lacks TBK1-binding activity /   impaired TBK1 activation, IRF3 phosphorylation and IFN-b production 

 reduced phosphorylation of OptnΔ157 by TBK1

Optn-/- Total protein deletion
→ complete loss-of-function

Null 
muta-
tions 

  impaired TBK1 activation, IRF3 phosphorylation and IFN-b production 
  mice more susceptible to Salmonella infection 
  increased necroptosis in oligodendrocytes and mouse embryonic fibroblasts
  mildly increased proinflammatory cytokines in vivo (in unmanipulated mice)
 no direct differences in NF-κB activation
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vation of NF-κB pathway and subsequent TNF production 
in various primary cells including macrophages, dendritic 
cells, mouse embryonic fibroblasts (MEFs), and osteoclasts 
(4, 21, 38, 39). Optineurin was also dispensable for TNF 
production in neonatal microglia (16). Since optineurin is 
upregulated by the NF-κB pathway itself (55), it was also 
tested if it was a late regulator of this pathway, but the 
analyses done in macrophages and microglia were negative 
as well (16, 38). All of these reports strongly suggested that 
the initial characterization of optineurin function in cell 
lines by overexpression and silencing was an artefact of the 
experimental system, perhaps due to non-specific binding 
and transfection artefacts. However, a recent study sug-
gested that ALS mutation E478G led to enhanced NF-κB 
activation and nuclear translocation in Optn-/- MEFs (56). 
When the same mutation was delivered to mouse motor 
cortex via a lentiviral vector, it led to neuronal death, ac-
companied with microglia and astrocyte activation. Simi-
larly, a minor increase in expression of inflammatory genes 
was reported in an optineurin deficiency model, although 
this was reported to be secondary to increased necroptosis 
(40). Therefore, because of these contradictory data, the 
role of optineurin in the NF-κB pathway is still unclear. 
Several possibilities could explain for these discrepancies. 
Firstly, given the potential distinct cell-specific effects, it is 
possible that optineurin regulates this pathway only in se-
lected cell subsets. Therefore, the effects of optineurin mu-
tations should be tested in a broad panel of cell model 
systems. Secondly, it is possible that the stimuli used on the 
primary cells do not represent the dangers faced by neurons 
or glia in the CNS. For this reason, it would be necessary 
to use the agents proven to elicit neurotoxicity and/or study 
neuron:glia co-cultures or otherwise mimic the CNS mi-
croenvironment. Thirdly, optineurin could have distinct 
effects in mouse and human cells. Finally, although it was 
initially presumed that optineurin deficiency and putative 
loss-of-function mutations have the same effects, this 
might not be the case. It is possible that point mutations 
or truncations act as dominant-negative and/or toxic gain-
of-function mutations. Therefore, to understand if indeed 
optineurin regulates the NF-κB pathway, it will be crucial 
to study these possibilities. 

Optineurin in interferon regulatory 
factor 3 signaling pathway

Type I interferons (IFNs), including IFN-b that is ex-
pressed in all cells, are essential for elimination of viruses 
and certain bacteria (57, 58). Their production is regulated 
by the transcription factor IRF3, which is activated down-
stream of the same pathogen or damage sensors that trigger 
NF-κB activation. Activation of IRF3 is mediated by 
TBK1, which activates IRF3 by phosphorylation. After 
Toll-like receptor activation, optineurin interacts with 
TBK1 at the Golgi apparatus, which allows autophosphor-
ylation of TBK1. It was initially reported that optineurin is 
a negative regulator of IFN-b expression induced by Sendai 

virus and dsRNA in HEK293 cells (59), but various studies 
in primary cells from optineurin loss-of-function mouse 
models have shown the opposite result in response to vari-
ous viral and pathogen-mimicking agents like lipopoly-
saccharide and polyinosinic:polycytidylic acid. For  example, 
in primary cells including embryonic fibroblasts and vari-
ous innate immune cells (macrophages, dendritic cells, 
microglia, osteoclasts and NK cells) optineurin deficiency 
or mutations compromising its ubiquitin-binding function 
resulted in impaired TBK1 activation and subsequent 
 IFN-b production (4, 16, 21, 37–39). Notably, diminished 
IFN-b signaling in microglia led to a disbalance in gene 
expression of several pro- and anti-inflammatory factors, 
including IRF7, NOS2, CXCL10, CXCL1, and IL-10 (16). 
Therefore, the discrepancy exists in cell lines and primary 
cells, similar to the results in the NF-κB pathway. Notably, 
the in vivo relevance of the TBK1 pathway still needs to be 
assessed before final conclusions are made. IFN-b has not 
thus far been linked to ALS, IFN-b has not thus far been 
linked to ALS, and if confirmed, it would be a new patho-
genic mechanism in ALS. 

Necroptosis

Necroptosis is a caspase-independent form of pro-
grammed cell death, which results in the release of cel-
lular components and triggers inflammation (60). ALS 
mouse models and patient autopsies exhibit various 
necroptosis markers in the affected tissues (40, 42). Ito et 
al. showed that necroptosis markers, RIPK1, RIPK3 and 
phosphorylated mixed lineage kinase domain-like pseu-
dokinase (p-MLKL) were upregulated in Optn-/- MEFs 
and oligodendrocytes treated with TNF (40). They have 
also reported upregulation of necroptosis markers in the 
spinal cord of SOD1G93A mice and experimental RIPK3 
deletion resulted in reduction of these markers (40). 
Necroptosis blockade in Optn-/- mice restored axonal my-
elinization, suggesting that necroptosis is directly linked 
to axonal degeneration. However, the follow-up study 
done by Deremntazki et al., showed equal myelinization 
in Optn-/- and WT mice. Moreover, RIPK3 and p-MLKL 
were not upregulated in the spinal cords of SOD1G93A 
mice, and RIPK3 deletion did not result in reduction of 
necroptosis markers. These results argue that necroptosis 
is an unlikely mechanism for optineurin mutations in 
ALS (42).

Optineurin in membrane-associated 
trafficking events

Due to the post-mitotic nature of neurons, these cells 
are vulnerable to increased accumulation of cellular waste 
and/or impaired vesicle trafficking (61). Failure of these 
processes demonstrably leads to neurodegeneration. Mac-
roautophagy (hereafter referred as autophagy) is a highly 
conserved cellular process in charge of eliminating ag-
gregated proteins, damaged organelles, and invading 
pathogens via lysosomes (62). The fact that mutations in 
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optineurin and several optineurin-binding partners im-
plicated in autophagy (TBK1, p62) were found in ALS 
patients, allows for the possibility that they act by disrupt-
ing autophagy during the neurodegenerative process. For 
example, in a SOD1H46R mouse model it was shown that 
loss of p62, a member of a group of autophagy receptor 
proteins, could worsen the disease, while p62 overexpres-
sion ameliorated the phenotype (63, 64). Additionally, 
TBK1 recruitment to optineurin was prevented by its 
ALS-linked E696K mutation (65, 66). 

Neurodegeneration is also often characterized by Gol-
gi fragmentation, which may not only be the consequence 
of the neurodegenerative process, but could also be its 
trigger (67, 68). Golgi apparatus is an organelle that pro-
cesses proteins destined for secretion. It is fragmented in 
up to 50% of motor neurons of sporadic ALS patients (69, 
70). Golgi fragmentation in SOD1G93A model precedes 
neuromuscular denervation, axon retraction and inclu-
sion formation (70). Additionally, impaired endoplasmic 
reticulum homeostasis is present in several neurodegen-
erative diseases (71). In SOD1G93A mouse model of ALS 
for instance, depletion of Reticulon 4, an ER sculpting 
protein, accelerates the disease onset and progression (72). 
So, it is possible that optineurin mutations trigger neuro-
degeneration by perturbing autophagy and/or protein 
trafficking. Notably, some optineurin mutations found in 
glaucoma patients have also been reported to impact au-
tophagy and vesicle trafficking (73–76). Because of their 
distinct mode of action, which includes autophagy-medi-
ated cell death that was not reported with optineurin ALS 
mutations, they will not be discussed here, and the read-
ers are referred to several recent reviews (2, 77).

Optineurin: a pan-autophagy adaptor?

Autophagy is a cellular process that removes aggre-
gated proteins, damaged organelles, and invading patho-
gens via lysosomes (62). Autophagy can be induced by 
various stresses such as starvation, cytokines and poten-
tially toxic cargo (78, 79). It also occurs constitutively 
without any additional stimuli, providing an important 
quality control mechanism. Constitutive (also known as 
basal) autophagy is particularly important in neurons, 
because they cannot be replaced nor divide to dilute cel-
lular waste (80–82). Of note, neurons also cannot induce 
autophagy upon starvation, and have limited capacity to 
increase autophagy upon neurotoxic stress. Upon induc-
tion of autophagy, the toxic cargo is ubiquitinated and 
transported in specialized vesicles called autophagosomes. 
Autophagosome then fuses with lysosome to form au-
tophagolysosome where degradation of cargo takes place 
(83). The transportation of ubiquitinated cargo to au-
tophagosomes is mediated by a group of autophagy recep-
tor proteins (alternatively referred to as adaptors), which 
also comprise optineurin (1).

Optineurin has initially been described as an autoph-
agy receptor that bridges the ubiquitinated intracellular 

bacteria to LC3 on autophagosomal membranes (3). Nu-
merous follow-up reports showed that optineurin binds 
to ubiquitinated mitochondria destined for degradation 
as well (19, 20, 65, 84). Damaged mitochondria become 
autophagy cargo upon their ubiquitination by parkin, 
which is activated by PTEN-induced putative kinase 1. 
Redundancy with other autophagy receptors, NDP52 
and TRAF6-binding protein, was reported for some but 
not all systems. For example, in the absence of NDP52, 
optineurin was dispensable for autophagy of mitochon-
dria (mitophagy), but was indispensable for autophagy of 
bacteria (xenophagy). To enhance its binding to both LC3 
and the ubiquitinated cargo, optineurin must be phos-
phorylated by TBK1 on Ser177 and Ser473 (3, 66). The 
follow-up research has suggested that in addition to its 
role in cargo selection, optineurin is implicated in two 
other distinct stages of autophagy: initiation and matura-
tion. The evidence for its role in autophagy initiation 
comes from selective mitophagy, whereby optineurin and 
NDP52 are both recruited to damaged mitochondria via 
their ubiquitin-binding domains, and participate in re-
cruitment of several autophagy initiating factors includ-
ing Unc-51 like autophagy activating kinase 1 (20). The 
role of optineurin in autophagosome maturation was 
proposed when it was observed that it is required for au-
tophagosomal fusion with lysosome, which is a prerequi-
site for subsequent fusion with endosomes (85). Optineu-
rin does so by binding to myosin VI, which in turn binds 
to Tom1-positive endosomes. In addition to optineurin, 
two other autophagy receptors, NDP52 and TRAF6-
binding protein, facilitate the maturation process. It is of 
note that almost all of these initial reports on the role of 
optineurin in xenophagy and mitophagy were performed 
in HeLa cells, necessitating the use of more appropriate 
models for addressing the role of optineurin in neurode-
generation.

Several cellular models of neurodegenerative disease 
were used to analyze the role of optineurin in mitophagy 
and autophagy of abnormal protein aggregates (aggrepha-
gy). Investigation in HeLa cells showed that depletion of 
optineurin or expression of ALS-associated E478G and 
Q398X mutations impair parkin-mediated mitophagy by 
inhibiting LC3 recruitment to damaged mitochondria (20, 
86). Optineurin was also shown to act as a cargo receptor 
in aggrephagy of abnormal protein aggregates like mutated 
forms of SOD1, htt or TAR DNA-binding protein 43 
(TDP-43) (19, 30). However, unlike in mitophagy and 
xenophagy, a study by Korac et al. (19) proposed that op-
tineurin does not need its ubiquitin-binding domain to 
bind to aggregates. This discrepancy is possibly due to the 
usage of different experimental models and/or possible for-
mation of optineurin wild-type/mutant dimers in an over-
expression system. Several reports also demonstrated that 
optineurin is necessary for autophagy maturation, as men-
tioned above. This was further analyzed with ALS patient 
optineurin mutations. Optineurin mutations E478G and 
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Q398X disrupted autophagosome formation and degrada-
tion of damaged mitochondria in NSC-34 cell line because 
of their inability to bind to myosin VI (29). 

Unfortunately, there are only few reports on the role 
of optineurin in autophagy in primary cells, and none 
thus far in cells from optineurin mouse models. The im-
portance of optineurin for the autophagy of protein ag-
gregates characteristic for PD was suggested in wild-type 
neurons of rat rotenone model of PD, whereby optineurin 
colocalized with LC3 and α-synuclein aggregates in the 
dopaminergic neurons prior and during the manifestation 
of neurodegeneration (87). In primary mouse microglia, 
amyloid beta forms complexes with both optineurin and 
LC3, which could additionally support the role of opti-
neurin in autophagic degradation of neurodegenerative 
protein aggregates (88). Recent investigation in primary 
neurons under mild oxidative stress confirmed some of 
the observations from the cell lines (89). In primary neu-
rons, optineurin colocalized with damaged mitochondria, 
parkin, and LC3. The transfection of mutant E478G op-
tineurin to wild-type cells led to mitochondrial damage, 
as assessed by lowered mitochondrial potential and mito-
chondrial swelling. However, in contrast to HeLa cells, 
primary neurons needed much more time for the dam-
aged mitochondria to be delivered to the lysosome, dem-
onstrating some discrepancies to the in vitro studies. This 
is the only report in which optineurin-mediated mitoph-
agy was assessed in primary cells. It is still not clear how 
optineurin affects other types of autophagy and other 
autophagy steps in these circumstances.

To conclude, is still not clear if and/or how ALS patient 
optineurin mutations affect autophagy and if this is rele-
vant to disease pathogenesis. Normally, each autophagy 
step is tightly regulated, so it would be unusual that opti-
neurin serves as a potential pan-autophagy adaptor 
throughout this process. It is thus possible that some of 
the reports with overexpressed patient mutations are ex-
perimental artefacts and irrelevant for disease pathogen-
esis. Alternatively, it is possible that differential expression 
of autophagy receptors in individual cell subsets accounts 
for the variability in functional readouts in different sys-
tems. If so, it is conceivable that optineurin is rate-limiting 
for different autophagy steps in different cells. Finally, 
several general artefacts linked to autophagy investigation 
could potentially account for data misinterpretation. For 
example, in patient autopsy samples, autophagy is often 
evaluated by electron microscopy for the presence of au-
tophagosomes, and by immunohistochemistry, immuno-
fluorescence or immunoblotting for potential accumula-
tion of LC3-II or autophagy receptors/substrates. 
However, the accumulation of LC3-II or autophagy sub-
strates can mean either an increase in autophagy or a block 
in autophagosomal degradation. To distinguish between 
these outcomes, several inhibitors of lysosomal degrada-
tion can be used, which is difficult to achieve in mouse 
models and impossible in patients, thus making the au-
tophagy detection in vivo inevitably imprecise.

The role of optineurin in other trafficking 
events

By binding to myosin VI, a crucial molecule for vesi-
cle trafficking, optineurin was proposed to regulate au-
tophagosomal maturation and maintain normal autoph-
agic flux (85). Additionally, it was demonstrated that in 
NSC-34 cell line, ALS-linked optineurin mutations 
E478G and Q398X failed to bind to myosin VI, resulting 
in Golgi fragmentation and blocking the transport of se-
cretory proteins to plasma membrane (29). A year earlier, 
van Dis et al. (2014) found that Golgi fragmentation in 
SOD1G93A model neuromuscular denervation, axon re-
traction and inclusion formation (70). However, contrast-
ing the in vitro findings and SOD1 overexpressing mod-
els, no obvious perturbations of Golgi structure were 
detected in macrophages of the mice lacking either C- or 
N-terminus of optineurin (Optn470T and OptnD157 mice) 
(21, 38). This could suggest an existence of artefacts in in 
vitro models of vesicle trafficking. Therefore, it is still not 
possible to estimate impact of optineurin mutations on 
Golgi fragmentation in vivo. To clarify this, it will be 
important to conduct investigations on relevant animal 
models and determine whether other ALS-linked opti-
neurin mutations have an impact on ER and Golgi ap-
paratus in various CNS cell subtypes. 

CONCLUSIONS

Optineurin is a multifunctional protein involved in 
various processes including signal transduction, cytokine 
secretion, vesicle trafficking and autophagy. Many of 
these processes overlap with the proposed ALS patho-
genic mechanisms (Figure 2). Although a decade has 
passed since its mutations were found to cause ALS, their 
exact pathogenic mechanism is still elusive. Most muta-
tions map to the C-terminal ubiquitin-binding or CC 
domains suggesting that defective binding to ubiquitin or 
oligomerization are responsible for disease pathogenesis. 
Based on patient and various in vitro data in cell lines 
carrying overexpressed patient mutations or optineurin 
silencing, one could have expected overt neurological 
symptoms and various functional defects in optineurin 
mouse models. However, none of the optineurin defi-
ciency or insufficiency mouse models spontaneously de-
velop ALS. Moreover, investigations on inflammatory 
signaling, vesicle trafficking and autophagy, have shown 
some conflicting results in optineurin mouse models com-
pared to the in vitro cell lines and patient data. Each of 
these approaches comes with its own set of potential ar-
tefacts. Overexpression studies are particularly problem-
atic because of potential non-physiologic protein-protein 
interactions and protein aggregation. On the other hand, 
mouse models, especially those of carrying loss-of-func-
tion mutations may not develop symptoms of neurode-
generation because their life span is shorter and other 
evolutionary differences exist. Alternatively, substantial 
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redundancy of cellular adaptors in both autophagy and 
inflammation, could compensate a loss-of-function of 
individual genes in individual cell types or even in whole-
body mouse models. In this case exacerbation of disease 
phenotype could be expected only under some stressful 
conditions and/or in the presence of additional mutations. 
It is also possible that different mutations cause ALS by 
distinct mechanisms, which could account for the vari-
ability in studies with distinct patient mutations. There-
fore, future studies should focus on stressful conditions 
such as danger stimuli or additive mutations, which bet-
ter mimic the disease pathogenesis. Other desired ap-
proaches include optineurin ALS patient derived induced 
pluripotent stem cells and CRISPR/Cas9-mediated intro-
duction of patient mutations in cells or animal models. 
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