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Puzzling functions of HSV-1 miRNAs in productive  
and latent infection

Abstract 

Herpes simplex virus (HSV) is a widespread human pathogen able to 
cause a broad spectrum of diseases of varying severity. HSV-1, and closely 
related virus HSV-2, employ a number of functions to evade host defense 
mechanisms and tailor the cellular environment during their complex life 
cycle comprised of productive and life-long latent infection. Once the la-
tency is established, the virus can periodically reactivate in response to dif-
ferent stimuli and cause recurrent disease. Despite being one of the most 
intensively studied viruses, many biological aspects involved in the control 
of the lytic-latent switch and regulation of viral and host gene expression 
remained unclear. Discovery of the HSV-encoded microRNAs (miRNAs), 
a class of small regulatory RNAs, led to the hypothesis that they could have 
a central role in the establishment and maintenance of latency. HSV-1 and 
HSV-2 encode many miRNAs, differentially expressed during both phases 
of infection. The functions of HSV-encoded miRNAs have been experimen-
tally addressed by several laboratories; however, the exact roles remain in-
conclusive. In this review, we will discuss the function of HSV-encoded 
miRNAs described to date, in terms of their viral and host targets, and the 
potential significance of such regulation for viral infection.

INTRODUCTION

Herpes simplex virus 1 

Herpes simplex virus 1 (HSV-1) is an important human pathogen 
commonly known as the causative agent of cold sores. It is one of 

the most intensively studied viruses and widely used model to study a 
myriad of cellular processes including antivirals, and also a vector in 
cancer therapy. Alike all members of the herpesvirus family, HSV-1 rep-
lication is characterized by two distinct phases of infection, the produc-
tive and latent phase (1). Following oropharyngeal infection of epithe-
lial cells, the virus initiates productive (lytic) phase of infection 
characterized by an abundant but tightly controlled cascade of gene 
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expression. The immediate early proteins (IE), largely rep-
resented by transcriptional factors and inhibitors of innate 
immunity, are expressed first, followed by the expression 
of early (E) proteins. Early proteins are non-structural pro-
teins necessary for the replication of viral DNA (e.g. thy-
midine kinase, UL30 DNA polymerase, etc.). The onset 
of DNA replication is followed by the expression of late 
(L) genes, many of which are structural proteins. Formed 
nucleocapsids go through a complex maturation and en-
velopment processes before virions leave the cell and 
spread. Productive infection is followed by the entry of the 
virus into sensory neurons innervating the site of primary 
infection in which the virus will establish a life-long latent 
infection (latency). In contrast to rapid and massive gene 
expression and virus spread during productive infection, 
in latency viral genes are largely suppressed, and no viral 
progeny is formed. During the latent infection, only the 
latency-associated transcripts (LATs), which give rise to 
several microRNAs (miRNAs) and long non-coding RNA 
(lncRNA) in the form of a very stable LAT intron, are 
abundantly expressed (2). Yet, the exact functions of virus-
encoded miRNAs are rather puzzling and will be dis-
cussed in detail below. On the other hand, the LAT intron 
has been discovered more than 40 years ago and many 
diverse functions have been attributed to it (3), including 
suppression of IE gene expression, inhibition of apoptosis, 
functions in heterochromatin formation on virus genome, 
neuronal cell tropism and immunity (4–8). Importantly, 
under different stimuli, such as stress, fever, or various 
environmental factors, the latent virus can reactivate and 
move along the axons, usually to sites where the primary 
infection was initiated, and cause recurrent disease. Most 
of the above-mentioned biological properties of HSV-1 are 
shared by the evolutionary closely related virus, herpes 
simplex virus 2 (HSV-2). Although HSV-1 and HSV-2 
share overall more than 80% homology (9), HSV-2 oc-
cupies different niche and it is traditionally known as the 
causative agent of genital herpes. Important to note, the 
number of genital HSV-1 infections is increasing in devel-
oped countries, which can be associated with delayed ac-
quisition of primary oral infections and increased frequen-
cy of neonatal infections (10–12). Following genital 
infection, both HSV-1 and HSV-2 establish latency typi-
cally in lumbosacral dorsal root ganglia (DRG), i.e. gan-
glia proximal to the primary site of the infection, however, 
the efficiency of reactivation between these two viruses 
differs markedly (13). Interestingly, it has been shown in 
a murine model that HSV-1 and HSV-2 establish latency 
in different populations of ganglionic neurons, and these 
properties have been linked to the LATs (14), but the exact 
molecular mechanism of this neuronal tropism has not 
been revealed yet. The latency is clinically the most rele-
vant phase of HSV-1 and HSV-2 infection, yet, due to the 
extreme biological complexity of these viruses and count-
less technical challenges, the exact molecular mechanisms 
governing the establishment, maintenance, and reactiva-
tion from the latency are poorly understood. Nonetheless, 

one can predict that, with the dawn of the massive parallel 
analyses (sequencing and mass-spectrometry) and estab-
lishment of in vitro latency models, we can expect break-
throughs in the field rather soon.

miRNAs

miRNAs are small (~22 nt) regulatory RNAs that ad-
just the expression of genes in plants, animals, and vi-
ruses (15). miRNAs arise from hairpin-containing precur-
sor transcripts (pri-miRNAs) that are sequentially 
processed by two RNAse III complexes, the nuclear Dro-
sha/DGCR8 (DiGeorge syndrome critical region 8) com-
plex releasing a typical hairpin structure (pre-miRNA), 
and the cytoplasmic Dicer/TRBP complex that generates 
miRNA duplex carrying a 2 nucleotide 3’overhangs. The 
miRNA duplex is then loaded into Argonaute and one of 
the strands of the duplex will represent the mature miR-
NA, whereas the other strand (usually called star strand) 
will be released and degraded (reviewed in (15)). The ma-
ture miRNA will guide the silencing complex to pair with 
partially complementary sites within target mRNAs and 
utilize posttranscriptional repression. The part of miR-
NA, designated as a seed sequence (nucleotide 2 - 8), has 
a pivotal role in recognition of the target sites, which are 
usually found within 3’ untranslated regions (3’ UTRs) 
of mRNAs (16, 17). Interestingly, although miRNAs have 
evolved from the ancestral antiviral RNA silencing path-
way (18), many viruses implement miRNAs to achieve an 
efficient replication by, on the one hand, encoding miR-
NAs (e.g. herpesviruses, baculoviruses, polyomaviruses, 
retroviruses, etc.) or, on the other hand, using host miR-
NAs (e.g. hepatitis C virus requires direct binding of miR-
122 to initiate replication) (19). From the virus life cycle 
perspective, miRNAs as regulatory molecules have many 
advantages over proteins, including a capacity to regulate 
a large number of genes, non-immunogenicity, and rapid 
evolution (i.e. one nucleotide change within the seed re-
gion can dramatically change the targetome of a miRNA) 
(20). This is particularly relevant for the viruses that es-
tablish latency in neuronal cells, such as HSV-1 and HSV-
2, which will be discussed in greater detail below. 

The biogenesis, expression and 
sequence of HSV-1 miRNAs 

HSV-1 has a very complex transcriptional pattern and 
many transcripts have not been properly annotated yet 
(21–23). Indeed, for the vast majority of HSV-1 encoded 
miRNAs, the precursors (pri-miRNAs) have not been 
experimentally validated or identified, nonetheless it is 
thought that they arise through the canonical biogenesis 
pathway. The majority of miRNAs abundantly expressed 
in latently infected human trigeminal ganglia (24) and 
latency models (25), miR-H2 – miR-H8, strongly depend 
on the LAT promoter (26), indicating that LATs are their 
precursors. The only exception is miR-H6 that is likely 
expressed from the LAT promoter but in the opposite 
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direction and from the transcript that has not been de-
scribed yet (26). At the same locus, but antisense to miR-
H6 (i.e. sense to LATs), another miRNA, miR-H1, is 
expressed and abundantly detected in productive infec-
tion, but absent in latency. miR-H1 likely arises from the 
0.7 kb transcript encoded just upstream of the LAT pro-
moter ((23), Matesic et al., unpublished data), previously 
found to be expressed only by more virulent laboratory 
HSV-1 strains, McKrae and 17 (27). The origin of other 
12 miRNA hairpins is far less defined; however, the recent 
sequencing efforts have identified several unknown tran-
scripts running through the miRNA loci that might be 
precursors of these miRNAs (23). Interestingly, charac-
teristic to many virus-encoded miRNAs, but fairly rare 
in animals, HSV-1 miRNAs do not show a strong strand-
bias, or in other words, many miRNA duplexes result in 
a relatively similar abundance of miRNAs derived from 
both strands (i.e. no exact star strand) ((25), Zubkovic et 
al., unpublished). Although this phenomenon can be ra-
tionalized from the perspective of maximizing the coding 
potential, the exact molecular mechanism is unknown. 
Another peculiarity of HSV-1 miRNAs is a relatively high 
number of isomiRs, i.e. miRNAs with nucleotide varia-
tions at 5’ and 3’ end, which might also increase the num-
ber of potential targets, however, this phenomenon has 
not been addressed comprehensively (25). One possibility 
is that such sloppy processing and unbiased selection of 
strands are internal properties of pre-miRNAs and du-
plexes (i.e. energetically equivalent in association with 
Ago), and/or another possibility is that virus actively 
modulates the biogenesis process. Indeed, recently Pan et 
al. have shown that HSV-1 infection blocks miRNA bio-
genesis at the stage of nuclear export of pre-miRNAs, the 
process that depends on the expression of ICP27 (Figure 
1), an important virus IE protein (28). Furthermore, we 
and others have recently found evidence that specific virus 
miRNAs can be posttranscriptionally edited by adenosine 
deaminase acting on RNA (ADAR) (29). Such editing of 
miRNA precursors (i.e. changing adenosine to inosine) 
within the seed region of miRNA can additionally broad-
en the spectrum of miRNA targeting, giving additional 
advantages to the virus. Nonetheless, further investiga-
tion of the basic biology of HSV-1 miRNAs is needed to 
better understand these processes. Important to mention, 
additional complexity added to the HSV-1 biological pro-
cesses was reported by Roizman’s laboratory, discovering 
that HSV-1 miRNAs, together with some host factors, 
are packed into small vesicles released by infected cells 
(i.e. exosomes) (30). HSV-1 miR-H28 and miR-H29, two 
HSV-1 miRNAs expressed late in the infectious cycle and 
transferred to recipient cells, restrict the transmission of 
the virus from infected to uninfected cells by inducing 
the synthesis of gamma interferon (IFN-g) (30–32). The 
results support the growing body of evidence indicating 
that HSV-1 encodes several miRNAs that limit its spread 
(e.g. miR-H2, -H3 and -H4, described below), possibly by 
promoting the establishment of latency.

Functions of HSV-1 miRNAs – viral 
targets 

Despite major progress and development of techniques 
for miRNA functional studies (PAR/HITS-CLIP (pho-
toactivatable ribonucleoside-enhanced crosslinking and 
immunoprecipitation / high-throughput sequencing of 
RNA isolated by crosslinking immunoprecipitation), bio-
informatics predictions, etc.) (33), there is still limited 
knowledge about HSV-1 miRNAs in the productive, and 
particularly, latent infection. The HSV field, in contrast 
to gammaherpesviruses, lacks a broadly accepted latency 
model in vitro (in cultured cells) that would enable various 
experimental approaches. Nonetheless, functions of some 
miRNAs are strongly indicated by their genomic location, 
i.e. encoded antisense to important virus genes. For ex-
ample, miR-H2, -H7, and -H8 are encoded antisense to 
the gene encoding ICP0, an important transactivating IE 
protein. Similarly, miR-H3 and -H4 are encoded anti-
sense to ICP34.5, the main neurovirulence factor. Al-
though it has been shown that miR-H2 can regulate ICP0 
transcript in co-transfection assays (34, 35) and has been 
associated with ICP0 in a PAR-CLIP analysis (36), the 
mutation of miR-H2 did not lead to a significant increase 
in the expression of ICP0 in productively infected cells in 
vitro, or during acute virus infection in mice, nor to any 
other obvious phenotype in HSV-1 strain KOS (34). On 
the other hand, Jiang et al. have investigated similar mu-
tations in more virulent HSV-1 strain McKrae and have 
observed somewhat increased expression of ICP0 and a 
significant increase in neurovirulence (37). The discrepan-
cies between these two studies can be explained by the 
use of different models, but can also support the notion 
that the function of miRNAs is rather a fine-tuning of 
gene expression and biological processes, which is difficult 
to quantify. Indeed, an investigation of homologous miR-
NAs in HSV-2 also did not show a significant phenotype 
in the guinea pig model (38). Of note, Pan et al. have 
shown that, in fact, a neuron-specific host miRNA, miR-
138, targets ICP0 and promotes establishment of latency 
(39). Other HSV-1 miRNAs do not have obvious targets, 
however, some roles in regulating virus or host genes have 
been proposed or investigated. For example, miR-H6 
shows a certain level of complementarity to the transcript 
encoding ICP4, an essential IE transcriptional factor, 
however, the biological relevance of this interaction is not 
clear (35). It has been shown that the wt virus replicated 
less efficiently in the cells transfected with miR-H6 prior 
to the infection and that the expression of ICP4 is sig-
nificantly affected. However, in these cells, many impor-
tant host factors were found to be downregulated, includ-
ing IL-6, and thus it is not clear is this the direct effect of 
miR-H6 on ICP4, or an indirect effect of less permissive 
conditions in transfected cells (40). Recently, Barrozo et 
al. have investigated virus with deletion of the entire miR-
H1/H6 locus and have observed a severe reduction in 
reactivation of HSV-1 in mouse and rabbits models (41), 
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which is in accordance with previous observations of phe-
notypes in mutants with large deletions of the loci up-
stream od the LAT promoter (42, 43). However, the mo-
lecular mechanism is still unknown, and, at this point, it 
is not possible to link the function to either miR-H1 or 
-H6. On the other hand, since miR-H1 and miR-H6 are 
encoded at the same locus but on different DNA strands 
(i.e. antisense to each other), these two miRNAs may 
regulate the expression of each other. Such functional 
miRNA antagonism is rather rare in nature; however, it 
has been observed in eukaryotes (44). HSV-1 encodes 5 
such potentially antagonistic miRNA pairs including the 
above-mentioned -H1 and -H6, as well as the -H11 (pal-
indromic sequence), -H2 and -H14, -H7 and -H27, -H12 
and -H13 (25), however, the biological relevance of this is 
unknown. Interestingly, HSV-2 encodes homologs of 
most of HSV-1 miRNAs, but it does not encode a homo-
log of miR-H1 (25), indicating that miR-H1 might be a 
molecular determinant of biological differences between 
these two closely related viruses.

Functions of HSV-1 miRNAs – host 
targets 

Virus miRNAs, in addition to viral targets, can also 
regulate host genes, and a number of targets have been 
identified for different HSV-1 miRNAs (briefly summa-
rized below in Figure 1). Although the biological relevance 
of these regulations has not been verified or investigated 
in relevant models in vivo, some potential targets involved 
in various cellular processes, including apoptosis, cell-
cycle control, cell-signaling and immunity, are briefly 
listed below (Figure 1). For example, HSV-1 miR-H1 and 
HSV-2 miR-6, two miRNAs that share the seed sequence, 
have been shown to downregulate alpha-thalassemia/men-
tal retardation syndrome X-linked (ATRX), an effector of 
intrinsic immunity, in transient transfection experiments. 
However, downregulation of ATRX protein has also been 
noted in cells infected with wt virus and a mutant virus 
lacking miR-H1 and -H6, thus indicating other mecha-
nisms, in addition to mentioned miRNAs that contribute 

Figure 1. Viral and host targets of HSV-1 miRNAs in productive and latent infection. HSV-1 expresses many miRNAs by which it 
modifies the expression of viral and host genes. During the productive infection, a number of HSV-1 miRNAs have been shown to interfere with 
different host genes involved in apoptosis, cell cycle control, cell signaling, transcriptional regulation and immunity, depicted in orange titled 
boxes. During both stages of infection miR-H2 and -H4 regulate important viral proteins, transcriptional activator ICP0 and neurovirulence 
factor ICP34.5, respectively, as depicted in brown box. Viral protein ICP27 is involved in downregulation of XPO5, thus inhibiting the nu-
clear export of pre-miRNAs late in infection. After productive infection, HSV-1 migrates to sensory neurons where latent infection is established 
and from where it can be periodically reactivated. In latent phase, host miRNA, miR-138 (marked with red letters) regulates viral protein 
ICP0, alongside miR-H2 and -H4 (brown-titled box). Several miRNAs were found to be accumulated during reactivation (green-titled box). 
miRNAs detected in both phases, whose targets are unknown, are depicted in blue-titled boxes. LAT – latency associated transcript, ICP0 – 
infected cell polypeptide 0, ICP34.5 – infected cell polypeptide 34.5, ICP27 – infected cell polypeptide 27, XPO5 – Exportin-5, RISC – RNA 
induced silencing complex, LIFR – Leukemia Inhibitory Factor Receptor Alpha, TGFBR1 – Transforming Growth Factor Beta Receptor 1, 
ATG16L1 – Autophagy Related 16 like 1, SORT1 – Sortilin 1, CDKNA2 – cyclin-dependent kinase inhibitor 2A, Ubr1 – ubiquitin-protein 
ligase E3 component n-recognin 1, ATRX - alpha-thalassemia/mental retardation syndrome X-linked, KLHL24 – Kelch like family member 
24, DDX41 – (DEAD)-box Helicase 41, PIGT - phosphatidylinositol glycan anchor biosynthesis class T. 
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to the regulation of ATRX (45). The function of miR-H1 
has been thoroughly studied and its potential to regulate 
a number of host genes has been shown, including Leu-
kemia Inhibitory Factor Receptor Alpha (LIFR), Trans-
forming Growth Factor Beta Receptor 1 (TGFBR1), Au-
tophagy Related 16 like 1 (ATG16L1), Sortilin 1 (SORT1), 
ubiquitin protein ligase E3 component n-recognin (Ubr1) 
and others (40, 46, 47). However, one has to note that 
these experiments were performed using transfection of 
miR-H1 mimics and have not been confirmed in the con-
text of virus infection. Similarly, the potential to regulate 
cellular transcriptional repressor Kelch-like 24 (KLHL24) 
has been shown for miR-H27 (48), another HSV-1 miR-
NA expressed at very low levels during the productive 
infection and not present in latency. The function of miR-
H27 remains puzzling, but it is possible that, by lowering 
the levels of the repressor, it can modulate the expression 
of immediate early genes to promote productive infection 
or initiate reactivation. The effects of ectopically expressed 
HSV-1 miRNA on cellular transcription and cell cycle 
progression have also been  shown for HSV-1 miR-H4, 
and its HSV-2 homolog, which have been found to target 
cyclin-dependent kinase inhibitor 2A (CDKN2A, p16), a 
negative regulator of cell-cycle and PI3K/Akt pathway (49, 
50). Having in mind that miR-H4 is relatively abundant 
in latency and that Akt signaling is vastly important for 
regulation of latency, the interplay between miR-H4 and 
this pathway might have a role in maintenance of latency 
(49). A few HSV-1 miRNAs have been found to poten-
tially regulate different aspects of immunity, which is even 
more difficult to investigate due to non-conserved miRNA 
target sites (an example below) and reactivation techniques 
(e.g. mouse explanted ganglia) insensitive for discriminat-
ing the fine-tuning of gene expression. Nonetheless, Enk 
et al., have applied a functional screen to reveal potential 
HSV-1 miRNAs regulating the function of natural killer 
(NK) cells, and found that miR-H8 decreased the expres-
sion of several ligands for NK-activating receptors by tar-
geting phosphatidylinositol glycan anchor biosynthesis 
class T (PIGT). PIGT is a member of the protein complex 
involved in the glycosylphosphatidylinositol (GPI) an-
choring pathway, essential for the presentation of proteins 
on the cell surface (51). The exact importance of this pos-
sible regulation is unknown because the PIGT target sites 
are not conserved in mice, and thus very challenging to 
test in a relevant model. In addition to miR-H8 as a po-
tential modulator of immunity, miR-H2 has been shown 
to target (DEAD)-box helicase 41 (DDX41), a cytosolic 
DNA sensor of the DNA-sensing pathway (52), but simi-
larly, the biological relevance for the HSV-1 infection re-
mains unknown.

CONCLUSIONS 

The discovery of miRNAs expressed by HSV-1 and 
HSV-2 represented a paradigm shift in understanding  
the complex biology of these viruses. Although high 

hopes and lots of efforts have been put in investigations 
of miRNA roles in the regulation of latency, the results 
were somewhat frustrating. Viruses deficient for the ex-
pression of certain miRNAs, e.g. miR-H2, -H3, -H4 and 
-H1, -H6 did not show strong phenotypes, or were cell-, 
model- and virus-specific (34, 41, 53). Was this unex-
pected? It has been shown that viruses with deletion of 
LAT promoter, which expresses barely detectable levels of 
most of the latency-associated miRNAs, efficiently estab-
lish latency and do not show strong reactivation pheno-
types (26), indicating that latency is controlled by many 
different, some yet undefined, mechanisms, and that 
miRNAs are likely contributing to some extent. The cur-
rently used reactivation techniques (explanted ganglia) are 
very robust and not applicable to the analysis of fine-
tuning of gene expression. On the other hand, productive 
HSV-1 infection is relatively short and inevitably leads to 
the destruction of the infected cells. Thus, one can ask 
questions like: Do miRNAs play any role in the regula-
tion of genes in that phase of infection? There are several, 
yet weak, arguments to support the positive answer. First, 
a number of miRNAs have found to be associated with 
Ago (36) during the productive infection; second, some 
HSV-1 miRNAs, such as miR-H1, are expressed exclu-
sively during the productive infection and not present in 
latency (25, 29); third, some late miRNAs have been 
found in exosomes; fourth, most of the research is based 
on the infected cells in culture, where infection might 
have different dynamics and outcomes; and fifth, the 
miRNA species specificity might play a strong role in 
these processes, as it has been shown for miR-H8 (51). 
Thus, the same questions remain unanswered. However, 
the fact that HSV-1 and HSV-2 (two closely related vi-
ruses) both encode miRNAs, including many positional 
homologs, strongly indicate that miRNAs play an impor-
tant role for these viruses, but more effort and time is 
needed to reveal the exact molecular mechanism.
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