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ABSTRACT

Knowledge of the spatial distribution of agricultural crops and crop rotation is necessary for the understanding of the 
farming practices concerning the long-term sustainability of agricultural production. Agricultural crops are increasingly 
subject to drought due to the effects of global climate change, and the same is true for Croatia due to the constant rise 
in mean annual temperatures and uneven rainfall distribution. Remote sensing methods have proven to be superior 
in the detection and monitoring of drought compared to conventional methods of observation from meteorological 
stations. Information on the condition of crops in the early stages of development indicates potential irregularities in the 
development of agricultural crops. The objective of this paper is to provide a perspective for the application of remote 
sensing in crop management using state-of-the-art methods. Analysis of the possible implementation of these methods 
in Croatia was performed on a macro- and micro-level. Spatial classification, cropland suitability multicriteria analysis, 
drought assessment, weed detection and crop density calculation were evaluated according to the necessary equipment 
and data processing segments. Remote sensing application in crop management offers a potential basis for better crop 
management both at the macro-level for land use planning and at the micro-level for family farms.

Keywords: machine learning, land suitability, weed detection, unmanned aerial vehicle (UAV), satellite images, 
variable rate technology

SAŽETAK

Poznavanje prostorne raspodjele poljoprivrednih usjeva i plodoreda neophodno je za razumijevanje poljoprivredne 
prakse za dugoročnu održivost poljoprivredne proizvodnje. Poljoprivredni usjevi su sve više izloženi suši zbog učinaka 
globalnih klimatskih promjena, a isto vrijedi i za Hrvatsku zbog stalnog porasta srednjih godišnjih temperatura i 
neujednačenoj količini padalina. Metode daljinskog istraživanja pokazale su se superiornima u otkrivanju i praćenju suše 
u usporedbi s konvencionalnim metodama promatranja s meteoroloških postaja. Podaci o stanju usjeva u ranim fazama 
razvoja ukazuju na potencijalne nepravilnosti u razvoju poljoprivrednih usjeva. Cilj ovog rada je pružiti perspektivu 
primjene daljinskog istraživanja u upravljanju usjevima korištenjem najsuvremenijih metoda. Analiza moguće primjene 
ovih metoda u Hrvatskoj provedena je na makro i mikro razini. Prostorna klasifikacija, multikriterijska analiza pogodnosti 
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usjeva, procjena suše, otkrivanje korova i izračun gustoće usjeva analizirani su u odnosu na potrebnu opremu i segmente 
obrade podataka. Primjena daljinskog istraživanja u upravljanju usjevima nudi potencijalnu osnovu za bolje upravljanje 
usjevima kako na makro razini za planiranje uporabe zemljišta, tako i na mikro razini za obiteljska poljoprivredna 
gospodarstva.

Ključne riječi: strojno učenje, pogodnost zemljišta, detekcija korova, bespilotni zrakoplov, satelitske snimke, 
tehnologija varijabilnih inputa

INTRODUCTION

The implementation of remote sensing in agriculture 
has been initiated by the usage of sensors for an organic 
matter readout at the beginning of the 1990s, followed 
by the rapid development of remote sensing technology. 
Nowadays, remote observation sensors are used on 
satellites, aircrafts, tractors and in the form of manual 
sensors (Mulla, 2013). The free multispectral Sentinel‐2 
satellite images, owned by the European Space Agency 
(ESA), as well as the National Aeronautics and Space 
Administration (NASA)‐owned Landsat 8, have a wide 
imaging coverage and a spatial resolution up to 10 m for 
Sentinel‐2 (ESA, 2015) and 30 m for Landsat 8 (USGS, 
2018). This enables their global application to perform 
the analyses on the macro- or micro-level (Hill, 2013). 
Remote sensing with the spectral bands in the near‐
infrared and shortwave infrared part of an electromagnetic 
wave spectrum renders the aforementioned satellite 
missions suitable for the determination and monitoring 
of phenological characteristics of agricultural crops and 
other vegetation (Sibanda et al., 2015). However, a limited 
temporal imaging resolution of five days for Sentinel‐2 
(ESA, 2015) and 16 days for Landsat 8 (USGS, 2018), as 
well as frequent cloud obscurity of an observed area (Zhu 
et al., 2015), confine the satellite imagery capacities for 
recurrent and arbitrary monitoring of agricultural crops. 
The unmanned aerial vehicles (UAVs) are utilized to collect 
the data with an arbitrary surface and temporal resolution 
(Gevaert et al., 2015), as well as with incorporation of 
sensors depending on the imaging needs, e.g., of the RGB 
or multispectral camera (Turner et al., 2014). Imaging by 
a UAV is independent of the presence of cloud cover, but 
the limitations concerning meteorological conditions, 
such as precipitation or wind strength, are existent. 

During imaging, the weather conditions in the field 
should be as harmonized as possible, so the imaging is 
recommended approximately at noon, when the object 
shadows on terrain are minimal throughout a day (Salvo 
et al., 2014). The satellite missions and the UAVs are 
mutually complementary and jointly provide for a saving 
possibility and a more economical production on the 
macro‐ and micro-level (Matese, 2015). 

The information on the condition of crops in the early 
developmental phases indicates potential irregularities 
in the development of agricultural crops and serve as a 
basis for the performance of agrotechnical operations. 
Based on these observations, the agricultural crop 
monitoring systems founded on remote sensing have 
been developed in all parts of the world (Wu et al., 
2014). The agricultural crop monitoring in such systems 
is successfully performed on a national and regional level 
while using multispectral satellite imagery (Doraiswamy 
et al., 2003). On a local level, the same is accomplished 
by using the RGB and multispectral cameras mounted 
on the UAVs (Jannoura et al., 2015). The multispectral 
cameras on satellites and UAVs equipped by a red and 
a near‐infrared sensor facilitate computation of the 
Normalized Difference Vegetation Index (NDVI) (Tucker 
et al., 2005) and Soil-adjusted Vegetation Index (SAVI) 
(Huete, 1988), which are highly correlated to the crops’ 
phenological characteristics (Prince, 1991; Baret and 
Guyot, 1991). Some of these are leaf area index, biomass, 
chlorophyll and nutrient contents in plants (Mulla, 2013). 
Optimal monitoring of agricultural crops is performed 
by remote sensing concerning their most significant 
phenological periods (Vina et al., 2004). Accordingly, a 
temporal component, as a result of multitemporal imaging 
via satellites and UAVs (Wardlow et al., 2007), is of the 
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utmost importance for agricultural crops. Multitemporal 
imaging with a high surface resolution is a foundation 
for the detection of drought in agricultural crops, based 
on the observation of value alterations in vegetation 
indices, which imply water stress in plants, in combination 
with meteorological data (Atzberger et al., 2013). The 
data of an agricultural crop monitoring during multiple 
sowing seasons, together with the data on yield from the 
observed parcels, are simultaneously used as a basis for a 
prediction of yields in the future (Quarmby et al., 1993).

The aim of this paper was to provide a review of 
current state-of-the-art remote sensing methods for 
the application in crop management at the macro- 
and micro-level. Based on the necessary equipment 
and data processing demands, a perspective for the 
implementation of these methods in Croatia for more 
efficient crop management for both land-use planning 
and family farms was provided.

STATE-OF-THE-ART METHODS OF REMOTE 
SENSING IN CROP MANAGEMENT

Current state-of-the-art remote sensing methods for 
crop management were evaluated at two scales: macro 
and micro (Figure 1). Primary differences of these levels 
are the study area and the purpose of the methods, 
since land-use planners benefit from the data at the 
macro-level, while micro-level data aims at the tangible 
application in the agricultural fields by family farms.

Figure 1. Macro and micro scales of the research and their prop-
erties

Supervised classification using machine learning 
algorithms

A classification of land cover types is one of the most 
frequent applications of remote sensing methods (Rogan 
and Chen, 2004). The data on the spatial distribution of 
agricultural crops and crop rotation are used for a better 
comprehension of a farming practice with regard to the 
modifications in the environment, such as climate changes, 
subterranean water abstraction and soil erosion, which 
potentially endanger a long‐term agricultural production 
sustainability (Galford et al., 2008). An obstacle to the 
classification of agricultural crops by species is construed by 
variability in a phenological growth stage for an individual 
agricultural crop species in an area, thereby also implying 
a variability in their spectral values, which thus may be 
difficult to completely differentiate them from the rest 
of the vegetation (Price, 1992). A solution is represented 
by the usage of multitemporal images because a change 
in spectral values of agricultural crops proceeds in time 
significantly more rapidly with regard to the pastures or 
permanent crops (Gómez et al., 2016). By such a method, 
it is possible to reliably separate the agricultural crops that 
have an approximately equal vegetative period. A mutual 
differentiation of such agricultural crops subsequently 
proceeds while emphasizing their spectral differences, 
which may be observed in the red-edge or near‐infrared 
spectral bands of the multispectral satellite missions (Rao, 
2008). An object‐oriented classification approach, based 
on a pixel aggregation of the proximate spectral values in 
objects through a satellite imagery segmentation process, 
provides for a possibility to obtain the more high‐quality 
classification results when compared to the pixel‐based 
methods (Blaschke, 2010). The results obtained in that 
manner comprise the zoned entities, as a substratum 
adjusted to the implementation of precise agrotechnical 
measures in the field (Seelan et al., 2003), differentiated 
by the conventional pixel‐based classification methods, in 
which noise is frequently manifested in the classification 
results (Jiang et al., 2014). By the automation of an 
algorithm of an agricultural crop classification, the 
application of the algorithm itself is being accelerated, 
while a possibility of a classification error is being 
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reduced due to the elimination of a human factor during 
classification (Dannenberg et al., 2016). Recently, the 
algorithms for the classification of agricultural crop 
species are based on machine learning methods, which 
have demonstrated more superior results concerning the 
conventional classification methods (Belgiu and Drăguţ, 
2016). Random Forest, Artificial Neural Networks and 
Support Vector Machines are some of the most commonly 
applied machine learning classification algorithms for 
remotely sensed data (Yuan et al., 2017). Deep machine 
learning algorithms in remote sensing are a subject of 
intensive research and are expected to outperform 
conventional machine learning algorithms in the near 
future.

GIS-based multicriteria analysis for suitability evaluation

Suitable areas for cultivation of a certain agricultural 
crop are conditioned by climate, soil, relief, infrastructure 
and related local constraints (Šiljeg et al., 2020). Due to 
a fact that each agricultural crop has special conditions 
related to the adduced criteria, a determination of the 
optimal areas for the cultivation of a crop results in 
better utilization of natural and human resources, with 
a potentially larger yield (Kazemi and Akinci, 2018). 
Remotely sensed data is often used for spatial modeling 
of topographic criteria, as well as for the accuracy 
assessment of calculated suitability using multitemporal 
vegetation indices (Radočaj et al., 2020a). Inappropriate 
usage of agricultural land also exerts a negative influence 
on the quality of an environment due to an excessive 
application of pesticides, fertilizers, and water on the 
areas that are objectively optimal for the cultivation 
of other crops (Mendas and Delali, 2012). Regarding a 
spatial character of the criteria important for agricultural 
production, GIS is imposed as a favorable environment for 
the implementation of multicriteria spatial data analysis 
(Malczewski, 2006). Various forms of a multicriteria 
analysis are successfully applied to the agricultural crops, 
resulting in the recommendations for better agricultural 
land management (Radočaj et al., 2020b). An analytical 
hierarchical process (AHP) is one of the multicriteria 
analysis methods with a broad application in numerous 

activities worldwide (Cobuloglu and Büyüktahtakın, 
2015; Jurišić et al., 2020). Its main feature is a mutual 
comparison of the relative influence of criteria pairs on 
an end result, which enables a more objective user’s 
influence on an advantage calculation (Saaty, 1977).

Drought and crop water stress assessment

The agricultural crops are increasingly subject to 
drought due to the impact of global climatological 
changes (Leng and Hall, 2019), and the same is valid for 
Croatia because of a constant increase in the median 
annual temperatures and irregular rainfall distribution. 
The researches in the world have evidenced significant 
economic consequences in the drought‐affected areas, 
primarily in the form of a lack of the produced food and 
a reduced agricultural production yields, as a direct result 
of the abovementioned factors (Christian‐Smith et al., 
2015). Accordingly, a necessity has emerged to inventory 
and monitor the drought of the agricultural crops for the 
sake of insurance and possible damage assessment (Hazell 
and Hess, 2010). The remote sensing methods have been 
proven more superior when detecting and monitoring 
the drought if compared to the conventional observation 
methods related to the meteorological stations (Skakun 
et al., 2016). A high‐quality drought assessment by the 
remote sensing methods is achieved via a combination of 
vegetation and spectral indices that refer to the share of 
water in plants (Bajgain et al., 2015). Based on the same 
fact, several spectral indices for drought detection have 
been developed, out of which the Normalized Difference 
Drought Index (NDDI) is among the most important ones, 
being successfully applied while using the Landsat 8 
satellite imagery (Gu et al., 2007). The results obtained 
in that way are used to devise the drought maps, which 
represent a foundation for precise irrigation in agriculture 
(Cammalleri et al., 2014).

Weed detection

The presence of weeds on agricultural parcels may 
reduce a potential agricultural crop yield up to 35% 
(Pérez‐Ortiz et al., 2016). A most frequent practice in 
weed treatment is the application of a fixed amount of 
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herbicide on an entire agricultural parcel, resulting in 
an inappropriate and excessive herbicide application. 
This causes unnecessary pollution and a negative 
environmental impact (López‐Granados et al., 2011). 
A detection of weeds in an early stage of agricultural 
crops’ growth is founded on a geometrical determination 
of crop rows and on a separation of vegetation located 
outside the crop rows (Peña et al., 2015). Using a 
binary classification and the Hough transformation on 
a digital orthophoto, a reliable determination of rows in 
agricultural crops is accomplished (Jones et al., 2009). 
The parts of agricultural parcels outside the crop rows are 
subsequently classified pursuant to the spectral values, 
with an objective to distinguish vegetation from a soil 
(Zwiggelaar, 1998). For detected vegetation, a thematic 
weed map is devised as a basis for the implementation 
of the adequate agrotechnical weed removal measures 
(Slaughter et al., 2008), of either the weeds or to the 
crops outside the rows. When detecting the weeds in 
a late stage, the emphasis lies on the differentiation of 
spectral values of agricultural crops, which are then dry 
and assume the nuances of a brown color and of a green‐
colored weed (López‐Granados, 2011). Due to a principle 
of plant competitiveness, in a late developmental stage 
of agricultural crops, only the weeds of an approximate 
or of a larger height with regard to the agricultural crops 
will survive, whereby it is possible to detect them while 
imaging them by a UAV. A thematic weed map in a late crop 
growth stage is used for validation of the implemented 
weed suppression measures in an early stage and as a 
basis for weed treatment in the next sowing season, for 
the spatial distribution of weeds on agricultural parcels to 
be stable annually (Koger et al., 2003).

Crop density calculation

A density value of an agricultural crop canopy is highly 
correlated to a green matter quantity, accumulated dry 
matter, and crop yield (Whaley et al., 2000). The most 
frequently used method for density quantification of an 
agricultural crop canopy, or a number of plants per unit 
area, is based on a visual plant counting from the ground. 
Such a procedure is uneconomical, subject to human errors, 

and causes physical crop damage due to a movement of 
people (Jin et al., 2017). To eliminate the aforementioned 
influences, a canopy density determination is increasingly 
performed while deploying the UAVs. For the detection 
of certain plants, segmentation from the UAVs imagery 
is frequently used, whereby the objects containing all the 
pixels representing an identical plant are being created 
(Kang et al., 2017). On a segmented area, a binary plant 
classification with regard to soil, based upon the spectral 
values, is subsequently being performed (Gnädinger and 
Schmidhalter, 2017). A similar principle was applied by 
Chen et al. (2017) while using a plant counting method 
pursuant to a principle determining an individual plant’s 
geometrical center. For reliable detection of individual 
stems, while imaging them by the UAVs, a high surface 
resolution during imaging is necessary, not lesser than 
five centimeters (Rokhmana, 2015). A digital surface 
model, as one of the additional results of imaging by 
a UAV, was successfully used as a supplement to the 
existent methods when determining a canopy density 
(Bareth et al., 2016).

Precise nitrogen fertilization

Conventional farming is based on the application 
of the uniform quantity of agricultural inputs (seed, 
pesticides, fertilizer) over an entire agricultural parcel. 
This agricultural parcel is considered as a homogenous 
area, whose current state of soil and crop properties is 
determined as an average value of multiple discrete point 
observations within the parcel. This approach results in an 
optimal average application of agricultural inputs but its 
distribution does not consider existing variabilities within 
the field. Previous deficiencies of soil and crop properties 
still remain at some parts of the parcel, resulting in an 
inadequate crop cultivation condition. At the same time, 
a surplus of these nutrients is being created at other parts, 
where the excess application of pesticides and fertilizer 
cause unnecessary contamination of the environment 
and excess cost. Precision farming overcomes these 
limitations by implementing the variable rate technology 
(VRT), where an agricultural parcel is considered as a 
heterogeneous area (Bora et al., 2012). Agricultural 
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inputs are customized to meet the demands of specific 
parts of the study area, resulting in an optimal state of 
soil and crop properties. Besides the optimal distribution 
of agricultural input, the precision agriculture approach 
usually results in their lower quantity, allowing farmers to 
save money.

Precise fertilization is one of the most important 
aspects of precision agriculture, allowing 5–45% in 
fertilizer savings with no drops in crop yield, compared 
to the conventional approach (Colaço and Bramley, 
2018). This particularly refers to the precise nitrogen 
fertilization, which was a dominant subject of research in 
precise fertilization recently. The two general approaches 
to precise fertilization can be divided into a map-based 
and sensor-based approach. Both of these approaches 
should result in prescription zones for VRT application in 
ESRI Shapefile format, which is supported by the majority 
of controllers in agricultural machinery. The map-based 
approach is intended for pre-sowing fertilization, based 
on soil sampling and laboratory analysis for soil nutrients. 
This results in highly accurate maps but the entire 
process is time-inefficient compared to the sensor-based 
approach. The sensor-based approach incorporates 
remote sensing technology via UAVs or crop sensors 
for the determination of crop nitrogen content through 
vegetation indices, primarily NDVI and Normalized 
Difference Red-Edge Index (NDRE). These vegetation 
indices are mutually complementary and produce high 
correlation with crop nitrogen content (Amaral et al., 
2015). Multispectral sensors should preferably be used 
for UAVs, but low-cost RGB cameras could also produce 
solid results after the analysis in GIS environment 
(Gašparović et al., 2020). This process results in the real-
time calculation of nitrogen prescription rates with the 
use of crop sensors or the creation of more accurate 
prescription zones using UAVs in supplementary precise 
fertilization.

PERSPECTIVE OF REMOTE SENSING APPLI-
CATIONS IN CROP MANAGEMENT IN CROATIA

Implementation on a macro-level

Preparatory activities for the application of remote 
sensing for crop management generally consist of the 
workspace establishment and collection of remotely 
sensed and other necessary data. The average equipment 
for on a macro- and micro-level includes a UAV, a Global 
Navigation Satellite System (GNSS) Real-time-Kinematic 
(RTK) individual receiver or integrated on a UAV, a 
workstation and a spectrometer. The meteorological 
data on precipitation and air and soil temperatures are 
available from the meteorological stations of the Croatian 
Meteorological and Hydrological Service (DHMZ). The 
collected satellite images should be preprocessed, which 
includes a conversion to the bottom of the atmosphere 
(BOA) reflectance data, georeferencing to a single 
coordinate reference system (preferably HTRS96/
TM in Croatia) and raster clipping to a study area. The 
ground-truth data for the agricultural parcels for which 
the agricultural incentives were granted during the 
research period are available from the Paying Agency for 
Agriculture, Fisheries, and Rural Development (APPRRR). 
All discrete point data (soil samples, meteorological 
station data) should be interpolated by an optimal 
interpolation method, depending on the existence of a 
normal distribution, stationarity, or a data value trend 
(Radočaj et al., 2020b). 

Automatic classification of agricultural parcels per 
cultivated crop type commences with the collection of 
spectral signatures of the existing crops in their vegetative 
period, as well as other present land cover types. The 
spectral signatures are a foundation for a spectral analysis 
when discerning crop from other land covers present. The 
first step in classification is a computation of vegetation 
indices on the macro-level from the two-satellite image 
sets: prior to the sowing of all spring crops, when the soil 
is situated at their location, and at the moment at which 
the spring crops possess the largest biomass, prior to 
the harvest. Out of a difference of the select vegetation 
index at these observation moments, a spring crop mask 
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can be produced out of a binary classification using the 
value difference of a vegetation index. A threshold value 
of binary classification should be set based upon the data 
obtained by the APPRRR, whereby the crops will have 
high values caused by a high vegetation index value at 
maximum biomass and a low value until the sowing of 
spring crops be performed, due to the soil dominance. 
The grasslands, permanent crops, and artificial objects 
will have a difference close to zero because their spectral 
values are not significantly altered during a spring crops’ 
vegetative period, while the straw cereals harvested at 
the time of the spring crops’ growth will have the negative 
values concerning the vegetation index differences. 
The classification of the extracted mixed crops can 
be performed with some of the previously mentioned 
machine learning classification algorithms. An accuracy 
assessment concerning different result variants will be 
performed on the basis of the APPRRR data, divided in a 
ratio amounting to 70% for training of the classification 
algorithm and to 30% for the classification accuracy 
assessment. An interactive web-GIS map of the obtained 
results can be freely made in the QGIS software, based 
upon the QGIS2Web plugin. 

The land suitability evaluation for crop cultivation is 
founded on a multicriteria analysis procedure while using 
the AHP method, and the first step in its implementation 
is a definition of all spatial criteria that may be modeled 
in a GIS environment and that influence the crop growth. 
The basic criteria categories are the evaluation criteria: 
the geomorphological (terrain, terrain inclination, 
precipitation retention, insolation), climatological 
(precipitations, air and soil temperature), and pedological 
ones, with possible addition of the criteria related to the 
infrastructure and finances, and of the limitation criteria, 
such as an inadequate manner of use regarding land for 
agricultural production (waters, residential areas, forests). 
The criteria should be arranged in a table, in which the 
classes of the criteria inputs can be defined for the 
standardization of all values in a unique numeral interval. 
The individual criteria weights should be determined 
by the experts in crop production on the basis of a 
comparison of the criteria pairs within the AHP method. 

A weighted linear combination is commonly used for the 
suitability calculation based on standardized values and 
criteria weights. The calculated suitability values and 
ground-truth yield data offer a basis for the detection of 
good and bad practice and possible recommendations for 
more high‐quality exploitation of natural resources.

Implementation on a micro-level

Multitemporal UAV imaging should be initiated by the 
zeroth imaging prior to the crop sowing to obtain a digital 
terrain model without any vegetation cover, as a basis 
for a successive vegetation height model calculation. For 
the needs of multitemporal imaging, the phenological 
stages of a particular crop type are divided into regular 
time periods between each UAV flight. In the initial crop 
development stage, the UAV imaging and measurement 
collection in the field should be performed for the purpose 
of training and validating the remote sensing data retrieval 
(spectrometer readouts, counted crop stems within a 1 x 
1 m square, identification and documentation of the weed 
data). UAV data processing should start with the creation 
of digital orthophotos and digital surface models in the 
photogrammetric software using Structure-from-Motion 
algorithms. For all developmental phases, the vegetation 
indices can be calculated, which presents a base for 
statistical analysis in the form of a correlation coefficient 
calculation of the vegetation indices and spectrometer 
readouts for an individual crop development stage. The 
vegetation height models per developmental phases are 
calculated while subtracting the altitudes from the digital 
surface models with a digital terrain model concerning 
the zeroth imaging. Agricultural crops are isolated from 
other objects in the process using a binary classification 
of a selected vegetation index. The produced vegetation 
height models contain the vegetation height attributes, 
vegetation volume, and an estimated chlorophyll quantity 
based upon the vegetation indices. Impact analysis of a 
potential drought or natural disasters can be quantified 
on the basis of a conducted spatial‐temporal analysis 
of vegetation indices per developmental phase. The 
damaged areas will be classified per damage categories, 
while the area and an estimated pecuniary loss can be 
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calculated for each class concerning the respective 
sowing season, by means of an average buyout price and 
percentage of a current yield related to a maximal one. 

The automation of a crop stem counting algorithm 
(a determination of the crop canopy density) can 
be performed via segmentation procedures, binary 
classification of crops in soil, and via isolated polygon 
counting. The segmentation parameters and binary 
classifications should be developed and tested with 
regard to the counting data from the field, on the 1 x 
1 m square areas. An optimal period for imaging using 
UAV concerning the crop canopy density determination, 
the most beneficial spectral bands for imaging, and an 
optimal flight altitude should preferably be investigated 
during the research. Weed detection in an early crop 
development stage is based on a geometrical weed 
detection, comprised of a crop row determination and 
of detection of all vegetation outside the rows, whether 
they are the weeds or the crops outside the rows. For 
a determination of crop rows, the existent methods are 
based upon the Hough transformation. In the detected 
rows, the buffer zones should be created, according to 
the largest diameter of a crop plant measured in the field 
during the fieldwork. An area outside a buffer zone should 
be classified concerning vegetation and soil, enabling 
weed detection on a micro-level. Weed detection in the 
advanced crop growth stage is preferably based upon a 
spectral weed detection, imaging at the moment at which 
a yellow and dry crops may be discerned from the green 
weeds (Gašparović et al., 2020). Based upon the training 
and validation data collected in the field, segmentation 
and a supporting object‐oriented classification can 
be performed while applying the machine learning 
classification algorithm. For each class of the weed 
presence levels, a covered surface is established. Using 
the weed treatment data in a study area, a correlation 
analysis of a spatial weed distribution in an early and in 
an advanced crop development stage can be conducted 
in the identical sowing season, whereby a herbicide 
treatment efficacy should be established.

The implementation of precise nitrogen fertilization 
using a remote sensing sensor-based approach requires 
GNSS receivers and ISOBUS compatibility of agricultural 
tractors. As nitrogen prescription rates using both UAV 
and crop sensors are based on the vegetation indices, 
calibration of these data is necessary for the effective 
implementation of precise fertilization (Ji et al., 2020). 
Handheld devices like Trimble Greenseeker deserve 
attention in cases of approximate determination of 
prescription rates but are inefficient in case of high 
soil nutrient variability. Chlorophyll meters provide 
reliable field data for nitrogen fertilization that should 
be collected in multiple discrete point locations within 
the agricultural parcel. These observations must be 
georeferenced using GNSS and ideally randomly split to 
training and test data for the calibration of UAV and crop 
sensor readings. Prescription zones should be formed 
by grouping the image pixels of UAV or crop sensor 
readings with similar values to enable their application 
by agricultural mechanization. Reliable methods of 
prescription zones creation in the GIS environment are 
either image segmentation or unsupervised classification 
algorithms, as manual classification could be susceptible 
to the operator’s subjective errors (Radočaj et al., 
2020a). After the calibration, an agronomy expert should 
designate fertilization rates to each created prescription 
zone based on crop type and its properties. These zones 
should be exported to ESRI Shapefile format in the GIS 
environment, which is widely available in open-source 
GIS software.

CONCLUSION

The importance of perspective for remote sensing 
applications in crop management is in the initiation 
of research and increasing people awareness of their 
advantages for the application in agriculture in Croatia. 
Existing methodologies for crop management using 
remote sensing are evaluated according to the unique 
geographical and natural characteristics of Croatia. 
Another contribution of the research is related to the 
automation of algorithms for the application of remote 
sensing in agriculture. Such an approach allows a 
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considerably faster processing and analysis of data than 
conventional methods. Determination of the optimum 
scale for remote sensing of certain crop characteristics 
of should be conducted based on this perspective, 
expressed through the smallest area of agricultural parcels 
for possible monitoring via satellite or UAV. The control 
of the agricultural subsidies’ allocation, based on the 
processing of multispectral satellite images, would allow 
control of a significantly higher number of agricultural 
parcels, compared to the current 5% of subsided parcels. 
The information obtained by crop monitoring and drought 
detection can serve to categorize agricultural parcels 
according to the drought exposure. Using the results of 
weed detection and determination of the crop canopy 
density, farmers will be able to apply herbicides more 
economically and conduct agrotechnical operations more 
efficiently. Regular crop monitoring will give farmers the 
possibility of early detection of pests or lack of nutrients 
in the soil, which will enable them to protect their crops 
on time.
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