AUTOMORPHISM GROUPS OF FINITE RINGS OF CHARACTERISTIC p^2 AND p^3

CHITENG'A JOHN CHIKUNJI Botswana College of Agriculture, Botswana

ABSTRACT. In this paper we describe the group of automorphisms of a completely primary finite ring R of characteristic p^2 or p^3 with Jacobson radical \mathcal{J} such that $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$; the annihilator of \mathcal{J} coincides with \mathcal{J}^2 ; and the maximal Galois (coefficient) subring R_o of R lies in the center of R.

1. INTRODUCTION

Throughout this paper we will assume that all rings are finite, associative (but generally not commutative) with identities, denoted by $1 \neq 0$, that ring homomorphisms preserve 1, a ring and its subrings have the same 1 and that modules are unital. Recall that an Artinian ring R with radical \mathcal{J} is called primary if R/\mathcal{J} is simple and is called completely primary if R/\mathcal{J} is a division ring. The object of this paper is to describe explicitly, the group of automorphisms of a completely primary finite ring R of characteristic p^2 or p^3 such that if \mathcal{J} is the Jacobson radical of R, then $\mathcal{J}^3 = (0), \mathcal{J}^2 \neq (0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^2 and the coefficient subring R_o lies in the center of R. The automorphisms of R are determined by their images on the generators of the additive group of R and on the invertible element b of order $p^r - 1$ of the Galois subring R_o of R. This supplements the author's earlier work [1] on rings of characteristic p. We freely use the definitions and notations introduced in [1, 2, 3, 5].

Let R be a completely primary finite ring, \mathcal{J} the set of all zero divisors in R, p a prime, k, n and r be positive integers. Then the following results will be assumed (see [5]): $|R| = p^{nr}$, \mathcal{J} is the Jacobson radical of R, $\mathcal{J}^n = (0)$,

 $Key\ words\ and\ phrases.$ Completely primary finite ring, automorphism group, Galois ring.

²⁰⁰⁰ Mathematics Subject Classification. 16N10, 20B25, 16N40, 15A03.

 $|\mathcal{J}| = p^{(n-1)r}, R/\mathcal{J} \cong GF(p^r)$, the finite field of p^r elements and $charR = p^k$, where $1 \leq k \leq n$; the group of units G_R is a semi-direct product $G_R = (1+\mathcal{J}) \times_{\theta} \langle b \rangle$, of its normal subgroup $1+\mathcal{J}$ of order $p^{(n-1)r}$ by a cyclic subgroup $\langle b \rangle$ of order $p^r - 1$. If n = k, it is known that, up to isomorphism, there is precisely one completely primary ring of order p^{rk} having characteristic p^k and residue field $GF(p^r)$. It is called the *Galois ring* $GR(p^{rk}, p^k)$ and a concrete model is the quotient $\mathbb{Z}_{p^k}[X]/(f)$, where f is a monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases are $GR(p^n, p^n) = \mathbb{Z}_{p^n}$ and $GR(p^n, p) = \mathbb{F}_{p^n}$. In fact, $R = \mathbb{Z}_{p^n}[b]$, where b is an element of R of multiplicative order $p^r - 1$; $\mathcal{J} = pR$ and $Aut(R) \cong Aut(R/pR)$ (see [5, Proposition 2]).

Let R be a completely primary finite ring, $|R/\mathcal{J}| = p^r$ and $charR = p^k$. Then it can be deduced from [4] that R has a coefficient subring R_o of the form $GR(p^{kr}, p^k)$ which is clearly a maximal Galois subring of R. Moreover, if R'_o is another coefficient subring of R then there exists an invertible element x in R such that $R'_o = xR_ox^{-1}$ (see [5, Theorem 8]). Furthermore, there exist $m_1, \ldots, m_h \in \mathcal{J}$ and $\sigma_1, \ldots, \sigma_h \in Aut(R_o)$ such that $R = R_o \oplus \sum_{i=1}^h R_o m_i$ (as R_o -modules), $m_i r_o = r_o^{\sigma_i} m_i$, for all $r_o \in R_o$ and any $i = 1, \ldots, h$ (use the decomposition of $R_o \otimes_{\mathbb{Z}} R_o$ in terms of $Aut(R_o)$ and apply the fact that R is a module over $R_o \otimes_{\mathbb{Z}} R_o$). Moreover, $\sigma_1, \ldots, \sigma_h$ are uniquely determined by R and R_o . We call σ_i the automorphism associated with m_i and $\sigma_1, \ldots, \sigma_h$ the associated automorphisms of R with respect to R_o .

Now, let $R_o = \mathbb{Z}_{p^k}[b]$ be a coefficient subring of R of order p^{kr} and characteristic p^k and let $K_o = \langle b \rangle \cup \{0\}$, denote the set of coset representatives of \mathcal{J} in R. Then it is easy to show that every element of R_o can be written uniquely as $\sum_{i=0}^k a_i p^i$, where $a_i \in K_o$.

2. CUBE ZERO RADICAL COMPLETELY PRIMARY FINITE RINGS

We now assume that R is a completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^3 = (0)$ and $\mathcal{J}^2 \neq (0)$. These rings were studied by the author who gave their constructions for all characteristics, and for details of the general background, the reader is referred to [2] and [3]. Since R is such that $\mathcal{J}^3 = (0)$, then by one of the above results, charR is either p, p^2 or p^3 . The ring R contains a coefficient subring R_o with $charR_o = charR$, and with R_o/pR_o equal to R/\mathcal{J} . Moreover, R_o is a Galois ring of the form $GR(p^{kr}, p^k), k = 1, 2$ or 3. Let $ann(\mathcal{J})$ denote the two-sided annihilator of \mathcal{J} in R. Of course $ann(\mathcal{J})$ is an ideal of R. Because $\mathcal{J}^3 = (0)$, it follows easily that $\mathcal{J}^2 \subseteq ann(\mathcal{J})$.

We know from the above results that $R = R_o \oplus \sum_{i=1}^{h} R_o m_i$, where $m_i \in \mathcal{J}$, and that there exist automorphisms $\sigma_i \in Aut(R_o)$ (i = 1, ..., h) such that $m_i r_o = r_o^{\sigma_i} m_i$, for all $r_o \in R_o$ and for all $i = 1, \ldots, h$; and the number h and the automorphisms $\sigma_1, \ldots, \sigma_h$ are uniquely determined by R and R_o . Again, because $\mathcal{J}^3 = (0)$, we have that $p^2 m_i = 0$, for all $m_i \in \mathcal{J}$. Further, $pm_i = 0$ for all $m_i \in ann(\mathcal{J})$. In particular, $pm_i = 0$ for all $m_i \in \mathcal{J}^2$.

2.1. A construction of rings of characteristic p^2 and p^3 . Let R_o be the Galois ring $GR(p^{2r}, p^2)$ or $GR(p^{3r}, p^3)$. Let s, d, t be integers with either $1 \le 1+t \le s^2$ or $1 \le d+t \le s^2$ if $charR_o = p^2$ and $1 \le 1+d+t \le s^2$ if $charR_o = p^3$. Let V be an R_o/pR_o -space which when considered as an R_o -module has a generating set $\{v_1, \ldots, v_t\}$ and let U be an R_o -module with an R_o -module generating set $\{u_1, \ldots, u_s\}$; and suppose that $d \ge 0$ of the u_i are such that $pu_i \neq 0$. Since R_o is commutative, we can think of them as both left and right R_o -modules.

Let (a_{ij}^l) , for $l = 0, 1, \ldots, t$ or $l = 1, 2, \ldots, d+t$ be $s \times s$ linearly independent matrices with entries in R_o/pR_o if $charR_o = p^2$ and $l = 0, 1, \ldots, d+t$ be $s \times s$ linearly independent matrices with entries in R_o/pR_o if $charR_o = p^3$.

On the additive group $R = R_o \oplus U \oplus V$ we define multiplication by the following relations:

$$u_i u_j = a_{ij}^o p^f + \sum_{l=1}^d a_{ij}^l p u_l + \sum_{k=1}^t a_{ij}^{d+t} v_k;$$

(2.1) $u_i v_k = v_k u_i = u_i u_j u_\lambda = p v_k = v_l v_k = v_k v_l = 0;$

 $u_i \alpha = \alpha u_i, \ v_k \alpha = \alpha v_k; \ (1 \le i, \ j, \ \lambda \le s; \ 1 \le l \le d; \ 1 \le k \le t);$

where α , a_{ij}^o , a_{ij}^l , $a_{ij}^{d+k} \in R_o/\mathcal{J}_o$, and f = 1 or 2, depending on whether $charR_o = p^2$ or p^3 .

By the above relations, R is a completely primary finite ring of characteristic p^2 or p^3 in which the maximal Galois subring lies in Z(R), the center of R, and with Jacobson radical $\mathcal{J} = pR \oplus U \oplus V$, $ann(\mathcal{J}) = \mathcal{J}^2$, $\mathcal{J}^2 = pR \oplus V$ or $\mathcal{J}^2 = pU \oplus V$ (if $charR = p^2$); $\mathcal{J}^2 = p^2R \oplus pU \oplus V$ (if $charR = p^3$), and $\mathcal{J}^3 = (0)$. We call (a_{ij}^l) the structural matrices of the ring R and the numbers p, n, r, s, d and t invariants of the ring R.

Throughout, we need the following result proved in [2, Theorem 6.1]

THEOREM 2.1. Let R be a ring. Then R is a completely primary finite ring of characteristic p^2 or p^3 in which the maximal Galois subring lies in Z(R), with maximal ideal \mathcal{J} such that $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$, annihilator of \mathcal{J} coincides with \mathcal{J}^2 if and only if R is isomorphic to one of the rings given by the relations in (2.1).

REMARK 2.2. We know that $R = R_o \oplus R_o m_1 \oplus \ldots \oplus R_o m_h$, where $m_i \in \mathcal{J}$; and that $\mathcal{J} = pR_o \oplus R_o m_1 \oplus \ldots \oplus R_o m_h$. Since $\mathcal{J}^3 = (0)$ and $\mathcal{J}^2 = ann(\mathcal{J})$, with $\mathcal{J}^2 \neq (0)$, we can write

$$\{m_1,\ldots,m_h\} = \{u_1,\ldots,u_s, v_1,\ldots,v_t\}$$

where, $u_1, \ldots, u_s \in \mathcal{J} - \mathcal{J}^2$ and $v_1, \ldots, v_t \in \mathcal{J}^2$, so that s + t = h.

In view of the above considerations and by 1.8 of $\left[2\right],$ the non-zero elements of

$$(2.2) \qquad \{1, p, u_1, \dots, u_s, pu_1, \dots, pu_s, v_1, \dots, v_t\}\$$

form a "basis" for R over K_o .

Since pm = 0, for all $m \in \mathcal{J}^2$, it is easy to check that if $charR = p^2$, then either

- (i) $p \in \mathcal{J}^2$; or
- (ii) $p \in \mathcal{J} \mathcal{J}^2$.

For clarity of our work, we consider the two cases separately in the rest of the paper.

REMARK 2.3. Suppose that $charR = p^2$ and p lies in \mathcal{J}^2 . In this case, (2.2) becomes

$$\{1, p, u_1, \ldots, u_s, v_1, \ldots, v_t\};$$

and by [2, Proposition 3.2], $1 \le 1 + t \le s^2$. Hence, every element of R may be written uniquely as

$$a_o + a_1 p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k; \ (a_o, \ a_1, \ b_i, \ c_k \in K_o);$$

and therefore,

$$u_i u_j = a_{ij}^o p + \sum_{k=1}^l a_{ij}^k v_k$$

where $a_{ij}^o, a_{ij}^k \in R_o/pR_o$.

REMARK 2.4. If $charR = p^2$ and p lies in $\mathcal{J} - \mathcal{J}^2$, suppose that $d \ge 0$ is the number of the elements pu_i in (2.2) which are not zero and suppose, without loss of generality, that pu_1, \ldots, pu_d are the d non-zero elements. Then, (2.2) becomes

$$\{1, p, u_1, \ldots, u_s, pu_1, \ldots, pu_d, v_1, \ldots, v_t\}$$

and by [2, Proposition 3.2], we have $1 \le d + t \le s^2$. Hence, every element of R may be written uniquely as

$$a_o + a_1 p + \sum_{i=1}^s b_i u_i + \sum_{l=1}^d c_l p u_l + \sum_{k=1}^t d_k v_k; \ (a_o, \ a_1, \ b_i, \ c_l, \ d_k \in K_o)$$

and

$$u_{i}u_{j} = \sum_{l=1}^{d} a_{ij}^{l} p u_{l} + \sum_{k=1}^{t} a_{ij}^{k+d} v_{k},$$

where a_{ij}^l , $a_{ij}^{k+d} \in R_o/pR_o$.

REMARK 2.5. If the characteristic of R is p^3 , the argument is similar to that given in the case where $charR = p^2$. However, in this case, $p \in \mathcal{J} - \mathcal{J}^2$ and $p^2 \in \mathcal{J}^2$ and an arbitrary element in R is of the form

$$a_o + a_1 p + a_2 p^2 + \sum_{i=1}^{s} b_i u_i + \sum_{l=1}^{d} c_l p u_l + \sum_{k=1}^{t} d_k v_k$$

and we define multiplication by

$$u_{i}u_{j} = a_{ij}^{o}p^{2} + \sum_{l=1}^{d} a_{lj}^{l}pu_{l} + \sum_{k=1}^{t} a_{ij}^{k+d}v_{k};$$

and the only parameters left in defining R are the $s \times s$ linearly independent structural matrices $A_l = (a_{ij}^l)$ over R_o/pR_o , for all $l = 0, 1, \ldots, t+1, \ldots, t+d$.

3. The group of automorphisms

First note that since R is generated by b, u_i and v_k , it is sufficient to give the images of these elements to completely determine the automorphisms. Next, any automorphism from R to R when reduced to R_o must fix R_o . So to determine this group, we first show that the Galois subring R_o of R and the ideal \mathcal{J}^2 given by $\mathcal{J}^2 = pU \oplus V$ (if $charR = p^2$, and $p \in \mathcal{J} - \mathcal{J}^2$), are invariant under any automorphism $\phi \in Aut(R)$. We then compute the image of the rest of the generators, by a fixed element of Aut(R).

LEMMA 3.1. Let $\phi \in Aut(R)$. Then $\phi(R_o)$ is a maximal Galois subring of R which is equal to R_o .

PROOF. Suppose there is an automorphism $\phi : R \to R$. It is obvious that $\phi(R_o)$ is a maximal Galois subring of R so that there exists an invertible element $x \in R$ such that $x\phi(R_o)x^{-1} = R_o$.

Now, consider the map $\psi : R \to R$ given by $r \mapsto x\phi(r)x^{-1}$. Then, clearly, ψ is an automorphism of R which sends R_o to itself.

LEMMA 3.2. Let $\phi \in Aut(R)$ and suppose that $charR = p^2$ and $p \in \mathcal{J} - \mathcal{J}^2$. Then $\phi(\mathcal{J}^2) = \mathcal{J}^2$.

PROOF. This follows easily since for any $v \in \mathcal{J}^2$, we have $\phi(v) \in \mathcal{J}^2$ because $[\phi(v)]^2 = \phi(v^2) = 0$.

REMARK 3.3. Following the above two results, we remark that if $charR = p^2$ and $p \in \mathcal{J}^2$, then $\phi(pR_o) \subset \mathcal{J}^2$; and if $charR = p^3$, then $\phi(p^2R_o) \subseteq \mathcal{J}^2$.

LEMMA 3.4. Let R be a ring of Theorem 2.1 and let $\phi \in Aut(R)$. Then for each $j = 1, \ldots, s$; each $k = 1, \ldots, t$; and each $l = 1, \ldots, d$;

$$\phi(u_j) = \sum_{i=1}^{2} a_{ij} p^i + \sum_{\mu=1}^{s} b_{\mu j} u_{\mu} + \sum_{l=1}^{d} c_{lj} p u_l + \sum_{k=1}^{t} d_{kj} v_k;$$

$$\phi(v_k) = \sum_{i=1}^{2} e_{ik} p^i + \sum_{\eta=1}^{d} g_{\eta k} p u_{\eta} + \sum_{\rho=1}^{t} f_{\rho k} v_{\rho},$$

and

$$\phi(pu_l) = a_{1l}p^2 + \sum_{\mu=1}^d b_{\mu l}pu_{\mu},$$

where a_{ij} , $b_{\mu l}$, c_{lj} , d_{kj} , e_{ik} , $g_{\eta k}$, $f_{\rho k} \in R_o/pR_o$; and for $r_o \in R_o$, $\phi(r_o) = r_o^{\sigma}$, for some $\sigma \in Aut(R_o)$.

PROOF. Since

$$u_j \in \mathcal{J} = pR_o \oplus U \oplus V = pR_o \oplus \sum_{j=1}^s R_o u_\mu \oplus \sum_{k=1}^t R_o v_k,$$

for all $i = 1, \ldots, s$; and

$$v_k \in \mathcal{J}^2 = pR_o \oplus V = pR_o \oplus \sum_{\rho=1}^t R_o v_\rho,$$

or

$$v_k \in \mathcal{J}^2 = pU \oplus V = \sum_{\eta=1}^d R_o p u_\eta \oplus \sum_{\rho=1}^t R_o v_\rho,$$

(if $charR = p^2$), or

$$v_k \in \mathcal{J}^2 = p^2 R_o \oplus pU \oplus V = p^2 R_o \oplus \sum_{\eta=1}^d R_o p u_\eta \oplus \sum_{\rho=1}^t R_o v_\rho,$$

(if $charR = p^3$) for all $\rho = 1, \ldots, t$ and all $\eta = 1, \ldots, d$; the result follows.

The last part may be deduced from Lemma 3.1 since $\phi|_{R_o} = \sigma \in Aut(R_o)$.

REMARK 3.5. In Lemma 3.4, if $charR = p^2$ and $p \in \mathcal{J}^2$, then the coefficients of p^2 , pu_l , pu_η , and pu_μ are all equal to zero; and if $charR = p^2$ and $p \in \mathcal{J} - \mathcal{J}^2$, the scalars a_{2j} , e_{ij} and the coefficient of p^2 , are all zero.

3.1. Notation. We first establish some notation that will be useful in the rest of the paper. So, let R be a ring of Theorem 2.1. If $\sigma \in Aut(R_o)$ and $x \in G_R$, the group of unit elements in R, define the mappings α_{σ} , ψ_x from R to R as follows:

$$\alpha_{\sigma} \left(\sum_{i=0}^{2} a_{i} p^{i} + \sum_{j=1}^{s} b_{j} u_{j} + \sum_{l=1}^{d} c_{l} p u_{l} + \sum_{k=1}^{t} d_{k} v_{k}\right)$$
$$= \sum_{i=0}^{2} a_{i}^{\sigma} p^{i} + \sum_{j=1}^{s} b_{j}^{\sigma} u_{j} + \sum_{l=1}^{d} c_{l}^{\sigma} p u_{l} + \sum_{k=1}^{t} d_{k}^{\sigma} v_{k},$$

and

$$\psi_x \left(\sum_{i=0}^2 a_i p^i + \sum_{j=1}^s b_j u_j + \sum_{l=1}^d c_l p u_l + \sum_{k=1}^t d_k v_k\right)$$
$$= x \left(\sum_{i=0}^2 a_i p^i + \sum_{j=1}^s b_j u_j + \sum_{l=1}^d c_l p u_l + \sum_{k=1}^t d_k v_k\right) x^{-1}.$$

Also, if

$$\psi(\sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k})$$
$$= \sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}\varphi(u_{j}) + \sum_{l=1}^{d} c_{l}p\varphi(u_{l}) + \sum_{k=1}^{t} d_{k}\phi(v_{k}),$$

where $\varphi \in Aut_{R_o/pR_o}(U)$ and $\phi \in Aut_{R_o/pR_o}(V)$, let $\psi \sigma = \psi \alpha_{\sigma}$; if

$$\beta(\sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k})$$

$$= \sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{i=1}^{2} \sum_{j=1}^{s} a_{ij}b_{j}p^{i} + \sum_{l=1}^{d} \sum_{j=1}^{s} c_{lj}b_{j}pu_{l}$$

$$+ \sum_{k=1}^{t} \sum_{j=1}^{s} b_{j}d_{kj}v_{k} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k},$$

where $a_{ij}, c_{lj}, d_{kj} \in R_o/pR_o$, let $\beta \sigma = \beta \alpha_{\sigma}$; if

$$\gamma(\sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k})$$
$$= \sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{l=1}^{d} a_{1l}c_{l}p^{2} + \sum_{k=1}^{t} d_{k}v_{k},$$

where $a_{1l} \in R_o/pR_o$, let $\gamma \sigma = \gamma \alpha_{\sigma}$; and if

$$\delta(\sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j} + \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k}) = \sum_{i=0}^{2} a_{i}p^{i} + \sum_{j=1}^{s} b_{j}u_{j}$$
$$+ \sum_{l=1}^{d} c_{l}pu_{l} + \sum_{k=1}^{t} d_{k}v_{k} + \sum_{\eta=1}^{d} \sum_{k=1}^{t} d_{k}g_{\eta k}pu_{\eta} + \sum_{i=1}^{2} \sum_{k=1}^{t} d_{k}e_{ik}p^{i},$$

where e_{ik} , $g_{\eta k} \in R_o/pR_o$, let $\delta \sigma = \delta \alpha_{\sigma}$. Finally, if $A = (a_{ij})$, define $A^{\sigma} = (a_{ij}^{\sigma})$.

C. J. CHIKUNJI

Due to some similarities of these rings, we present in this paper, detailed proofs of results on rings of characteristic p^2 in which $p \in \mathcal{J}^2$. The other two cases may be proved in a similar manner with minor modifications.

We start with the following.

3.2. Rings in which $p \in \mathcal{J}^2$.

THEOREM 3.6. Let R be a ring of Theorem 2.1 and of characteristic p^2 in which $p \in \mathcal{J}^2$, with the invariants p, n, r, s, and t. Then, $\psi \in Aut(R)$ if and only if

$$\psi(a_o + a_1p + \sum_{i=1}^{s} b_i u_i + \sum_{k=1}^{t} c_k v_k)$$

= $xa_o^{\sigma} x^{-1} + xa_1^{\sigma} x^{-1}p + \sum_{i=1}^{s} a_{1i} x b_i^{\sigma} x^{-1}p + \sum_{k=1}^{t} e_{1k} x c_k^{\sigma} x^{-1}p$
+ $\sum_{i=1}^{s} x b_i^{\sigma} x^{-1} \varphi(u_i) + \sum_{k=1}^{t} \sum_{i=1}^{s} d_{ki} x b_i^{\sigma} x^{-1} v_k + \sum_{k=1}^{t} x c_k^{\sigma} x^{-1} \phi(v_k),$

where $\sigma \in Aut(R_o)$, $x \in G_R$, $\varphi \in Aut_{R_o/pR_o}(U)$, $\phi \in Aut_{R_o/pR_o}(V)$; a_{1i} , d_{ki} , $e_{1k} \in R_o/pR_o$.

PROOF. Let $\psi \in Aut(R)$. Then there exists $x \in G_R$ such that $\psi(R_o) = xR_ox^{-1}$, and hence, $\psi(r) = xr^{\sigma}x^{-1}$, for any $r \in R_o$, for some automorphism σ of R_o . Since

$$R = \psi(R_o) \oplus \sum \psi(R_o)\psi(u_i) \oplus \sum \psi(R_o)\psi(v_k)$$

and conjugation is an automorphism of R,

$$R = R_o \oplus \sum R_o x^{-1} \psi(u_i) x \oplus \sum R_o x^{-1} \psi(v_k) x$$

But $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$, hence, $x^{-1}\psi(u_i)x = \alpha_i\psi(u_i)$ and $x^{-1}\psi(v_k)x = \beta_k\psi(v_k)$, where $\alpha_i, \ \beta_k \in R_o/pR_o$, for all $i = 1, \ldots, s; \ k = 1, \ldots, t$.

Thus,

$$R = R_o \oplus \sum R_o \alpha_i \psi(u_i) \oplus \sum R_o \beta_k \psi(v_k)$$

and hence,

$$R = R_o \oplus \sum R_o \psi(u_i) \oplus \sum R_o \psi(v_k).$$

Therefore, for any $i \in \{1, \ldots, s\}$ and any $k \in \{1, \ldots, t\}$, $\psi(u_i) = \varphi(u_i) + a_{1i}p + \sum d_{ki}v_k$ and $\psi(v_k) = e_{1k}p + \phi(v_k)$, where $\varphi \in Aut_{R_o/pR_o}(U)$; $\phi \in Aut_{R_o/pR_o}(V)$; and a_{1i} , d_{ki} , $e_{1k} \in R_o/pR_o$.

Conversely, let ψ be as defined above. We need to check that for every $r = a_o + a_1 p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k \in R$,

$$\begin{aligned} \theta: r &\mapsto a_o^{\sigma} + a_1^{\sigma} p + \sum_{i=1}^s a_{1i} b_i^{\sigma} p + \sum_{k=1}^t e_{1k} c_k^{\sigma} p + \\ &\sum_{i=1}^s b_i^{\sigma} \varphi(u_i) + \sum_{k=1}^t \sum_{i=1}^s d_{ki} b_i^{\sigma} v_k + \sum_{k=1}^t c_k^{\sigma} \phi(v_k), \end{aligned}$$

where $\varphi(u_i) = x^{-1}\theta(u_i)x$, and $\phi(v_k) = x^{-1}\theta(v_k)x$, is an automorphism of R. So, let $s = d_o + d_1p + \sum_{i=1}^{s} e_iu_i + \sum_{k=1}^{t} f_kv_k$ be another element in R. Then,

$$\theta: s \mapsto d_o^{\sigma} + d_1^{\sigma}p + \sum_{i=1}^s a_{1i}e_i^{\sigma}p + \sum_{k=1}^t e_{1k}f_k^{\sigma}p + \sum_{i=1}^s e_i^{\sigma}\varphi(u_i) + \sum_{k=1}^t \sum_{i=1}^s d_{ki}e_i^{\sigma}v_k + \sum_{k=1}^t f_k^{\sigma}\phi(v_k).$$

Now,

$$\begin{split} \theta(r)\theta(s) &= a_o^{\sigma}d_o^{\sigma} + [a_o^{\sigma}d_1^{\sigma} + a_1^{\sigma}d_o^{\sigma}]p + \sum_{i=1}^s [a_o^{\sigma}a_{1i}e_i^{\sigma} + a_{1i}b_i^{\sigma}d_o^{\sigma}]p \\ &+ \sum_{k=1}^t [a_o^{\sigma}e_{1k}f_k^{\sigma} + e_{1k}c_k^{\sigma}d_o^{\sigma}]p + \sum_{i=1}^s [a_o^{\sigma}e_i^{\sigma} + b_i^{\sigma}d_o^{\sigma}]\varphi(u_i) \\ &+ \sum_{k=1}^t \sum_{i=1}^s [a_o^{\sigma}d_{ki}e_i^{\sigma} + d_{ki}b_i^{\sigma}d_o^{\sigma}]v_k + \sum_{k=i}^t [a_o^{\sigma}f_k^{\sigma} + c_k^{\sigma}d_o^{\sigma}]\phi(v_k) \\ &+ \sum_{i,j=1}^s b_i^{\sigma}e_j^{\sigma}\varphi(u_i)\varphi(u_j). \end{split}$$

On the other hand,

$$\begin{aligned} \theta(rs) &= (a_o d_o)^{\sigma} + (a_o d_1 + a_1 d_o)^{\sigma} p + \sum_{i=1}^s a_{1i} (a_o e_i + b_i d_o)^{\sigma} p \\ &+ \sum_{k=1}^t e_{1k} (a_o f_k + c_k d_o)^{\sigma} p + \sum_{i=1}^s (a_o e_i + b_i d_o)^{\sigma} \varphi(u_i) \\ &+ \sum_{k=1}^t \sum_{i=1}^s d_{ki} (a_o e_i + b_i d_o)^{\sigma} v_k + \sum_{k=1}^t (a_o f_k + c_k d_o)^{\sigma} \phi(v_k) \\ &+ \sum_{i,j=1}^s (b_i e_j a_{ij}^o)^{\sigma} p + \sum_{k=1}^t \sum_{i,j=1}^s (b_i e_j a_{ij}^k)^{\sigma} \phi(v_k). \end{aligned}$$

From the above equalities, we deduce that

(3.1)
$$(a_{ij}^{o})^{\sigma}p + \sum_{k=1}^{t} (a_{ij}^{k})^{\sigma}\phi(v_k) = \sum_{i,j=1}^{s} \varphi(u_i)\varphi(u_j).$$

Now, it is obvious that $\psi = \psi_x \theta$ and hence, ψ is an automorphism of R.

From the assumptions that $\sigma \in Aut(R_o)$, $x \in G_R$, $\varphi \in Aut_{R_o/pR_o}(U)$ and $\phi \in Aut_{R_o/pR_o}(V)$ one obtains the following: $\varphi(u_i) = \sum_{\nu=1}^{s} b_{\nu i} u_{\nu}$ and $\phi(v_k) = \sum_{\nu=1}^{t} c_{\rho k} v_{\rho}$, with $b_{\nu i}$, $c_{\rho k} \in R_o/pR_o$.

Hence, (3.1) implies that

$$(a_{ij}^{o})^{\sigma}p + \sum_{\rho,k=1}^{t} c_{\rho k} (a_{ij}^{k})^{\sigma} v_{\rho} = \sum_{\rho=0}^{t} \sum_{\nu,\mu=1}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho} v_{\rho}$$

$$\sum_{\substack{\rho,k=0\\ r=e_{11}}}^{t} c_{\rho k} (a_{ij}^k)^{\sigma} v_{\rho} = \sum_{\substack{\rho=0\\ r=e_{12}}}^{t} \sum_{\substack{\nu,\mu=1\\ r=e_{12}}}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho} v_{\rho}$$

where $c_{oo} = 1$, $c_{1k} = e_{1k}$ and $v_o = p$. It follows that

(3.2)
$$\sum_{\nu,\mu=1}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho} = \sum_{k=0}^{t} c_{\rho k} \psi(a_{ij}^{k}) \ (\rho = 0, \ 1, \dots, t).$$

Hence, in matrix form, (3.2) implies that

$$B^{T}A_{\rho}B = \sum_{k=0}^{t} c_{\rho k}A_{k}^{\sigma} \ (\rho = 0, \ 1, \dots, t),$$

where $\sigma \in Aut(R_o)$, $B \in GL(s, R_o/pR_o)$ and $C = (c_{k\rho}) \in GL(1+t, R_o/pR_o)$. Conversely, suppose there exist $\sigma \in Aut(R_o)$, $B \in GL(s, R_o/pR_o)$ and

 $C = (c_{\rho k}) \in GL(1+t, R_o/pR_o)$, with

$$B^{T}A_{\rho}B = \sum_{k=0}^{t} c_{\rho k}A_{k}^{\sigma} \ (\rho = 0, \ 1, \dots, t),$$

where $c_{oo} = 1$, $c_{1k} = e_{1k}$.

Consider the map $\psi: R \to R$ defined by

$$\psi(a_o + a_1 p + \sum_i b_i u_i \sum_k c_k v_k) = a_o^{\sigma} + [a_1^{\sigma} + \sum_i a_{1i} b_i^{\sigma} + \sum_k e_{1k} c_k^{\sigma}]p + \sum_{\nu} \sum_i b_i^{\sigma} b_{\nu i} u_{\nu} + \sum_{\rho} [\sum_i b_i^{\sigma} d_{\rho i} + \sum_k c_k^{\sigma} c_{\rho k}] v_{\rho}.$$

Then it is routine to verify that ψ is a homomorphism from R to R and that it preserves the identity element.

34

But $Ker\psi$ consists of all elements

$$a_o + a_1 p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k \in R$$

such that

$$a_{o}^{\sigma} + [a_{1}^{\sigma} + \sum_{i} a_{1i}b_{i}^{\sigma} + \sum_{k} e_{1k}c_{k}^{\sigma}]p + \sum_{\nu} \sum_{i} b_{i}^{\sigma}b_{\nu i}u_{\nu} + \sum_{\rho} [\sum_{i} b_{i}^{\sigma}d_{\rho i} + \sum_{k} c_{k}^{\sigma}c_{\rho k}]v_{\rho} = 0;$$

which implies that

$$a_o^{\sigma} + [a_1^{\sigma} + \sum_i a_{1i}b_i^{\sigma} + \sum_k e_{1k}c_k^{\sigma}]p = 0$$
$$\sum_{\nu} \sum_i b_i^{\sigma}b_{\nu i}u_{\nu} = 0$$

and

$$\sum_{\rho} \left[\sum_{i} b_i^{\sigma} d_{\rho i} + \sum_{k} c_k^{\sigma} c_{\rho k}\right] v_{\rho} = 0.$$

Now,

$$\sum_{\nu} \sum_{i} b_{i}^{\sigma} b_{\nu i} u_{\nu} = 0 \text{ implies that } \sum_{i} b_{i}^{\sigma} b_{\nu i} = 0, \text{ for every } \nu = 1, \dots, s;$$

since $\{u_i, \ldots, u_s\}$ is linearly independent over R_o/pR_o . Further, $(b_{\nu i})$ is invertible, so that the homogeneous system $\sum_i b_i^{\sigma} b_{\nu i} = 0$; $\nu = 1, \ldots, s$, has the trivial solution as its unique solution and hence, $b_i = 0$ (for every $i = 1, \ldots, s$) since $\sigma \in Aut(R_o)$.

Similarly, $c_k = 0$ for every k = 1, ..., t since $(c_{\rho k})_{t \times t}$ is invertible. Hence,

$$a_o^{\sigma} + [a_1^{\sigma} + \sum_i a_{1i}b_i^{\sigma} + \sum_k e_{1k}c_k^{\sigma}]p = 0,$$

with $c_k = 0$ for every $k = 1, \ldots, t$ and $b_i = 0$ for every $i = 1, \ldots, s$ implies that $a_o^{\sigma} + a_1^{\sigma} p = 0$, so that $a_1^{\sigma} p = -a_o^{\sigma}$. But $a_1^{\sigma} p \in pR_o$, implying that $a_o^{\sigma} \in pR_o$, a contradiction, since $a_o \in K_o$. Hence, $a_o = a_1 = 0$.

Hence, $Ker\psi = (0)$ and therefore, ψ is injective, and since R is finite, ψ is also surjective. Thus, ψ is an automorphism of R.

We have thus proved the following:

PROPOSITION 3.7. Let R be a ring of Theorem 2.1 and of characteristic p^2 with the invariants p, n, r, s, t. Then ψ is an automorphism of R if and only if there exist $\sigma \in Aut(R_o)$, $B \in GL(s, R_o/pR_o)$ and $C = (c_{\rho k}) \in GL(1 + t, R_o/pR_o)$ such that $B^T A_{\rho}B = \sum_{k=0}^{t} c_{\rho k}A_k^{\sigma}$, where A_{ρ} and A_k are structural matrices for R and $c_{oo} = 1$, $c_{1k} = e_{1k}$.

Thus, the set of elements $\sigma \in Aut(R_o/pR_o)$, $C = (c_{\rho k}) \in GL(1 + t, R_o/pR_o)$, $B \in GL(s, R_o/pR_o)$ and $1 + \mathcal{J} \cong pR_o \oplus U \oplus V$, determines all the automorphisms of the ring R.

Consider the set of equations $B^T A_{\rho} B = \sum_{k=1}^{t} c_{\rho k} A_k^{\sigma}$ given in Proposition 3.7, with $B = (b_{ij}) \in GL(s, R_o/pR_o)$. Then, it is easy to see that $B = (b_{ij})$ is the transition matrix between the bases $(\overline{u_i})$ of $\mathcal{J}/\mathcal{J}^2$. Equally, $C = (c_{\rho k})$ is the transition matrix between the bases (v_k) $(k = 0, 1, \ldots, t)$ of \mathcal{J}^2 . By calculating $u_{\nu}u_{\mu}$ (the images of the u_i under ψ) and comparing coefficients of (v_{ρ}) $(\rho = 0, 1, \ldots, t)$ (the images of the v_k under ψ) we obtain equations, which in matrix form, are $B^T A_{\rho} B = \sum_{k=1}^{t} c_{\rho k} A_k^{\sigma}$.

The problem of determining the groups of automorphisms of our rings amounts to classifying (1 + t)-tuples of linearly independent matrices A_o , A_1, \ldots, A_t under the above relation, B, C being arbitrary invertible matrices, σ being an arbitrary automorphism and $1 + \mathcal{J}$ being the normal subgroup of G_R of order $p^{(n-1)r}$.

Let \mathcal{A} be the set of all (1 + t)-tuples (A_o, A_1, \ldots, A_t) of $s \times s$ matrices over R_o/pR_o . The group $GL(s, R_o/pR_o)$ acts on \mathcal{A} by "congruence":

$$(A_o, A_1, \ldots, A_t) \cdot B = (B^T A_o B, B^T A_1 B, \ldots, B^T A_t B)$$

and on the left via

$$C \cdot (A_o, A_1, \dots, A_t)$$

= $(c_{1o}A_o^{\sigma} + c_{11}A_1^{\sigma} + \dots + c_{1t}A_t^{\sigma}, \dots, c_{to}A_o^{\sigma} + c_{t1}A_1^{\sigma} + \dots + c_{tt}A_t^{\sigma}),$

where $C = (c_{\rho k})$. Thus, these two actions are permutable and define a (left) action of $G = GL(s, R_o/pR_o) \times GL(1 + t, R_o/pR_o)$ on \mathcal{A} :

$$(B, C) \cdot (A_o, A_1, \dots, A_t) = C \cdot (A_o^{\sigma}, \dots, A_t^{\sigma}) \cdot B^{-1},$$

for some fixed automorphism σ . By restriction, G acts on the subset Y consisting of (1 + t)-tuples A_0, A_1, \ldots, A_t , linearly independent. This amounts to studying the "congruence" action (via B) on $GL(s, R_o/pR_o)$ on the set \mathcal{Y} of 1 + t-dimensional subspaces of $\mathbb{M}_{s \times s}(R_o/pR_o)$, C just representing a change of basis in a given space. In the same way, the whole action of G on \mathcal{A} may be represented as an action of $GL(1 + t, R_o/pR_o)$ on the set \mathbf{A} of subspaces of dimension $\leq 1 + t$. We may call two (1 + t)-tuples in the same G-orbit as equivalent.

3.3. Rings in which $p \in \mathcal{J} - \mathcal{J}^2$.

THEOREM 3.8. Let R be a ring of Theorem 2.1 and of characteristic p^2 in which $p \in \mathcal{J} - \mathcal{J}^2$, with the invariants p, n, r, s, t, and d. Then, $\psi \in Aut(R)$

if and only if

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{l=1}^d c_l p u_l + \sum_{k=1}^t d_k v_k) = x a_o^\sigma x^{-1} + x a_1^\sigma x^{-1} p$$
$$+ \sum_{i=1}^s x b_i^\sigma x^{-1} \varphi(u_i) + \sum_{l=1}^d \sum_{i=1}^s b_{li} x b_i^\sigma x^{-1} p u_l + \sum_{\nu=1}^t \sum_{i=1}^s c_{\nu i} x b_i^\sigma x^{-1} v_{\nu}$$
$$+ \sum_{l=1}^d x c_l^\sigma x^{-1} p \varphi(u_l) + \sum_{k=1}^t x d_k^\sigma x^{-1} \phi(v_k) + \sum_{\eta=1}^d \sum_{k=1}^t d_{\eta k} x d_k^\sigma x^{-1} p u_l,$$

where $\sigma \in Aut(R_o)$, $x \in G_R$, $\varphi \in Aut_{R_o/pR_o}(U)$, $\phi \in Aut_{R_o/pR_o}(V)$; b_{li} , $c_{\nu i}$, $d_{\eta k} \in R_o/pR_o$.

Like we did for Theorem 3.6, we deduce from this the following:

PROPOSITION 3.9. Let R be a ring of characteristic p^2 in which R_o lies in the center, with the invariants p, n, r, s, t, d and in which p does not lie in \mathcal{J}^2 . Then ψ is an automorphism of R if and only if there exist $\sigma \in Aut(R_o)$, $B \in GL(s, R_o/pR_o)$ and $C = (c_{\rho k}) \in GL(t + d, R_o/pR_o)$ such that $B^T A_{\rho} B =$ $\sum_{k=1}^{t+d} c_{\rho k} A_k^{\sigma}$, where A_k and A_{ρ} are structural matrices for R.

3.4. Rings of characteristic p^3 . We now consider the case of rings of Theorem 2.1 and of characteristic p^3 .

THEOREM 3.10. Let R be a ring of Theorem 2.1 and of characteristic p^3 with the invariants p, n, r, s, t, d. Then $\psi \in Aut(R)$ if and only if

$$\begin{split} \psi(a_o + a_1 p + a_2 p^2 + \sum_{i=1}^s b_i u_i + \sum_{l=1}^d c_l p u_l + \sum_{k=1}^t d_k v_k) \\ = & x a_o^\sigma x^{-1} + x a_1^\sigma x^{-1} p + x a_2^\sigma x^{-1} p^2 + \sum_{i=1}^s b_{oi} x b_i^\sigma x^{-1} p^2 + \sum_{l=1}^d g_{ol} x c_l^\sigma x^{-1} p^2 \\ & + \sum_{k=1}^t e_{ok} x d_k^\sigma x^{-1} p^2 + \sum_{i=1}^s x b_i^\sigma x^{-1} \varphi(u_i) + \sum_{l=1}^d \sum_{i=1}^s b_{li} x b_i^\sigma x^{-1} p u_l \\ & + \sum_{\nu=1}^t \sum_{i=1}^s c_{\nu i} x b_i^\sigma x^{-1} v_\nu + \sum_{l=1}^d x c_l^\sigma x^{-1} p \varphi(u_l) + \sum_{k=1}^t x d_k^\sigma x^{-1} \phi(v_k) \\ & + \sum_{\eta=1}^d \sum_{k=1}^t d_{\eta k} x d_k^\sigma x^{-1} p u_\eta, \end{split}$$

where $\sigma \in Aut(R_o)$, $x \in G_R$, $\varphi \in Aut_{R_o/pR_o}(U)$, $\phi \in Aut_{R_o/pR_o}(V)$; b_{oi} , e_{ok} , g_{ol} , b_{li} , $c_{\nu i}$, $d_{\eta k} \in R_o/pR_o$.

From this we deduce the following matrix version of the result.

PROPOSITION 3.11. Let R be a ring of Theorem 2.1 and of characteristic p^3 with the invariants p, n, r, s, t, d. Then ψ is an automorphism of R if and only if there exist $\sigma \in Aut(R_o)$, $B \in GL(s, R_o/pR_o)$ and $C = (c_{\rho k}) \in GL(1 + t + d, R_o/pR_o)$ such that $B^T D_{\rho}B = \sum_{k=0}^{t+d} c_{\rho k}A_k^{\sigma}$, where A_k and A_{ρ} are structural matrices for R.

4. The main results

We now describe explicitly, the group of automorphisms of the ring R. In what follows, we provide the proof for the case when the characteristic of R is p^2 and $p \in \mathcal{J}^2$; while the proofs for the other cases may be obtained through minor modifications of the proof of Theorem 4.1.

THEOREM 4.1. Let R be a ring of Theorem 2.1, of characteristic p^2 in which $p \in \mathcal{J}^2$ and with the invariants p, n, r, s, t. Then

$$Aut(R) \cong [\mathbb{M}_{(1+t)\times s}(R_o/pR_o) \times \mathbb{M}_{1\times t}(R_o/pR_o) \times (pR_o \oplus U \oplus V)] \times_{\theta_2}$$
$$[Aut(R_o) \times_{\theta_1} (GL(s, R_o/pR_o) \times GL(t, R_o/pR_o))].$$

PROOF. Let G be the subgroup of Aut(R) which contains all the automorphisms ψ defined by

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = a_o^\sigma + a_1^\sigma p + \sum_{i=1}^s b_i^\sigma \varphi(u_i) + \sum_{k=1}^t c_k^\sigma \phi(v_k),$$

where $\sigma \in Aut(R_o), \varphi \in Aut_{R_o/pR_o}(U)$ and $\phi \in Aut_{R_o/pR_o}(V)$.

Let G_0 be the subgroup of G which contains all the automorphisms α_{σ} such that

$$\alpha_{\sigma}(a_{o} + a_{1}p + \sum_{i=1}^{s} b_{i}u_{i} + \sum_{k=1}^{t} c_{k}v_{k}) = a_{o}^{\sigma} + a_{1}^{\sigma}p + \sum_{i=1}^{s} b_{i}^{\sigma}u_{i} + \sum_{k=1}^{t} c_{k}^{\sigma}v_{k},$$

where $\sigma \in Aut(R_o)$. Then $G_0 \cong Aut(R_o)$. Let G_1 be the subgroup of G which contains all the automorphisms ψ such that

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = a_o + a_1p + \sum_{i=1}^s b_i \varphi(u_i) + \sum_{k=1}^t c_k v_k,$$

where $\varphi \in Aut_{R_o/pR_o}(U)$; and let G_2 be the subgroup of G which contains all the automorphisms ψ such that

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k \phi(v_k),$$

where $\phi \in Aut_{R_o/pR_o}(V)$. Then G_1 and G_2 are subgroups of G and $G_1 \times G_2$ is a direct product. Moreover, $G_1 \cong Aut_{R_o/pR_o}(U) \cong GL(s, R_o/pR_o)$ and $G_2 \cong Aut_{R_o/pR_o}(V) \cong GL(t, R_o/pR_o)$. Finally, let H be the subgroup of Aut(R) containing all the automorphisms ψ defined by

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = x(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{i=1}^s b_i a_{1i}p + \sum_{\rho=1}^t \sum_{i=1}^s b_i d_{\rho i} v_\rho + \sum_{k=1}^t c_k v_k + \sum_{k=1}^t c_k e_{1k}p)x^{-1},$$

where $x \in 1 + \mathcal{J}$, a_{1i} , $d_{\rho i}$, $e_{1k} \in R_o/pR_o$; H_1 be the subgroup of H which contains all the automorphisms ψ defined by

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{\rho=0}^t \sum_{i=1}^s b_i d_{\rho i}p + \sum_{k=1}^t c_k v_k,$$

where $d_{\rho i} \in R_o/pR_o$ and $v_o = p$; H_2 be the subgroup of H which contains all the automorphisms ψ such that

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k + \sum_{k=1}^t c_k e_{1k}p,$$

where $e_{1k} \in R_o/pR_o$; and let H_3 be the subgroup of H which contains all the automorphisms ψ such that

$$\psi(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k) = x(a_o + a_1p + \sum_{i=1}^s b_i u_i + \sum_{k=1}^t c_k v_k)x^{-1},$$

where $x \in 1 + \mathcal{J} \subset G_R$. Then it is easy to check that the direct product $H = H_1 \times H_2 \times H_3$ and the semidirect product $G = (G_1 \times G_2) \times_{\theta_2} G_0$ are subgroups of Aut(R), where if $\varphi \in G_1 \times G_2$ and $\alpha_\sigma \in G_0$, then $\theta_2(\alpha_\sigma)(\varphi) = \varphi\sigma$.

Let $\varphi \in H \cap G$. Since every element of H is either fixing R_o elementwise or sending R_o to another maximal Galois subring of R and $\varphi \in G$, φ fixes R_o elementwise.

Let $\varphi = \beta \psi_x$, where $\beta \in H_1 \times H_2$ and $\psi_x \in H_3$. Since $x \in 1 + \mathcal{J}$, clearly, $\varphi = \beta \psi_x = \beta$. Since $\beta \in G$, $\beta(U) = U$ and $\beta(V) = V$. But the only element of $H_1 \times H_2$ which fixes U and V is the identity. Thus, $\varphi = id_R$ and hence, $H \cap G = id_R$. Now, it is easy to see that $Aut(R) = H \times_{\theta_1} G$, where if $\beta \psi_x \in H_1 \times H_2$ and $\varphi \alpha_\sigma \in G$, then $\theta_1(\varphi \alpha_\sigma)(\beta \psi_x) = \beta_\sigma \varphi_{\psi \alpha_\sigma}(x)$. It is trivial to check that the mappings $g : H_1 \mapsto \mathbb{M}_{(1+t)\times s}(R_o/pR_o)$ given by $g(\beta_M) = \sum_{\rho=0}^t d_{\rho i} v_\rho$ and $h : H_2 \mapsto \mathbb{M}_{1 \times t}(R_o/pR_o)$ given by $h(\beta_M) = e_{1k}p$, are isomorphisms, and hence, combining with $f : H_3 \to pR_o \oplus U \oplus V$, we obtain an isomorphism $H \cong \mathbb{M}_{(1+t)\times s}(R_o/pR_o) \times \mathbb{M}_{1 \times t}(R_o/pR_o) \times (pR_o \oplus U \oplus V)$. Hence,

$$Aut(R) \cong [\mathbb{M}_{(1+t)\times s}(R_o/pR_o) \times \mathbb{M}_{1\times t}(R_o/pR_o) \times (pR_o \oplus U \oplus V)] \times_{\theta_2} [Aut(R_o) \times_{\theta_1} (GL(s, R_o/pR_o) \times GL(t, R_o/pR_o))],$$

where

$$\theta_1(\sigma)(B, C) \cdot (A_0, \dots, A_t) = C \cdot (A_o^{\sigma}, \dots, A_t^{\sigma}) \cdot C^{-1};$$

$$\theta_2(\sigma, B, C)(A_0, \dots, A_t) = (B^T A_0 B, B^T A_1 B, \dots, B^T A_t B)$$

THEOREM 4.2. Let R be a ring of Theorem 2.1, of characteristic p^2 in which $p \in \mathcal{J} - \mathcal{J}^2$ and with the invariants p, n, r, s, t, d. Then

$$Aut(R) \cong [\mathbb{M}_{(d+t)\times s}(R_o/pR_o) \times \mathbb{M}_{d\times t}(R_o/pR_o) \times (pR_o \oplus U \oplus V)] \times_{\theta_2} [Aut(R_o) \times_{\theta_1} (GL(s, R_o/pR_o) \times GL(t, R_o/pR_o) \times GL(d, R_o/pR_o))].$$

PROOF. Modify the proof of Theorem 4.1.

THEOREM 4.3. Let R be a ring of Theorem 2.1 and of characteristic p^3 with the invariants p, n, r, s, t, d. Then Aut(R) is isomorphic to

$$[\mathbb{M}_{(1+d+t)\times s}(K) \times \mathbb{M}_{(1+t)\times d}(K) \times \mathbb{M}_{1\times d}(K) \times (pR_o \oplus U \oplus V)] \times_{\theta_2} [Aut(R_o) \times_{\theta_1} (GL(s,K) \times GL(t,K) \times GL(d,K))];$$

where $K = R_o/pR_o$.

PROOF. Similar to Theorem 4.1 with some modifications.

References

- C. J. Chikunji, Automorphisms of completely primary finite rings of characteristic p, Colloq. Math. 111 (2008), 91-113.
- [2] C. J. Chikunji, On a Class of Finite Rings, Comm. Algebra 27(1999), 5049-5081.
- [3] C. J. Chikunji, A classification of cube zero radical completely primary finite rings, Demonstratio Math. 38 (2005), 7-20.
- [4] W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33(1972), 25-28.
- [5] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.

C. J. Chikunji Department of Basic Sciences Botswana College of Agriculture Gaborone Botswana *E-mail*: jchikunj@bca.bw

Received: 5.7.2007. Revised: 16.8.2007.