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ABSTRACT

Online big data provides large amounts of decision information
to decision makers, but supporting and opposing information are
present simultaneously. Dual hesitant fuzzy sets (DHFSs) are useful
models for exactly expressing the membership degree of both
supporting and opposing information in decision making.
However, the application of DHFSs requires an improved distance
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measure. This paper aims to improve distance measure models
for DHFSs and apply the new distance models to generate a tech-
nique for order preference by similarity to an ideal solution
(TOPSIS) method for multiple attribute decision making (MADM).

model; TOPSIS
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C44; D7; D8

1. Introduction

Multiple attribute decision making is a general problem of selecting the optimal alter-
native from a group of alternatives with more than one common attribute. The for-
mat of decision information of attributes may vary among cases, including the real
number, intervals, intuitionistic fuzzy sets, and hesitant fuzzy sets. With the develop-
ment of the internet, multiple sources of data can be recorded, distributed, and stored
on a network. For one attribute value of one alternative, there is a large amount of
supporting and opposing information. DHFSs can be used to exactly express the
diversity of supporting and opposing information for MADM. TOPSIS is a classic
MADM method based on the distance measure between alternatives and ideal alter-
natives (Liu, 2009; Lan et al., 2018; Zeng, Chen, et al., 2020; Zeng, Luo, et al., 2020).
The TOPSIS method has been widely applied in economics and management (Boran
et al., 2012; Erkayman et al., 2011; Kaynak et al., 2017; Mandi¢ et al., 2017; Mangir &
Erdogan, 2011; Masca, 2017; Onder et al, 2015), including in the evaluation of
renewable energy technologies (Boran et al., 2012), logistics center location selection
(Erkayman et al, 2011), comparisons of innovation performance for EU candidate
countries (Kaynak et al, 2017), analyses of the efficiency of insurance companies
(Mandi¢ et al., 2017), and comparisons of countries’ economic performance (Mangir
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& Erdogan, 2011; Masca, 2017; Onder et al., 2015). When the decision information in
MADM is fuzzy sets or other styles, TOPSIS is still useful. Zeng, Chen, et al., (2020),
Zeng, Luo, et al, (2020) successfully applied TOPSIS in MADM when the decision
information was an interval-valued intuitionistic fuzzy set or single-valued neutroso-
phic information. When decision information is provided by DHFSs, the distance
measure of the DHFS is the key to utilizing TOPSIS to solve MADM with DHFS
information. In this paper, the distance measure for DHFSs will be studied and used
to generate a TOPSIS method to solve MADM problems.

The concept of fuzzy sets (FSs) was first formalized by Zadeh (1965). Since then,
fuzziness has been widely employed to handle a type of uncertainty that is different
from probability (Yang & Hussain, 2019). The membership function in fuzzy sets
shows a membership degree of x to A. Atanassov (1986) extended the nonmember-
ship degree (i.e., x does not belong to A) to fuzzy sets and defined intuitionistic fuzzy
sets (IFSs). In real-world decision making, when a group of experts is invited to
evaluate the membership degree and the nonmembership degree, they tend to argue
that it seems impossible in most cases. Under this condition, IFSs cannot be used,
especially when experts conduct decisions in an anonymous way. Hesitant fuzzy sets
(HFSs) (Torra, 2010; Torra & Narukawa, 2009) can help express the anonymous
group opinions of membership degree. Meng et al. (2016) extended HFSs to linguistic
interval hesitant fuzzy sets and applied them in decision making. Ji et al. (2018)
applied the extended multi-Hesitant Fuzzy Linguistic Term Sets to generate an out-
ranking method for hotel location selection. Zhu et al. (2012) extended the character-
istics of both IFSs and HFSs and introduced dual hesitant fuzzy sets (DHEFSs), which
encompass FSs, IFSs, HFSs, and fuzzy multisets (Yager, 1986) as special cases. Due to
their flexibility in practical decision making, DHFSs are widely studied. Farhadinia
(2014) and Tyagi (2015) considered the significant role of correlation in data analysis
and studied the correlation model between two DHFSs. Due to the important roles of
distance and similarity in decision making and pattern recognition, Wang et al.
(2014) proposed a variety of distance measures for DHFSs and generated a technique
for order preference by similarity to an ideal solution (TOPSIS) method for a weapon
selection problem. Su et al. (2015) introduced some distance and similarity measures
for DHFSs. Qiu et al. (2016) studied cosine similarity measures for DHFSs. Singh
(2017) proposed the axiom definition of distance and similarity measures and devel-
oped distance and similarity measures based on the geometric distance model, the
set-theoretic approach and matching functions. Xue et al. (2018) designed a general-
ized distance measure between dual hesitant fuzzy elements with a parameter and
established models to generate the parameters. Additionally, due to the importance of
entropy in the measurement of information uncertainty, Zhao and Xu (2015) pro-
posed an entropy measure for DHFSs and Ye (2016) studied the cross entropy of
DHESs. Furthermore, to integrate the dual hesitant fuzzy decision information, Zhao
et al. (2017) proposed new operations and aggregation operators on DHEFSs based on
the Einstein t-conorm and t-norm. Xu and Wei (2017) developed aggregation opera-
tors for aggregating dual hesitant bipolar fuzzy information; these operators include
the dual hesitant bipolar fuzzy weighted average operator, the dual hesitant bipolar
fuzzy weighted geometric operator, the dual hesitant bipolar fuzzy ordered weighted
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average operator, the dual hesitant bipolar fuzzy ordered weighted geometric oper-
ator, the dual hesitant bipolar fuzzy hybrid average operator and the dual hesitant
bipolar fuzzy hybrid geometric operator. For dual hesitant fuzzy information, Zhao
et al. (2016) proposed a dual hesitant fuzzy preference relation and used it to generate
a group decision method. Along with these theoretical studies, DHFSs have been
applied in energy policy decision making (Jamil & Rashid, 2018), urban traffic mode
recognition (Zhang et al., 2017, 2018), investment alternative selection (Yang & Ju,
2015), risk evaluation (Hao et al., 2017), information systems security assessment (Yu
et al, 2016), mechanical product design quality evaluation (Xu, 2016), and customs
service management evaluation (Wang et al., 2016).

Distance measures are used to provide a natural description of the distance
between two objects (Liu, 1992; McCulloch et al., 2013; Cao et al., 2019). Cao
et al. (2019) studied the distance measure for single-valued neutrosophic linguistic
information. To estimate the distance between FSs, Liu (1992), McCulloch et al.
(2013) and Zhao and Luo (2017) researched distance measurement models. Zheng
et al. (2012) and Luo and Zhao (2018) studied the distance measures of IFSs. Xu
and Xia (2011), Li et al. (2015), Zhang et al. (2018) and Hu et al. (2018) defined
distance and similarity measures of HFSs. As an extension of both IFSs and HFSs,
Wang et al. (2014), Su et al. (2015), and Singh (2017) studied the distance meas-
ures between DHFSs by ordering the elements in dual hesitant fuzzy elements and
extending them to the same length; additionally, based on the Hamming distance,
the Euclidean distance and the Hausdorff distance, they defined a dual hesitant
normalized Hamming distance, a dual hesitant normalized Euclidean distance, a
generalized dual hesitant normalized Hausdorff distance, and a generalized dual
hesitant weighted distance. In these distance measures, three points should
be considered.

i. These distance measure models can be used only after extending all dual hesitant
fuzzy elements to the same length. Although the extension process is the same
as that in Xu and Xia (2011) while defining the distance measure for HFSs, the
process changes the original group decision information, as both the mean and
variance change. In this way, the final decision is not based on the original
group decision information.

ii. These distance measure models are conducted after decreasing the values in
hg(x) and gg(x), where dg(x)=(hg(x),ge(x)) is a set of dual hesitant fuzzy ele-
ments. Thus, the distances generated from these models depend on the order of
the values in hg(x) and gp(x). Existing distance models are not suffi-
ciently robust.

iii. The property of triangular inequality is one of the axioms for distance in metric
space. These distance measure models cannot satisfy the property of triangular
inequality well. Take three DHFSs and the dual hesitant normalized Hamming
distance for example:

Dy = {{0.1911,0.1556},{0.1}},
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D, = {{0.8560,0.4902,0.4225},{0.1}},

and
Ds = {{0.8159,0.4608, 0.4574,0.4507}, {0.1}}.

Then, d(Dl,Dz) = 02111, d(Dl,D3) = 01909, and d(Dz,D:‘,) = 0.0166.
Thus,

d(Dl, D2)>d(D1, D3) + d(Dz, D3)

The distance measure models (Zheng et al., 2012; Luo & Zhao, 2018) for IFSs do
not need to extend or decrease the set of elements and maintain triangular inequality
well. As an extension of IFSs, the distance models of DHFSs should also retain the
characteristics of IFSs. To fill this gap, this paper aims to improve existing distance
measures for DHFSs, generate a distance axiom for DHFSs and propose a series of
improved distance models. Furthermore, the new improved distant measure will
applied to generate a TOPSIS method for MADM problems.

The contributions of this paper are as follows: (1) The distance axiom for DHFSs
is improved such that the distance axiom is concordant with the distance axiom in
Euclidean space; (2) a series of distance measure models are proposed for DHFSs that
do not require extension or ordering of the elements and that maintain triangular
inequality well; (3) a TOPSIS method is constructed using the new distance models
for MADM problems.

The rest of this paper is organized as follows. In Section 2, we review some neces-
sary concepts related to IFSs and DHFSs. Section 3 proposes the axiom for distance
measure and a series of distance measure models. Section 4 compares the new models
with existing models. In Section 5, the new models are applied to multiple attribute
decision making problems and a numerical example is illustrated to show the process.
The paper concludes in Section 6.

2. Preliminaries

DHEFSs are an extension of IFSs and HESs. In this section, we briefly review basic def-
initions related to IFSs, DHEFSs, their distance axioms, and distance measure models.

2.1. IFSs

IFSs are used to describe both membership degree and nonmembership degree. They
were first proposed by Atanassov (1986). A distance measure is used to compare
positive or negative alternatives. Zheng et al. (2012) proposed an axiom for distance
between IFSs. Some distance measure models have been studied by Li (2004), Szmidt
and Kacprzyk (2000), Grzegorzewski (2004), Yang and Chiclana (2012) and Wang
and Xin (2005).

Definition 1. (Atanassov, 1986). An intuitionistic fuzzy set in the universe of dis-
course X = {x1,%2, ..., %, } is given by:
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A ={<x,up(x),va(x)>|x € X}

where uy:X —[0,1], va: X — [0,1] with the condition 0 < uu(x)+va(x) <
L,V x € X. us(x) and v4(x) denote a membership function and a nonmembership
function of x to A. We call m4(x) = 1—ua(x)—va(x) the intuitionistic index (hesi-
tancy degree) of x to A.

Definition 2. (Zheng et al., 2012). Let d map d : IFSs(X) x IFSs(X) — [0, 1]. Suppose
d satisfies the following properties:
(A) 0 < d(A,B) < 1;

(A,) d(A,B) = 0 if and only if A = B;

(As) d(A, B) is maximum if and only if A, B are crisp sets, and A = B;
(As) d( ) = d(B’A)§

(As) d(A, B) < d(A,C) + d(B, C);

(Ag) if AC BCC, then d(A,B) < d(A,C) and d(B,C) < d(A,C).
Then, d is a distance measure between IFSs.
Now, we briefly review the existing distance measures between IFSs as follows.

1. Intuitionistic fuzzy Hamming distance:

A B) = 33l ) = un(e)] + o) = va)|

i=1

(Li, 2004)

a8) = 5,3 ((ua(e) )]+ ace) — )]+ ma(e) — mae))

(Szmidt & Kacprzyk, 2000)

2. Intuitionistic fuzzy Euclidean distance:

d (A,B) = \/%Z (‘uA(xi) - uB(xi)’2 + ]m(xi) - vB(xi)’2 + ]m(xi) - TCB(xl-)lz)

(Szmidt & Kacprzyk, 2000)

3. Intuitionistic fuzzy Hausdorff distance:

.8) = 3 max us(s) = o e~

(Grzegorzewski, 2004)
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> |va(xi) — ve(%i)|>

d;,{fd(A, B) = %ZmaxOuA(x,-) — up(x;) Ta(Xi) — TCB(X:')D

i=1

(Yang & Chiclana, 2012)

4. Intuitionistic fuzzy compound distance:

a4 (A,B) = li [|”A<xi) — un(x)| . [va (i) = va(xi)|

max(‘uA (%) — up(x:)

2

>

+

va(x) = va(x:)|) ]

(Wang & Xin, 2005)

2.2. DHFSs

DHEFSs were proposed by Zhu et al. (2012) and are an extension of IFSs. They
involve a group of membership degree and nonmembership degree, which is very
useful when a group of experts participate in decision making. Distance measures
play the same role in DHFSs as in IFSs. They are essential evaluation models for deci-
sion making. Wang et al. (2014), Su et al. (2015) and Singh (2017) have studied the
axiom and distance models.

Some basic concepts, distance axioms and distance models for DHFSs are intro-
duced as follows.

Definition 3. (Zhu et al,, 2012) Suppose that X is a nonempty set and that the math-
ematical model for DHFS D on X is defined as:

D = {<x, pp(x), Ip(x)>|x € X},
which should satisfy the condition, for all x € X, that
0V, ¢<1, 0<Y" +6¢" <1,
where ' € op(x) = Uyep,(xymaxy and ot e Sﬁ(x) = Ugpedp(xymaxd. pp(x) and

Jp(x) are subsets of [0,1]. pp(x) describes the group of membership values of the
x € X member of set D. Ip(x) describes the group of nonmembership values.

Definition 4. (Zhu et al,, 2012) Let A; = {p,, Ja,} be any DHFS. The score func-
tion of A; is defined by:
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7;2 !” Z‘b

|pAi} \|16g9 dEI,,

The accuracy function of A; is defined by

Z\If+|® >4,

} A |\U€g) q)e\sA
where | - | is the element number in a set. Then,

i. If sy, >ss, then A; is superior to Aj(A; > Aj);

iil. Ifss = S then
iii.  If Dba;, = pap then A; is equivalent to Aj (AiNAj);
iv. If pa,>pa;, then A; is superior to A;(A; = Aj).

The distance axiom for DHEFESs was addressed by Wang et al. (2014), Su et al.
(2015), and Singh (2017).

Definition 5 (Wang et al, 2014; Su et al, 2015; Singh, 2017). Let A=
{<x, pu(x),34(x)>|x € X} and B = {<x, pg(x), Ip(x)>|x € X} be two DHFSs on X.
A distance measure d(A, B) should satisfy the following:

i (P1)0<d(AB)<1;
ii. (P2) d(A,B) =0 if and only if A = B;
ii. (P3)d(A,B)=d(B,A);
iv. (P4) Let C be any DHFS; if ACBCC, then d(A,B)<d(AC)
and d(B,C) < d(A, Q).

In real applications, the number of elements in different DHFSs may be not equal,
ie,

94 (X)] 7 |p(x)[and[Ia(x)] 7 [Sp(x)]-

Let I, = max{|p,(x)|, |pp(x)|} and m, = max{|3I4(x)|, |Sp(x)|}. To define the
distance measure for DHFSs, the shorter set is extended to the same length as the
other sets by Wang et al. (2014), Su et al. (2015) and Singh (2017). Pessimists may
extend the minimum membership degree and the maximum nonmembership degree,
whereas optimists extend the maximum membership degree and the minimum non-
membership degree. Let

A ={<x0,4(x),34(x)>]x € X} and B={<x, pp(x),3Ip(x)>|x € X} be two
DHESs on X. Wang et al. (2014), Su et al. (2015) and Singh (2017) defined the dis-
tance measures for DHFSs as follows:
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1. The dual hesitant normalized Hamming distance

N

. 1 I
- K)g(])(x)‘ +m—z

x =1

x -

A,B)
atnn( 2|X|Z [

350 (x) - 557 <x>y] .

2. The dual hesitant normalized Euclidean distance

dane (A, B) {ZIXZ (

N

PV - o[ o

x =1

1/2
. . 2
330 () - 350 () )] :

3. The generalized dual hesitant normalized distance

dign(A, B) = [2|X|Z (

S R .
@ = o5 @[+,

4. The generalized dual hesitant weighted (DGW) distance

dip(4,8) = 433 [ (%Z

xeX

1 &
+2zy (m_ Z

=

390 () — 350 (x)m] Y/,

where
L. pXU) (x) is the jth largest value in @, (x), and TSXU) (x) is the jth largest value
in 3, (x);

2. Le=max{[p,(x)], |pp(x)|} and m, = max{|Ia(x)|, [Sp(x)[};
Woze >0, > ywy=1and ) vz =1;and
4. A>0.

w

2.3. Notation description

Descriptions of some of the main notations are shown in Table 1.

3. Distance models for DHFSs

In this part, the distance axiom for classic metric space is reviewed. Then, an
improved axiom is proposed by incorporating the triangle inequality. Based on the
improved axiom, some distance measure models are generated and shown to satisfy
the improved axiom. Considering the weights of attributes and membership or non-
membership, two generalized distance measure models are generated.
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Notation Description

Dy, Dy Dual Hesitant Fuzzy sets(DHFS)

gDDk( ) Membership degree set of DHFS Dy
\s%g ) Nonmembership degree set of DHFS Dy
©a; () The jth largest value in p,(x)

3,0 (x) The jth largest value in J,(x)

Wy Weight vector for membership degree

Z, Weight vector for nonmembership degree

o (%, %), datne (%, %), duagn (%, %), daggw (%, %) The dual hesitant normalized Hamming distance, the
dual hesitant normalized Euclidean distance, the
generalized dual hesitant normalized distance, the
generalized dual hesitant weighted distance in
existing literature

The new proposed Hamming distance, Euclidean
distance, generalized distance, the generalized dual
hesitant weighted distance, the generalized dual

hesitant weighted distance with preference for DHFS

A (%, %), daen (%, %), ddgh(*r *), ddgwh(*l *), ddgwph(*r *)

Source: The Authors.

To introduce the axiom definition of distance measure for DHFSs, we first review
the axiom for metric space as follows.

Definition 6. (Lawvere, 1973). Suppose X is a nonempty set. d is a distance measure
if it satisfies four properties:

(AX1) d(A,B) > 0;

(AX2) d(A,B) = 0 if and only if A = B;
(AX3) d(A,B) = d(B,A);

(AX4) d(A,B) < d(A,C) +d(B,C).

Clearly, AX4 in Definition 6 is not included in the distance axiom (Definition 5).
For a metric space, the property of triangular inequality is especially important. Here,
we will add the triangular inequality property to Definition 5 and generate a new dis-
tance axiom for DHFSs.

Definition 7. Suppose A = {<x,0,4(x),Ia(x)>]x € X} and B=
{<x, pp(x),Ip(x)>|x € X} are two DHFSs on X. A distance measure d(A, B) should
satisfy the following:

(Ph1) 0 < d(A,B) < 1;

(Ph2) d(A,B) = 0 if and only if A~B; and

(Ph3) d(A,B) = d(B,A).

(Ph4) Let C be any DHFS. Then, d(A, B) < d(A,C) + d(B,C).

(Ph5) Let C be any DHEFS; if A C BC C, then d(A,B) <d(A,C) and d(B,C) <
d(A, Q).
With the completed distance axiom, DHFSs become a metric space. In this metric
space, we define new distance measures for the existing distance measurement mod-
els that cannot satisfy (Ph4) well (see Section 4).
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Definition 8. Let Dy = {<x, pp, (x), Ip, (x)>|x € X} and D, =
{<x, pp, (x),Ip,(x)>|x € X} be two DHFSs. The distance measures between each
pair can be defined as follows:

1. The Hamming distance

2 2

1 |pDk ||pDr ngD (x) ve@p, (x

dann(Dr> D) = IX] > ;

xeX +~— Z Z d) 19

‘sDk (X) ‘ ‘ } d)EJD 196‘51)t( x)

2. The Euclidean distance

- _y 12
2
1
daa(Dx D) = 3 53~ | [lon]l J Z¥eso, ) Znce ) [V 0
deh(Di> Dy) = § 5147 o, )| [9p, (% ;
t 2|X| x€X [ 19]
+ [ —
o] 20 20t 107
3. The generalized distance
n
- - 1/
L | [ Sreme Saevg
dagh(Dy, D,) = mz O, (%) . ;
xeX
"—1 3 3 —
+ Sp, (%) |SD[(X)| Z(bEJDk(X) ZﬁGJDt(x) [d) ] |

where A > 1, g, (x) is the membership value set, and J, (x) is the nonmembership
value set in DHFS Di. \, v, ¢, o are values in o, (x), ©p (x), 3p (x), Ip, (). |- |
returns an element’s number in a set.

Definition 8 can satisfy the distance axiom in Definition 7, as proposed in
Theorem 1.

Lemma 1. (Minkowski’s inequality) (Flanders, 1968). Let (aj.a, ..., an)T,
(b, by, ..., bn)T € R'and 1 < p<oc. Then,
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k=1 k=1

Lemma 2. Let (aj,ay, ..., an)T, (b, by, ..., bn)T, (cr.ca .-, cn)T, (e1, €2, ...,en)T € R"

and 1 < p<oo. Then,
1/p
[lawl? + lexl’]
k=1

n 1/p
(Z Uak + belf + |k + ek|P]> < (
n 1/p
+ ( [lbwl” + |€k|P]>

=

k=1
k=1

Proof. Let Ay k= Ch bn+k =enk=1,2,...,n Thus,
n I/P n 1/17 2n I/P 2n I/P
S ola +1el] )+ [ Do[onf +lel] ) > (ZWV’) + (Zlbk|P>
k=1 k=1 k=1 k=1
2n 1/P n 2n l/p
> (Dak + bk|P> = <Z|ak bl + D e+ bk|P>
k=1 k=1 k=n+1

n n 1/p
= <Z|ak + bk|P + Z|Ck + ek|p>
=1 =1

Theorem 1. Let D, and D, be two DHFSs on X. dgu(Dk,D,), dan(Dk,D,) and
dagn (D, D,) satisfy the properties in Definition 7.
(The proof is in the appendix.)

Extension 1: the generalized dual hesitant weighted distance dggx (D, D,)

Considering the weight of each x € X, we note the weight for membership g, (x)
w, and that for nonmembership 3, (x) z,, where wy,z, >0, > xw,=1 and
> xex 2x = 1. The generalized dual hesitant weighted distance can be defined as

/1

IS

T Ton POUSIRD SRR 20
0p, ()| [, 0]

1
ddgwh(Dk> Dt) = EZ
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Extension 2: the generalized dual hesitant weighted distance with preference for
membership and nonmembership dgpn(Dx, D,)-

In practical decision making, the decision maker would prefer either a membership
degree or nonmembership degree. A positive decision maker would focus his/her
attention on the distance between the membership degree and the positive idea point,
while a negative decision maker pays attention to the distance between the non-
membership degree and the negative idea point. With this in mind, we set a param-
eter p(0 < p <1) on the generalized dual hesitant weighted distance dggn (D, D,)
and generate the generalized dual hesitant weighted distance with preference to mem-
bership and nonmembership as follows:

1/1

pwx

Z\llep Zuegjul (%) N’ - U]

pDk | K)Dt }

ddgwph<Dk’ Dt) - Z

xeX A

# Zd)e\sD Zﬂe\sD [(1) 79]

+(1-p)zx T

where p is the decision maker’s preference of membership degree and nonmember-
ship degree; p =1 indicates that the decision maker only focuses on the distance of
the membership degree, while p = 0 indicates that the decision maker only focuses
on the distance of the nonmembership degree. When p = 0.5, dygupn(Dk, D,) will
decrease to the generalized dual hesitant weighted distance dggu(Dx, D).

It can be proved in the same way as that of Theorem 1 that dggn(Di,D,) and
dagwpn(Dx> D,) also satisfy the properties in Definition 7. In the next section, we com-
pare the new proposed distance models with existing models.

4. Advantages of the proposed distance measure models

This section outlines the advantages of the proposed distance measure models com-
pared with existing distance models (Wang et al., 2014; Su et al., 2015; Singh, 2017).
These advantages include the lack of a requirement to change decision information
and their robust and satisfying triangle inequality.

4.1. Unlike existing distance models, the new distance models do not need to
change the original decision information

The existing distance models, i.e., dgun(A, B), dane(A, B), dign(A,B), dagw(A, B)(Wang
et al,, 2014; Su et al,, 2015; Singh, 2017), require the number of elements in different
DHFSs to remain the same, ie., D;={{0.1911,0.1556},{0.1}} and D, =
{{0.8560,0.4902},{0.1}}. In real applications, when the numbers of elements in dif-
ferent DHFSs are not equal, |p4(x)| # |pg(x)| or |Ja(x)| # |Sp(x)|. To utilize the
existing distance models, Wang et al. (2014), Su et al. (2015) and Singh (2017)
extended the shorter set (the set with fewer values of the membership degree set and
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Table 2. Changes of mean and variance.

Membership degree set Nonmembership degree set
DHFSs Mean Variance Mean Var.
Dy = {{0.1911,0.1556},{0.1} } 0.1734 6.3013x10°* 0.1 0
D, = {{0.1911,0.1556,0.1556,0.1556}, {0.1}}  0.1650 3.1506x 10 0.1 0
D'} = {{0.1911,0.1556,0.1911,0.1911}, {0.1} } 0.1822 3.1506x 10 0.1 0

Source: The Authors.

the nonmembership degree set) to the length of the longer set. Pessimists extend the
minimum membership degree and the maximum nonmembership degree, whereas
optimists extend the maximum membership degree and the minimum nonmember-
ship degree. For example, whenD; = {{0.1911,0.1556},{0.1}} and D;=
{{0.8159,0.4608,0.4574,0.4507},{0.1}}, to calculate the distance between them, a
pessimist would change Dy = {{0.1911,0.1556},{0.1} } to D| =
{{0.1911,0.1556,0.1556,0.1556},{0.1}}, while an optimist would change D; =
{{0.1911,0.1556}, {0.1}} to D" = {{0.1911,0.1556,0.1911,0.1911},{0.1}}. In this
process, they change the mean and variance (see Table 2). The pessimist decreases
the mean of the original membership degree set, and the optimist increases the mean
of the original membership degree set. At the same time, both decrease the variance
of the original membership degree.

During this extension process, the existing model takes the distance between D]
and D; and D"} and D; as a proxy of the distance between D; and Ds;. However,
there is bias in this substitution. The distances between D; and D;, D) and Ds,
andD’] and D; are measured by dgp(Dy,D,) with A =1,2,6,10. The results are
shown in Figure 1. Bias 1 exists when taking the distance between D] and D; as the
proxy of the distance between D; and D, while bias 2 exists when taking the dis-
tance between D'} and Ds as the proxy, no matter the value of A.

4.2. Unlike existing distance models, the new distance models are robust

To utilize existing distance models, Wang et al. (2014), Su et al. (2015) and Singh
(2017) decreased the numbers in both the membership degree set and the non-
membership degree set. Thus, the distance generated from the existing models
largely depends on the order of values in the membership degree set or the non-
membership degree set. Take the distance between D'j and Dj;, the existing
Euclidean distance dg.,(D,D,) and the new proposed Euclidean distance
daen(Dr, D,) for example. The Euclidean distances between increasing, decreasing
and random order of values in membership degree and nonmembership degree are
measured separately by the existing models and new models. The results in Table 3
show that the increasing order of values in the membership degree set and the
decreasing order of values in the membership degree set generate different distances
between D'] and D; using the existing distance models dg,(D"}, D;). With the new
proposed distance measure models dg, (D'}, D;), the distance between D"} and D; is
constant. Thus, the new distance models are robust compared with existing distance
measure models for DHEFSs.
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Figure 1. Distances and bias on substitution. Source: The Authors.

Table 3. The Euclidean distance with different orders.

Order of values D, dgen(D'},D;) daen(D'}, Dy)
Increasing order {{0.1556,0.1911,0.1911,0.1911}, {0.1}} 0.2574 0.2844
Random order {{0.1911,0.1556,0.1911,0.1911},{0.1} } 0.2574 0.2788
{{0.1911,0.1911,0.1556,0.1911}, {0.1}} 0.2574 0.2787
Decreasing order {{0.1911,0.1911,0.1911,0.1556}, {0.1} } 0.2574 0.2786

Source: The Authors.

4.3. The new distance models maintain (Ph4) well while the existing distance
measure models do not satisfy (Ph4) in Definition 7

Theorem 1 promises that the new proposed distance models maintain (Ph4) well.
The following example illustrates that the existing distance measure models (Wang
et al,, 2014; Su et al., 2015; Singh, 2017) do not satisfy (Ph4) in Definition 7.

Example 1. For three DHFSs, 1ie, D;={{0.1911,0.1556},{0.1}},
D, = {{0.8560,0.4902,0.4225},{0.1}}, and

Ds = {{0.8159,0.4608, 0.4574, 0.4507}, {0.1}},

The distances between pairs are
ddnh(Dl’DZ) = 0.2111, ddnh(Dl’D_’)) = 0.1909, andddnh<D2, D3) = 0.0166.
Hence, we find that
dgnh (D1, Dy)>dguy(Dy, D3) + dgun (D2, D3).
Similarly,

dane(D1, D3) = 0.1493, dgye(Dy, D3) = 0.1350, andd e (Dy, D3) = 0.0117.

Thus, we have

ddne(Dla D2)>ddne(D1> D3) + ddne(DZ: D3)'
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The comparison clearly shows that the new distance measurement models are a
success in terms of the existing distance measure models in the three points.

1. The new distance models do not need to extend the values in the membership
degree set or in the nonmembership degree set.

2. The new distance models are robust and do not depend on the order of the val-
ues in the membership degree set or in the nonmembership degree set.

3. The new distance models satisfy property (Ph4) in the axiom definition.

5. The application of the distance measures for MADM

In this section, the new proposed distance measure models are utilized to develop a
TOPSIS method (Chen & Hwang, 1992) for multiple attribute decision making,
whose decision information is provided by DHFSs. TOPSIS is a common multiple
attribute decision making method and aims to identify a solution from a finite set of
alternatives. The core idea of the TOPSIS method is to define the ideal solution and
negative ideal solution, evaluate the distance between each alternative and the ideal
solution/negative ideal solution, and identify the optimal solution, which should have
the shortest distance from the positive ideal solution and the longest distance from
the negative ideal solution. When decision information is provided by DHEFSs, the
new proposed distance measure models can help generate the distance between alter-
natives and the ideal and negative ideal solutions.

Suppose a multiple attribute decision making problem contains m alternatives and
n attributes. Let A = {A},A,, ..., A, } be the alternative set and P = {P,P,, ..., P,}
be the attribute set. The decision information for each alternative is:

A= {<x, pAi(Pj),SAi(Pj)>[j =12, ...,n}L,i=12,...,m.

The process of the generated TOPSIS method based on the new proposed distance
measure models is shown in Figure 2.

A numerical example for multiple attribute decision making taken from Singh
(2017) is adopted to show the TOPSIS process. A company wants to invest a sum of
money. They have four investment choices: a car company (A;), a food company
(A7), a computer company (A;), and an arms company (A4). They consider the
attributes of risk analysis (P;), growth analysis (P,) and environmental impact ana-
lysis (P3). The attribute weights for the membership and nonmembership degrees are
W = (0.35,0.25,0.4)" and Z = (0.30,0.40,0.30)", respectively. For a good economic
environment, the company takes an optimistic attitude toward this investment and
sets the decision parameter p to 0.7. Three experts evaluated these choices by satisfy-
ing the attributes using a DHFS. The dual hesitant fuzzy information is listed in
Table 4.

Set the ideal solution

AT = {<Py, {{0.8},{0.1}}>, <P, {{0.7}, {0.2}} >, <P3, {{0.7}, {0.1}} > 1,

and the negative ideal solution
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Create a MADM problem

[ Select alternatives 4 j—+

+—[ Analyze representative attributes P ]

decision information

Select a group of experts to evaluate the membership and non-
membership degree and construct the dual hesitant fuzzy ’

Ai = {< F’j. p‘\,(P]),SAi(PJ) > |_] == 1,2,...,77,}71' = 1,2, —-—

v

TOPSIS process

and non-membership degree

p: The experts’ preference on membership degree

|| Preference Py . : .
Tnput w( j) : The attribute weights of membership degree
z(P,): The attribute weights of non-membership degree
+ 2 )

Setidea 1dea solution: A. - {< Py, max; MaXpep 4, (P) ¥,
|| point and min; minges, (p,) ¢ > 7 =1,2,...,n}.

negative | Negative idea A~ = {< Py, min; minge,, (p) ¥

idea point solution:  MaX; MaXyes 4, (P;) p>1i=1,2.., n}

Calculate the distance between alternatives i
and idea solution

S =d (4, A7)
Si7 = dzlgwph (Ava Ai)

|| Generate the relative closeness to the idea ‘ S,f
solution I it =
v ST+,
; Rank alternatives and OUTPUT j

Figure 2. The TOPSIS process. Source: The Authors.

Table 4. Dual hesitant fuzzy information.

Py Pa Ps
A {{05,04,03},{0.4,03}} {{06,04},{0.4,02}} {{03,0.2,0.1},{06,05}}
A, {{0.7,06,0.4},{0.3,0.2} } {{0.7,06},{0.3,0.2}} {{0.7,0.6,0.4},{0.2,0.1} }
As {{0.6,04,03},{03}} {{06,05},{0.3}} {{06,05},{0.3,0.1}}
Ay {{0.8,0.7,0.6},{0.2,0.1} } {{0.7,06},{0.2}} {{0.4,0.3},{0.2,0.1}}

A = {<P,{{0.3},{0.4}}>,<P,, {{0.4},{0.4} } >, <P5,{{0.1},{0.6} } > }.

We set A =2 and calculate the distances between A; and A", and A; and A~ by
the generalized dual hesitant weighted distance with preference models dgpn(Ai, A™)
and dggpn(Ai, A7), The distances and results are shown in Table 5. The distance
between A; (i=1,2,3,4) and A" are 0.0713, 0.0163, 0.0426 and 0.0033, respectively. A4
is closest to A". The distances between A; and A~ are 0.0058, 0.0513, 0.0248 and
0.0788, respectively. A, is farthest fromA~. The relative closeness values of A;
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Table 5. The results of the TOPSIS process.

S

Alternatives S = dagupn (Ai AT) S = dagupn(Ai A7) | = e Rank
A 0.0713 0.0058 0.0759 4
A 0.0163 0.0513 0.7586 2
As 0.0426 0.0248 0.3680 3
Ay 0.0033 0.0788 0.9594 1

Source: The Authors.

(i=1,2,3,4) are 0.0759, 0.7586, 0.3680 and 0.9594. The distances between the alterna-
tives and the ideal solution and negative ideal solution and the relative closeness
show that alternative A4 (an arms company) is the optimal solution.

6. Conclusions

The distance measures of DHFSs proposed by Wang et al. (2014), Su et al. (2015)
and Singh (2017) did not consider the property of triangular inequality, required the
extension of the shorter membership set or the nonmembership set and lacked
robustness. This paper improves the functionality of the axiom definition and the dis-
tance models for DHESs. The property of triangular inequality is added in the new
axiom definition for the distance measure. Based on the improved axiom definition, a
series of distance models, such as the Hamming distance model, the Euclidean dis-
tance model and the generalized distance model, are generated. Theorem 1 proved
that these models satisfy the new axiom definition well. To consider the preference of
the decision maker in the attribute, the membership weight and the nonmembership
weight of each attribute are added to the general model, and the generalized dual
hesitant weighted distance model dgg,(Dx, D,) is generated. Additionally, a general-
ized dual hesitant weighted distance with preference model dggpn(D, D,) is generated
by integrating the decision maker’s preference with the membership degree and the
nonmembership degree. The generalized dual hesitant weighted distance with prefer-
ence model dggpn(Di, D,) can take the new proposed distance models as a special
case. To show their advantages, the new distance measure models are compared with
existing ones. The comparison results show that the new distance models do not
need to extend the shorter set, are robust and satisfy the property of triangular
inequality well, while the existing models have to extend the shorter set, lack robust-
ness and do not satisfy the property of triangular inequality.

To show the application of new distance measure models, we generate a TOPSIS
process with new models to solve the multiple attribute decision making problem
with dual hesitant fuzzy information. An investment example taken from Singh
(2017) helps show the TOPSIS process and the advantages of our distance measure.
The newly proposed method can be used in economic investments, supplier selection
and other decision maker problems. With the TOPSIS process, comprehensive deci-
sion information is collected and utilized from supporting and opposing aspects.
Compared with the existing distance measures proposed by Wang et al. (2014), Su
et al. (2015) and Singh (2017), this numerical example highlights two advantages of
the new distance measure. First, the new proposed method is based on the original
decision information. If the existing distance measure is utilized to calculate the
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distance between the ideal solution or negative ideal solution and alternatives, the
value of the ideal solution and negative ideal solution have to be extended to keep
the same length as another DHFS. As a result, the original information is changed.
With our distance measure, the ideal solution and negative ideal solution do not need
to be extended to meet the length of the membership degree set and nonmembership
degree set of alternatives. Second, the membership degree values and nonmembership
degree values of DHFS do not need to be ranked in decreasing or increasing order.
The distance calculating from existing distance measures (Wang et al., 2014; Su et al.,
2015; Singh, 2017) is associated with the order of the values in the membership
degree set and nonmembership degree set of a DHFS. Compared to existing distance
models, the distance calculated from the new proposed model is robust.

The contributions of this paper include the following: (1) the distance axiom for
DHESs is improved, and the improved axiom is concordant with the distance axiom
on classic sets; (2) a series of distance measures are generated for DHFSs that can be
used to update the decision method; (3) these new distance measures are applied to
generate a TOPSIS method for the MADM problem; (4) both supporting and oppos-
ing information are incorporated in decision making.

There are also limitations. First, for DHFS information, the importance of experts
cannot be recognized. Second, when utilizing distance models for DHFS, the attribute
weights for membership degree and nonmembership degree are somewhat difficult to
determine. Third, the numerical example of this paper refers to the existing literature.
Future studies can focus on generating attribute weights and the weights of member-
ship/nonmembership, similarity measures and their application to pattern recognition
and machine learning, and conducting empirical studies on economic or management
problems.
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sp = a5 + (1=0)s,, pr = opy + (1=0)p, (0 < o < 1).

—

Then, s;—s, = a(s,—s,) and p;—p, = a(p,—p,). Furthermore, we have

1 1 1 1
V7 —_— 5 — c
!pDr (x)| UE;%(X) |\S | IET), |:}@D )‘ depp, (%) !JD ( )| GE%()C)
) -
=) | ——— v— 9| — ) — ¢
|:’KJD1 (x)| uepz(x) {\SDt (x ’ VeI, (x) :| ‘pDk ’ q;e% (x) k( ) ¢€3Z[,k(x)
" ) i
v + e S+ = c
|th | UE;)Z( ) | ﬂe;x) |:|pD x | dep,, ( ) |\SD (x)| GE%(X)
= ’ Z v + ol Z 9| — | Z V -+ Z ¢
op, (x UE@ () 9E3p, (x) o, (x ey, () ’ ( )| 635, (x)

1 1
- - S—of—"
on 1,2, o = (. 2, T, 2, Y
Y i 2 G_aQS TpD ﬁ_‘; 5 4

ISDt (X)‘ 19€3D[(x) | Dr GEW (%) Dt< x) SDk (X) ‘bESDk(")

‘@Dk (x)’ Zuegjm (%) ZSE@DY (%) [v— 3] ’ Dy (x ‘ Eﬁeqn (%) ZGE\)D [0 — o
|pDr (x)’ Zueg)n[ (x) Z\l}egjnk(x) [U \I/ | D, x ’ 2196\‘17 Zd)e‘s,) [19 (M

According to the proven process of (Ph4), the above is equal. Thus,
Aagn(Dk, D;) = dagh(Dx, D,) + dagn(Dy, D,) > dagh(Dx, D,)
and

dagh(Dk, D,) = dggn(Di, D,) + dagn(Dy, D,) > dygn(Dy, D,).
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