AUTOMORPHISM GROUPS OF FINITE RINGS OF CHARACTERISTIC p^{2} AND p^{3}

Chiteng'a John Chikunji
Botswana College of Agriculture, Botswana

Abstract

In this paper we describe the group of automorphisms of a completely primary finite ring R of characteristic p^{2} or p^{3} with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$; the annihilator of \mathcal{J} coincides with \mathcal{J}^{2}; and the maximal Galois (coefficient) subring R_{o} of R lies in the center of R.

1. Introduction

Throughout this paper we will assume that all rings are finite, associative (but generally not commutative) with identities, denoted by $1 \neq 0$, that ring homomorphisms preserve 1 , a ring and its subrings have the same 1 and that modules are unital. Recall that an Artinian ring R with radical \mathcal{J} is called primary if R / \mathcal{J} is simple and is called completely primary if R / \mathcal{J} is a division ring. The object of this paper is to describe explicitly, the group of automorphisms of a completely primary finite ring R of characteristic p^{2} or p^{3} such that if \mathcal{J} is the Jacobson radical of R, then $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^{2} and the coefficient subring R_{o} lies in the center of R. The automorphisms of R are determined by their images on the generators of the additive group of R and on the invertible element b of order $p^{r}-1$ of the Galois subring R_{o} of R. This supplements the author's earlier work [1] on rings of characteristic p. We freely use the definitions and notations introduced in $[1,2,3,5]$.

Let R be a completely primary finite ring, \mathcal{J} the set of all zero divisors in R, p a prime, k, n and r be positive integers. Then the following results will be assumed (see [5]): $|R|=p^{n r}, \mathcal{J}$ is the Jacobson radical of $R, \mathcal{J}^{n}=(0)$,

[^0]$|\mathcal{J}|=p^{(n-1) r}, R / \mathcal{J} \cong G F\left(p^{r}\right)$, the finite field of p^{r} elements and char $R=p^{k}$, where $1 \leq k \leq n$; the group of units G_{R} is a semi-direct product $G_{R}=$ $(1+\mathcal{J}) \times{ }_{\theta}\langle b\rangle$, of its normal subgroup $1+\mathcal{J}$ of order $p^{(n-1) r}$ by a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$. If $n=k$, it is known that, up to isomorphism, there is precisely one completely primary ring of order $p^{r k}$ having characteristic p^{k} and residue field $G F\left(p^{r}\right)$. It is called the Galois ring $G R\left(p^{r k}, p^{k}\right)$ and a concrete model is the quotient $\mathbb{Z}_{p^{k}}[X] /(f)$, where f is a monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases are $G R\left(p^{n}, p^{n}\right)=\mathbb{Z}_{p^{n}}$ and $G R\left(p^{n}, p\right)=\mathbb{F}_{p^{n}}$. In fact, $R=\mathbb{Z}_{p^{n}}[b]$, where b is an element of R of multiplicative order $p^{r}-1$; $\mathcal{J}=p R$ and $\operatorname{Aut}(R) \cong \operatorname{Aut}(R / p R)$ (see [5, Proposition 2]).

Let R be a completely primary finite ring, $|R / \mathcal{J}|=p^{r}$ and $\operatorname{char} R=p^{k}$. Then it can be deduced from [4] that R has a coefficient subring R_{o} of the form $G R\left(p^{k r}, p^{k}\right)$ which is clearly a maximal Galois subring of R. Moreover, if R_{o}^{\prime} is another coefficient subring of R then there exists an invertible element x in R such that $R_{o}^{\prime}=x R_{o} x^{-1}$ (see [5, Theorem 8]). Furthermore, there exist $m_{1}, \ldots, m_{h} \in \mathcal{J}$ and $\sigma_{1}, \ldots, \sigma_{h} \in \operatorname{Aut}\left(R_{o}\right)$ such that $R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}$ (as R_{o}-modules), $m_{i} r_{o}=r_{o}^{\sigma_{i}} m_{i}$, for all $r_{o} \in R_{o}$ and any $i=1, \ldots, h$ (use the decomposition of $R_{o} \otimes_{\mathbb{Z}} R_{o}$ in terms of $\operatorname{Aut}\left(R_{o}\right)$ and apply the fact that R is a module over $R_{o} \otimes_{\mathbb{Z}} R_{o}$). Moreover, $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{o}. We call σ_{i} the automorphism associated with m_{i} and $\sigma_{1}, \ldots, \sigma_{h}$ the associated automorphisms of R with respect to R_{o}.

Now, let $R_{o}=\mathbb{Z}_{p^{k}}[b]$ be a coefficient subring of R of order $p^{k r}$ and characteristic p^{k} and let $K_{o}=\langle b\rangle \cup\{0\}$, denote the set of coset representatives of \mathcal{J} in R. Then it is easy to show that every element of R_{o} can be written uniquely as $\sum_{i=0}^{k} a_{i} p^{i}$, where $a_{i} \in K_{o}$.

2. Cube zero radical completely primary finite Rings

We now assume that R is a completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. These rings were studied by the author who gave their constructions for all characteristics, and for details of the general background, the reader is referred to [2] and [3]. Since R is such that $\mathcal{J}^{3}=(0)$, then by one of the above results, char R is either p, p^{2} or p^{3}. The ring R contains a coefficient subring R_{o} with $\operatorname{char} R_{o}=\operatorname{char} R$, and with $R_{o} / p R_{o}$ equal to R / \mathcal{J}. Moreover, R_{o} is a Galois ring of the form $G R\left(p^{k r}, p^{k}\right), k=1,2$ or 3 . Let $\operatorname{ann}(\mathcal{J})$ denote the two-sided annihilator of \mathcal{J} in R. Of course $\operatorname{ann}(\mathcal{J})$ is an ideal of R. Because $\mathcal{J}^{3}=(0)$, it follows easily that $\mathcal{J}^{2} \subseteq \operatorname{ann}(\mathcal{J})$.

We know from the above results that $R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i}$, where $m_{i} \in \mathcal{J}$, and that there exist automorphisms $\sigma_{i} \in \operatorname{Aut}\left(R_{o}\right)(i=1, \ldots, h)$ such that
$m_{i} r_{o}=r_{o}^{\sigma_{i}} m_{i}$, for all $r_{o} \in R_{o}$ and for all $i=1, \ldots, h$; and the number h and the automorphisms $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{o}. Again, because $\mathcal{J}^{3}=(0)$, we have that $p^{2} m_{i}=0$, for all $m_{i} \in \mathcal{J}$. Further, $p m_{i}=0$ for all $m_{i} \in \operatorname{ann}(\mathcal{J})$. In particular, $p m_{i}=0$ for all $m_{i} \in \mathcal{J}^{2}$.
2.1. A construction of rings of characteristic p^{2} and p^{3}. Let R_{o} be the Galois $\operatorname{ring} G R\left(p^{2 r}, p^{2}\right)$ or $G R\left(p^{3 r}, p^{3}\right)$. Let s, d, t be integers with either $1 \leq 1+t \leq$ s^{2} or $1 \leq d+t \leq s^{2}$ if char $R_{o}=p^{2}$ and $1 \leq 1+d+t \leq s^{2}$ if $\operatorname{char} R_{o}=p^{3}$. Let V be an $R_{o} / p R_{o}$-space which when considered as an R_{o}-module has a generating set $\left\{v_{1}, \ldots, v_{t}\right\}$ and let U be an R_{o}-module with an R_{o}-module generating set $\left\{u_{1}, \ldots, u_{s}\right\}$; and suppose that $d \geq 0$ of the u_{i} are such that $p u_{i} \neq 0$. Since R_{o} is commutative, we can think of them as both left and right R_{o}-modules.

Let $\left(a_{i j}^{l}\right)$, for $l=0,1, \ldots, t$ or $l=1,2, \ldots, d+t$ be $s \times s$ linearly independent matrices with entries in $R_{o} / p R_{o}$ if $\operatorname{char} R_{o}=p^{2}$ and $l=0,1, \ldots, d+t$ be $s \times s$ linearly independent matrices with entries in $R_{o} / p R_{o}$ if $\operatorname{char} R_{o}=p^{3}$.

On the additive group $R=R_{o} \oplus U \oplus V$ we define multiplication by the following relations:

$$
\begin{gather*}
u_{i} u_{j}=a_{i j}^{o} p^{f}+\sum_{l=1}^{d} a_{i j}^{l} p u_{l}+\sum_{k=1}^{t} a_{i j}^{d+t} v_{k} ; \\
u_{i} v_{k}=v_{k} u_{i}=u_{i} u_{j} u_{\lambda}=p v_{k}=v_{l} v_{k}=v_{k} v_{l}=0 ; \tag{2.1}\\
u_{i} \alpha=\alpha u_{i}, v_{k} \alpha=\alpha v_{k} ;(1 \leq i, j, \lambda \leq s ; 1 \leq l \leq d ; 1 \leq k \leq t)
\end{gather*}
$$

where $\alpha, a_{i j}^{o}, a_{i j}^{l}, a_{i j}^{d+k} \in R_{o} / \mathcal{J}_{o}$, and $f=1$ or 2 , depending on whether char $R_{o}=p^{2}$ or p^{3}.

By the above relations, R is a completely primary finite ring of characteristic p^{2} or p^{3} in which the maximal Galois subring lies in $Z(R)$, the center of R, and with Jacobson radical $\mathcal{J}=p R \oplus U \oplus V, \operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}, \mathcal{J}^{2}=p R \oplus V$ or $\mathcal{J}^{2}=p U \oplus V\left(\right.$ if char $\left.R=p^{2}\right) ; \mathcal{J}^{2}=p^{2} R \oplus p U \oplus V$ (if char $R=p^{3}$), and $\mathcal{J}^{3}=(0)$. We call $\left(a_{i j}^{l}\right)$ the structural matrices of the ring R and the numbers p, n, r, s, d and t invariants of the ring R.

Throughout, we need the following result proved in [2, Theorem 6.1]
Theorem 2.1. Let R be a ring. Then R is a completely primary finite ring of characteristic p^{2} or p^{3} in which the maximal Galois subring lies in $Z(R)$, with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, annihilator of \mathcal{J} coincides with \mathcal{J}^{2} if and only if R is isomorphic to one of the rings given by the relations in (2.1).

REmARK 2.2. We know that $R=R_{o} \oplus R_{o} m_{1} \oplus \ldots \oplus R_{o} m_{h}$, where $m_{i} \in \mathcal{J}$; and that $\mathcal{J}=p R_{o} \oplus R_{o} m_{1} \oplus \ldots \oplus R_{o} m_{h}$. Since $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2}=\operatorname{ann}(\mathcal{J})$, with $\mathcal{J}^{2} \neq(0)$, we can write

$$
\left\{m_{1}, \ldots, m_{h}\right\}=\left\{u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}\right\}
$$

where, $u_{1}, \ldots, u_{s} \in \mathcal{J}-\mathcal{J}^{2}$ and $v_{1}, \ldots, v_{t} \in \mathcal{J}^{2}$, so that $s+t=h$.
In view of the above considerations and by 1.8 of [2], the non-zero elements of

$$
\begin{equation*}
\left\{1, p, u_{1}, \ldots, u_{s}, p u_{1}, \ldots, p u_{s}, v_{1}, \ldots, v_{t}\right\} \tag{2.2}
\end{equation*}
$$

form a "basis" for R over K_{o}.
Since $p m=0$, for all $m \in \mathcal{J}^{2}$, it is easy to check that if $\operatorname{char} R=p^{2}$, then either
(i) $p \in \mathcal{J}^{2}$; or
(ii) $p \in \mathcal{J}-\mathcal{J}^{2}$.

For clarity of our work, we consider the two cases separately in the rest of the paper.

Remark 2.3. Suppose that char $R=p^{2}$ and p lies in \mathcal{J}^{2}. In this case, (2.2) becomes

$$
\left\{1, p, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}\right\}
$$

and by [2, Proposition 3.2], $1 \leq 1+t \leq s^{2}$. Hence, every element of R may be written uniquely as

$$
a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k} ;\left(a_{o}, a_{1}, b_{i}, c_{k} \in K_{o}\right)
$$

and therefore,

$$
u_{i} u_{j}=a_{i j}^{o} p+\sum_{k=1}^{t} a_{i j}^{k} v_{k}
$$

where $a_{i j}^{o}, a_{i j}^{k} \in R_{o} / p R_{o}$.
REMARK 2.4. If $\operatorname{char} R=p^{2}$ and p lies in $\mathcal{J}-\mathcal{J}^{2}$, suppose that $d \geq 0$ is the number of the elements $p u_{i}$ in (2.2) which are not zero and suppose, without loss of generality, that $p u_{1}, \ldots, p u_{d}$ are the d non-zero elements. Then, (2.2) becomes

$$
\left\{1, p, u_{1}, \ldots, u_{s}, p u_{1}, \ldots, p u_{d}, v_{1}, \ldots, v_{t}\right\}
$$

and by [2, Proposition 3.2], we have $1 \leq d+t \leq s^{2}$. Hence, every element of R may be written uniquely as

$$
a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k} ;\left(a_{o}, a_{1}, b_{i}, c_{l}, d_{k} \in K_{o}\right)
$$

and

$$
u_{i} u_{j}=\sum_{l=1}^{d} a_{i j}^{l} p u_{l}+\sum_{k=1}^{t} a_{i j}^{k+d} v_{k}
$$

where $a_{i j}^{l}, a_{i j}^{k+d} \in R_{o} / p R_{o}$.

Remark 2.5. If the characteristic of R is p^{3}, the argument is similar to that given in the case where char $R=p^{2}$. However, in this case, $p \in \mathcal{J}-\mathcal{J}^{2}$ and $p^{2} \in \mathcal{J}^{2}$ and an arbitrary element in R is of the form

$$
a_{o}+a_{1} p+a_{2} p^{2}+\sum_{i}^{s} b_{i} u_{i}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k}^{t} d_{k} v_{k}
$$

and we define multiplication by

$$
u_{i} u_{j}=a_{i j}^{o} p^{2}+\sum_{l=1}^{d} a_{i j}^{l} p u_{l}+\sum_{k=1}^{t} a_{i j}^{k+d} v_{k}
$$

and the only parameters left in defining R are the $s \times s$ linearly independent structural matrices $A_{l}=\left(a_{i j}^{l}\right)$ over $R_{o} / p R_{o}$, for all $l=0,1, \ldots, t+1, \ldots, t+d$.

3. The group of automorphisms

First note that since R is generated by b, u_{i} and v_{k}, it is sufficient to give the images of these elements to completely determine the automorphisms. Next, any automorphism from R to R when reduced to R_{o} must fix R_{o}. So to determine this group, we first show that the Galois subring R_{o} of R and the ideal \mathcal{J}^{2} given by $\mathcal{J}^{2}=p U \oplus V$ (if char $R=p^{2}$, and $p \in \mathcal{J}-\mathcal{J}^{2}$), are invariant under any automorphism $\phi \in \operatorname{Aut}(R)$. We then compute the image of the rest of the generators, by a fixed element of $\operatorname{Aut}(R)$.

Lemma 3.1. Let $\phi \in \operatorname{Aut}(R)$. Then $\phi\left(R_{o}\right)$ is a maximal Galois subring of R which is equal to R_{o}.

Proof. Suppose there is an automorphism $\phi: R \rightarrow R$. It is obvious that $\phi\left(R_{o}\right)$ is a maximal Galois subring of R so that there exists an invertible element $x \in R$ such that $x \phi\left(R_{o}\right) x^{-1}=R_{o}$.

Now, consider the map $\psi: R \rightarrow R$ given by $r \mapsto x \phi(r) x^{-1}$. Then, clearly, ψ is an automorphism of R which sends R_{o} to itself.

Lemma 3.2. Let $\phi \in \operatorname{Aut}(R)$ and suppose that char $R=p^{2}$ and $p \in$ $\mathcal{J}-\mathcal{J}^{2}$. Then $\phi\left(\mathcal{J}^{2}\right)=\mathcal{J}^{2}$.

Proof. This follows easily since for any $v \in \mathcal{J}^{2}$, we have $\phi(v) \in \mathcal{J}^{2}$ because $[\phi(v)]^{2}=\phi\left(v^{2}\right)=0$.

REmARK 3.3. Following the above two results, we remark that if $\operatorname{char} R=$ p^{2} and $p \in \mathcal{J}^{2}$, then $\phi\left(p R_{o}\right) \subset \mathcal{J}^{2}$; and if char $R=p^{3}$, then $\phi\left(p^{2} R_{o}\right) \subseteq \mathcal{J}^{2}$.

Lemma 3.4. Let R be a ring of Theorem 2.1 and let $\phi \in \operatorname{Aut}(R)$. Then for each $j=1, \ldots, s ;$ each $k=1, \ldots, t$; and each $l=1, \ldots, d$;

$$
\phi\left(u_{j}\right)=\sum_{i=1}^{2} a_{i j} p^{i}+\sum_{\mu=1}^{s} b_{\mu j} u_{\mu}+\sum_{l=1}^{d} c_{l j} p u_{l}+\sum_{k=1}^{t} d_{k j} v_{k}
$$

$$
\phi\left(v_{k}\right)=\sum_{i=1}^{2} e_{i k} p^{i}+\sum_{\eta=1}^{d} g_{\eta k} p u_{\eta}+\sum_{\rho=1}^{t} f_{\rho k} v_{\rho}
$$

and

$$
\phi\left(p u_{l}\right)=a_{1 l} p^{2}+\sum_{\mu=1}^{d} b_{\mu l} p u_{\mu}
$$

where $a_{i j}, b_{\mu l}, c_{l j}, d_{k j}, e_{i k}, g_{\eta k}, f_{\rho k} \in R_{o} / p R_{o}$; and for $r_{o} \in R_{o}, \phi\left(r_{o}\right)=r_{o}^{\sigma}$, for some $\sigma \in \operatorname{Aut}\left(R_{o}\right)$.

Proof. Since

$$
u_{j} \in \mathcal{J}=p R_{o} \oplus U \oplus V=p R_{o} \oplus \sum_{j=1}^{s} R_{o} u_{\mu} \oplus \sum_{k=1}^{t} R_{o} v_{k}
$$

for all $i=1, \ldots, s$; and

$$
v_{k} \in \mathcal{J}^{2}=p R_{o} \oplus V=p R_{o} \oplus \sum_{\rho=1}^{t} R_{o} v_{\rho}
$$

or

$$
v_{k} \in \mathcal{J}^{2}=p U \oplus V=\sum_{\eta=1}^{d} R_{o} p u_{\eta} \oplus \sum_{\rho=1}^{t} R_{o} v_{\rho},
$$

(if $\operatorname{char} R=p^{2}$), or

$$
v_{k} \in \mathcal{J}^{2}=p^{2} R_{o} \oplus p U \oplus V=p^{2} R_{o} \oplus \sum_{\eta=1}^{d} R_{o} p u_{\eta} \oplus \sum_{\rho=1}^{t} R_{o} v_{\rho}
$$

(if $\operatorname{char} R=p^{3}$) for all $\rho=1, \ldots, t$ and all $\eta=1, \ldots, d$; the result follows.
The last part may be deduced from Lemma 3.1 since $\left.\phi\right|_{R_{o}}=\sigma \in \operatorname{Aut}\left(R_{o}\right)$.

Remark 3.5. In Lemma 3.4, if $\operatorname{char} R=p^{2}$ and $p \in \mathcal{J}^{2}$, then the coefficients of $p^{2}, p u_{l}, p u_{\eta}$, and $p u_{\mu}$ are all equal to zero; and if $c h a r R=p^{2}$ and $p \in \mathcal{J}-\mathcal{J}^{2}$, the scalars $a_{2 j}, e_{i j}$ and the coefficient of p^{2}, are all zero.
3.1. Notation. We first establish some notation that will be useful in the rest of the paper. So, let R be a ring of Theorem 2.1. If $\sigma \in A u t\left(R_{o}\right)$ and $x \in G_{R}$, the group of unit elements in R, define the mappings $\alpha_{\sigma}, \psi_{x}$ from R to R as follows:

$$
\begin{aligned}
\alpha_{\sigma}\left(\sum_{i=0}^{2} a_{i} p^{i}\right. & \left.+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
& =\sum_{i=0}^{2} a_{i}^{\sigma} p^{i}+\sum_{j=1}^{s} b_{j}^{\sigma} u_{j}+\sum_{l=1}^{d} c_{l}^{\sigma} p u_{l}+\sum_{k=1}^{t} d_{k}^{\sigma} v_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{x}\left(\sum_{i=0}^{2} a_{i} p^{i}\right. & \left.+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
& =x\left(\sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) x^{-1}
\end{aligned}
$$

Also, if

$$
\begin{aligned}
\psi\left(\sum_{i=0}^{2} a_{i} p^{i}\right. & \left.+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
& =\sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} \varphi\left(u_{j}\right)+\sum_{l=1}^{d} c_{l} p \varphi\left(u_{l}\right)+\sum_{k=1}^{t} d_{k} \phi\left(v_{k}\right),
\end{aligned}
$$

where $\varphi \in A u t_{R_{o} / p R_{o}}(U)$ and $\phi \in A u t_{R_{o} / p R_{o}}(V)$, let $\psi \sigma=\psi \alpha_{\sigma}$; if

$$
\begin{aligned}
\beta\left(\sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j}\right. & \left.+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
= & \sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{i=1}^{2} \sum_{j=1}^{s} a_{i j} b_{j} p^{i}+\sum_{l=1}^{d} \sum_{j=1}^{s} c_{l j} b_{j} p u_{l} \\
& +\sum_{k=1}^{t} \sum_{j=1}^{s} b_{j} d_{k j} v_{k}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}
\end{aligned}
$$

where $a_{i j}, c_{l j}, d_{k j} \in R_{o} / p R_{o}$, let $\beta \sigma=\beta \alpha_{\sigma}$; if

$$
\begin{aligned}
& \gamma\left(\sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
&= \sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{l=1}^{d} a_{1 l} c_{l} p^{2}+\sum_{k=1}^{t} d_{k} v_{k}
\end{aligned}
$$

where $a_{1 l} \in R_{o} / p R_{o}$, let $\gamma \sigma=\gamma \alpha_{\sigma}$; and if

$$
\begin{aligned}
\delta\left(\sum_{i=0}^{2} a_{i} p^{i}\right. & \left.+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right)=\sum_{i=0}^{2} a_{i} p^{i}+\sum_{j=1}^{s} b_{j} u_{j} \\
& +\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}+\sum_{\eta=1}^{d} \sum_{k=1}^{t} d_{k} g_{\eta k} p u_{\eta}+\sum_{i=1}^{2} \sum_{k=1}^{t} d_{k} e_{i k} p^{i},
\end{aligned}
$$

where $e_{i k}, g_{\eta k} \in R_{o} / p R_{o}$, let $\delta \sigma=\delta \alpha_{\sigma}$. Finally, if $A=\left(a_{i j}\right)$, define $A^{\sigma}=$ ($a_{i j}^{\sigma}$).

Due to some similarities of these rings, we present in this paper, detailed proofs of results on rings of characteristic p^{2} in which $p \in \mathcal{J}^{2}$. The other two cases may be proved in a similar manner with minor modifications.

We start with the following.

3.2. Rings in which $p \in \mathcal{J}^{2}$.

Theorem 3.6. Let R be a ring of Theorem 2.1 and of characteristic p^{2} in which $p \in \mathcal{J}^{2}$, with the invariants p, n, r, s, and t. Then, $\psi \in A u t(R)$ if and only if

$$
\begin{aligned}
& \psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right) \\
& =x a_{o}^{\sigma} x^{-1}+x a_{1}^{\sigma} x^{-1} p+\sum_{i=1}^{s} a_{1 i} x b_{i}^{\sigma} x^{-1} p+\sum_{k=1}^{t} e_{1 k} x c_{k}^{\sigma} x^{-1} p \\
& \quad+\sum_{i=1}^{s} x b_{i}^{\sigma} x^{-1} \varphi\left(u_{i}\right)+\sum_{k=1}^{t} \sum_{i=1}^{s} d_{k i} x b_{i}^{\sigma} x^{-1} v_{k}+\sum_{k=1}^{t} x c_{k}^{\sigma} x^{-1} \phi\left(v_{k}\right)
\end{aligned}
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right), x \in G_{R}, \varphi \in \operatorname{Aut}_{R_{o} / p R_{o}}(U), \phi \in \operatorname{Aut}_{R_{o} / p R_{o}}(V) ; a_{1 i}, d_{k i}$, $e_{1 k} \in R_{o} / p R_{o}$.

Proof. Let $\psi \in \operatorname{Aut}(R)$. Then there exists $x \in G_{R}$ such that $\psi\left(R_{o}\right)=$ $x R_{o} x^{-1}$, and hence, $\psi(r)=x r^{\sigma} x^{-1}$, for any $r \in R_{o}$, for some automorphism σ of R_{o}. Since

$$
R=\psi\left(R_{o}\right) \oplus \sum \psi\left(R_{o}\right) \psi\left(u_{i}\right) \oplus \sum \psi\left(R_{o}\right) \psi\left(v_{k}\right)
$$

and conjugation is an automorphism of R,

$$
R=R_{o} \oplus \sum R_{o} x^{-1} \psi\left(u_{i}\right) x \oplus \sum R_{o} x^{-1} \psi\left(v_{k}\right) x
$$

But $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, hence, $x^{-1} \psi\left(u_{i}\right) x=\alpha_{i} \psi\left(u_{i}\right)$ and $x^{-1} \psi\left(v_{k}\right) x=$ $\beta_{k} \psi\left(v_{k}\right)$, where $\alpha_{i}, \beta_{k} \in R_{o} / p R_{o}$, for all $i=1, \ldots, s ; k=1, \ldots, t$.

Thus,

$$
R=R_{o} \oplus \sum R_{o} \alpha_{i} \psi\left(u_{i}\right) \oplus \sum R_{o} \beta_{k} \psi\left(v_{k}\right)
$$

and hence,

$$
R=R_{o} \oplus \sum R_{o} \psi\left(u_{i}\right) \oplus \sum R_{o} \psi\left(v_{k}\right) .
$$

Therefore, for any $i \in\{1, \ldots, s\}$ and any $k \in\{1, \ldots, t\}, \psi\left(u_{i}\right)=\varphi\left(u_{i}\right)+$ $a_{1 i} p+\sum d_{k i} v_{k}$ and $\psi\left(v_{k}\right)=e_{1 k} p+\phi\left(v_{k}\right)$, where $\varphi \in A u t_{R_{o} / p R_{o}}(U) ; \phi \in$ $A u t_{R_{o} / p R_{o}}(V)$; and $a_{1 i}, d_{k i}, e_{1 k} \in R_{o} / p R_{o}$.

Conversely, let ψ be as defined above. We need to check that for every $r=a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k} \in R$,

$$
\begin{aligned}
\theta: r \mapsto & a_{o}^{\sigma}+a_{1}^{\sigma} p+\sum_{i=1}^{s} a_{1 i} b_{i}^{\sigma} p+\sum_{k=1}^{t} e_{1 k} c_{k}^{\sigma} p+ \\
& \sum_{i=1}^{s} b_{i}^{\sigma} \varphi\left(u_{i}\right)+\sum_{k=1}^{t} \sum_{i=1}^{s} d_{k i} b_{i}^{\sigma} v_{k}+\sum_{k=1}^{t} c_{k}^{\sigma} \phi\left(v_{k}\right),
\end{aligned}
$$

where $\varphi\left(u_{i}\right)=x^{-1} \theta\left(u_{i}\right) x$, and $\phi\left(v_{k}\right)=x^{-1} \theta\left(v_{k}\right) x$, is an automorphism of R.
So, let $s=d_{o}+d_{1} p+\sum_{i=1}^{s} e_{i} u_{i}+\sum_{k=1}^{t} f_{k} v_{k}$ be another element in R. Then,

$$
\begin{aligned}
\theta: s \mapsto & d_{o}^{\sigma}+d_{1}^{\sigma} p+\sum_{i=1}^{s} a_{1 i} e_{i}^{\sigma} p+\sum_{k=1}^{t} e_{1 k} f_{k}^{\sigma} p+ \\
& \sum_{i=1}^{s} e_{i}^{\sigma} \varphi\left(u_{i}\right)+\sum_{k=1}^{t} \sum_{i=1}^{s} d_{k i} e_{i}^{\sigma} v_{k}+\sum_{k=1}^{t} f_{k}^{\sigma} \phi\left(v_{k}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\theta(r) \theta(s)= & a_{o}^{\sigma} d_{o}^{\sigma}+\left[a_{o}^{\sigma} d_{1}^{\sigma}+a_{1}^{\sigma} d_{o}^{\sigma}\right] p+\sum_{i=1}^{s}\left[a_{o}^{\sigma} a_{1 i} e_{i}^{\sigma}+a_{1 i} b_{i}^{\sigma} d_{o}^{\sigma}\right] p \\
& +\sum_{k=1}^{t}\left[a_{o}^{\sigma} e_{1 k} f_{k}^{\sigma}+e_{1 k} c_{k}^{\sigma} d_{o}^{\sigma}\right] p+\sum_{i=1}^{s}\left[a_{o}^{\sigma} e_{i}^{\sigma}+b_{i}^{\sigma} d_{o}^{\sigma}\right] \varphi\left(u_{i}\right) \\
& +\sum_{k=1}^{t} \sum_{i=1}^{s}\left[a_{o}^{\sigma} d_{k i} e_{i}^{\sigma}+d_{k i} b_{i}^{\sigma} d_{o}^{\sigma}\right] v_{k}+\sum_{k=i}^{t}\left[a_{o}^{\sigma} f_{k}^{\sigma}+c_{k}^{\sigma} d_{o}^{\sigma}\right] \phi\left(v_{k}\right) \\
& +\sum_{i, j=1}^{s} b_{i}^{\sigma} e_{j}^{\sigma} \varphi\left(u_{i}\right) \varphi\left(u_{j}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\theta(r s)= & \left(a_{o} d_{o}\right)^{\sigma}+\left(a_{o} d_{1}+a_{1} d_{o}\right)^{\sigma} p+\sum_{i=1}^{s} a_{1 i}\left(a_{o} e_{i}+b_{i} d_{o}\right)^{\sigma} p \\
& +\sum_{k=1}^{t} e_{1 k}\left(a_{o} f_{k}+c_{k} d_{o}\right)^{\sigma} p+\sum_{i=1}^{s}\left(a_{o} e_{i}+b_{i} d_{o}\right)^{\sigma} \varphi\left(u_{i}\right) \\
& +\sum_{k=1}^{t} \sum_{i=1}^{s} d_{k i}\left(a_{o} e_{i}+b_{i} d_{o}\right)^{\sigma} v_{k}+\sum_{k=1}^{t}\left(a_{o} f_{k}+c_{k} d_{o}\right)^{\sigma} \phi\left(v_{k}\right) \\
& +\sum_{i, j=1}^{s}\left(b_{i} e_{j} a_{i j}^{o}\right)^{\sigma} p+\sum_{k=1}^{t} \sum_{i, j=1}^{s}\left(b_{i} e_{j} a_{i j}^{k}\right)^{\sigma} \phi\left(v_{k}\right) .
\end{aligned}
$$

From the above equalities, we deduce that

$$
\begin{equation*}
\left(a_{i j}^{o}\right)^{\sigma} p+\sum_{k=1}^{t}\left(a_{i j}^{k}\right)^{\sigma} \phi\left(v_{k}\right)=\sum_{i, j=1}^{s} \varphi\left(u_{i}\right) \varphi\left(u_{j}\right) . \tag{3.1}
\end{equation*}
$$

Now, it is obvious that $\psi=\psi_{x} \theta$ and hence, ψ is an automorphism of R.
From the assumptions that $\sigma \in \operatorname{Aut}\left(R_{o}\right), x \in G_{R}, \varphi \in A u t_{R_{o} / p R_{o}}(U)$ and $\phi \in A u t_{R_{o} / p R_{o}}(V)$ one obtains the following: $\varphi\left(u_{i}\right)=\sum_{\nu=1}^{s} b_{\nu i} u_{\nu}$ and $\phi\left(v_{k}\right)=\sum_{\rho=1}^{t} c_{\rho k} v_{\rho}$, with $b_{\nu i}, c_{\rho k} \in R_{o} / p R_{o}$.

Hence, (3.1) implies that

$$
\left(a_{i j}^{o}\right)^{\sigma} p+\sum_{\rho, k=1}^{t} c_{\rho k}\left(a_{i j}^{k}\right)^{\sigma} v_{\rho}=\sum_{\rho=0}^{t} \sum_{\nu, \mu=1}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho} v_{\rho}
$$

or

$$
\sum_{\rho, k=0}^{t} c_{\rho k}\left(a_{i j}^{k}\right)^{\sigma} v_{\rho}=\sum_{\rho=0}^{t} \sum_{\nu, \mu=1}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho} v_{\rho},
$$

where $c_{o o}=1, c_{1 k}=e_{1 k}$ and $v_{o}=p$. It follows that

$$
\begin{equation*}
\sum_{\nu, \mu=1}^{s} b_{\nu i} b_{\mu j} a_{\nu \mu}^{\rho}=\sum_{k=0}^{t} c_{\rho k} \psi\left(a_{i j}^{k}\right)(\rho=0,1, \ldots, t) \tag{3.2}
\end{equation*}
$$

Hence, in matrix form, (3.2) implies that

$$
B^{T} A_{\rho} B=\sum_{k=0}^{t} c_{\rho k} A_{k}^{\sigma}(\rho=0,1, \ldots, t)
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right), B \in G L\left(s, R_{o} / p R_{o}\right)$ and $C=\left(c_{k \rho}\right) \in G L\left(1+t, R_{o} / p R_{o}\right)$.
Conversely, suppose there exist $\sigma \in \operatorname{Aut}\left(R_{o}\right), B \in G L\left(s, R_{o} / p R_{o}\right)$ and $C=\left(c_{\rho k}\right) \in G L\left(1+t, R_{o} / p R_{o}\right)$, with

$$
B^{T} A_{\rho} B=\sum_{k=0}^{t} c_{\rho k} A_{k}^{\sigma}(\rho=0,1, \ldots, t)
$$

where $c_{o o}=1, c_{1 k}=e_{1 k}$.
Consider the map $\psi: R \rightarrow R$ defined by

$$
\begin{aligned}
\psi\left(a_{o}+a_{1} p+\sum_{i} b_{i} u_{i} \sum_{k} c_{k} v_{k}\right)= & a_{o}^{\sigma}+\left[a_{1}^{\sigma}+\sum_{i} a_{1 i} b_{i}^{\sigma}+\sum_{k} e_{1 k} c_{k}^{\sigma}\right] p+ \\
& \sum_{\nu} \sum_{i} b_{i}^{\sigma} b_{\nu i} u_{\nu}+ \\
& \sum_{\rho}\left[\sum_{i} b_{i}^{\sigma} d_{\rho i}+\sum_{k} c_{k}^{\sigma} c_{\rho k}\right] v_{\rho}
\end{aligned}
$$

Then it is routine to verify that ψ is a homomorphism from R to R and that it preserves the identity element.

But Ker ψ consists of all elements

$$
a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k} \in R
$$

such that

$$
\begin{aligned}
a_{o}^{\sigma}+\left[a_{1}^{\sigma}+\sum_{i} a_{1 i} b_{i}^{\sigma}+\sum_{k} e_{1 k} c_{k}^{\sigma}\right] p+\sum_{\nu} & \sum_{i} b_{i}^{\sigma} b_{\nu i} u_{\nu}+ \\
& \sum_{\rho}\left[\sum_{i} b_{i}^{\sigma} d_{\rho i}+\sum_{k} c_{k}^{\sigma} c_{\rho k}\right] v_{\rho}=0
\end{aligned}
$$

which implies that

$$
\begin{gathered}
a_{o}^{\sigma}+\left[a_{1}^{\sigma}+\sum_{i} a_{1 i} b_{i}^{\sigma}+\sum_{k} e_{1 k} c_{k}^{\sigma}\right] p=0 \\
\sum_{\nu} \sum_{i} b_{i}^{\sigma} b_{\nu i} u_{\nu}=0
\end{gathered}
$$

and

$$
\sum_{\rho}\left[\sum_{i} b_{i}^{\sigma} d_{\rho i}+\sum_{k} c_{k}^{\sigma} c_{\rho k}\right] v_{\rho}=0
$$

Now,

$$
\sum_{\nu} \sum_{i} b_{i}^{\sigma} b_{\nu i} u_{\nu}=0 \text { implies that } \sum_{i} b_{i}^{\sigma} b_{\nu i}=0, \text { for every } \nu=1, \ldots, s
$$

since $\left\{u_{i}, \ldots, u_{s}\right\}$ is linearly independent over $R_{o} / p R_{o}$. Further, $\left(b_{\nu i}\right)$ is invertible, so that the homogeneous system $\sum_{i} b_{i}^{\sigma} b_{\nu i}=0 ; \nu=1, \ldots, s$, has the trivial solution as its unique solution and hence, $b_{i}=0$ (for every $i=1, \ldots, s$) since $\sigma \in \operatorname{Aut}\left(R_{o}\right)$.

Similarly, $c_{k}=0$ for every $k=1, \ldots, t$ since $\left(c_{\rho k}\right)_{t \times t}$ is invertible. Hence,

$$
a_{o}^{\sigma}+\left[a_{1}^{\sigma}+\sum_{i} a_{1 i} b_{i}^{\sigma}+\sum_{k} e_{1 k} c_{k}^{\sigma}\right] p=0
$$

with $c_{k}=0$ for every $k=1, \ldots, t$ and $b_{i}=0$ for every $i=1, \ldots, s$ implies that $a_{o}^{\sigma}+a_{1}^{\sigma} p=0$, so that $a_{1}^{\sigma} p=-a_{o}^{\sigma}$. But $a_{1}^{\sigma} p \in p R_{o}$, implying that $a_{o}^{\sigma} \in p R_{o}$, a contradiction, since $a_{o} \in K_{o}$. Hence, $a_{o}=a_{1}=0$.

Hence, $\operatorname{Ker} \psi=(0)$ and therefore, ψ is injective, and since R is finite, ψ is also surjective. Thus, ψ is an automorphism of R.

We have thus proved the following:
Proposition 3.7. Let R be a ring of Theorem 2.1 and of characteristic p^{2} with the invariants p, n, r, s, t. Then ψ is an automorphism of R if and only if there exist $\sigma \in \operatorname{Aut}\left(R_{o}\right), B \in G L\left(s, R_{o} / p R_{o}\right)$ and $C=\left(c_{\rho k}\right) \in$ $G L\left(1+t, R_{o} / p R_{o}\right)$ such that $B^{T} A_{\rho} B=\sum_{k=0}^{t} c_{\rho k} A_{k}^{\sigma}$, where A_{ρ} and A_{k} are structural matrices for R and $c_{o o}=1, c_{1 k}=e_{1 k}$.

Thus, the set of elements $\sigma \in \operatorname{Aut}\left(R_{o} / p R_{o}\right), C=\left(c_{\rho k}\right) \in G L(1+$ $\left.t, R_{o} / p R_{o}\right), B \in G L\left(s, R_{o} / p R_{o}\right)$ and $1+\mathcal{J} \cong p R_{o} \oplus U \oplus V$, determines all the automorphisms of the ring R.

Consider the set of equations $B^{T} A_{\rho} B=\sum_{k=1}^{t} c_{\rho k} A_{k}^{\sigma}$ given in Proposition 3.7 , with $B=\left(b_{i j}\right) \in G L\left(s, R_{o} / p R_{o}\right)$. Then, it is easy to see that $B=\left(b_{i j}\right)$ is the transition matrix between the bases $\left(\overline{u_{i}}\right)$ of $\mathcal{J} / \mathcal{J}^{2}$. Equally, $C=\left(c_{\rho k}\right)$ is the transition matrix between the bases $\left(v_{k}\right)(k=0,1, \ldots, t)$ of \mathcal{J}^{2}. By calculating $u_{\nu} u_{\mu}$ (the images of the u_{i} under ψ) and comparing coefficients of $\left(v_{\rho}\right)(\rho=0,1, \ldots, t)$ (the images of the v_{k} under $\left.\psi\right)$ we obtain equations, which in matrix form, are $B^{T} A_{\rho} B=\sum_{k=1}^{t} c_{\rho k} A_{k}^{\sigma}$.

The problem of determining the groups of automorphisms of our rings amounts to classifying $(1+t)$-tuples of linearly independent matrices A_{o}, A_{1}, \ldots, A_{t} under the above relation, B, C being arbitrary invertible matrices, σ being an arbitrary automorphism and $1+\mathcal{J}$ being the normal subgroup of G_{R} of order $p^{(n-1) r}$.

Let \mathcal{A} be the set of all $(1+t)$-tuples $\left(A_{o}, A_{1}, \ldots, A_{t}\right)$ of $s \times s$ matrices over $R_{o} / p R_{o}$. The group $G L\left(s, R_{o} / p R_{o}\right)$ acts on \mathcal{A} by "congruence":

$$
\left(A_{o}, A_{1}, \ldots, A_{t}\right) \cdot B=\left(B^{T} A_{o} B, B^{T} A_{1} B, \ldots, B^{T} A_{t} B\right)
$$

and on the left via

$$
\begin{aligned}
& C \cdot\left(A_{o}, A_{1}, \ldots, A_{t}\right) \\
& \quad=\left(c_{1 o} A_{o}^{\sigma}+c_{11} A_{1}^{\sigma}+\cdots+c_{1 t} A_{t}^{\sigma}, \ldots, c_{t o} A_{o}^{\sigma}+c_{t 1} A_{1}^{\sigma}+\cdots+c_{t t} A_{t}^{\sigma}\right)
\end{aligned}
$$

where $C=\left(c_{\rho k}\right)$. Thus, these two actions are permutable and define a (left) action of $G=G L\left(s, R_{o} / p R_{o}\right) \times G L\left(1+t, R_{o} / p R_{o}\right)$ on \mathcal{A} :

$$
(B, C) \cdot\left(A_{o}, A_{1}, \ldots, A_{t}\right)=C \cdot\left(A_{o}^{\sigma}, \ldots, A_{t}^{\sigma}\right) \cdot B^{-1}
$$

for some fixed automorphism σ. By restriction, G acts on the subset Y consisting of $(1+t)$-tuples $A_{0}, A_{1}, \ldots, A_{t}$, linearly independent. This amounts to studying the "congruence" action (via $B)$ on $G L\left(s, R_{o} / p R_{o}\right)$ on the set \mathcal{Y} of $1+t$-dimensional subspaces of $\mathbb{M}_{s \times s}\left(R_{o} / p R_{o}\right), C$ just representing a change of basis in a given space. In the same way, the whole action of G on \mathcal{A} may be represented as an action of $G L\left(1+t, R_{o} / p R_{o}\right)$ on the set \mathbf{A} of subspaces of dimension $\leq 1+t$. We may call two $(1+t)$-tuples in the same G-orbit as equivalent.

3.3. Rings in which $p \in \mathcal{J}-\mathcal{J}^{2}$.

Theorem 3.8. Let R be a ring of Theorem 2.1 and of characteristic p^{2} in which $p \in \mathcal{J}-\mathcal{J}^{2}$, with the invariants p, n, r, s, t, and d. Then, $\psi \in \operatorname{Aut}(R)$
if and only if

$$
\begin{aligned}
\psi\left(a_{o}\right. & \left.+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right)=x a_{o}^{\sigma} x^{-1}+x a_{1}^{\sigma} x^{-1} p \\
& +\sum_{i=1}^{s} x b_{i}^{\sigma} x^{-1} \varphi\left(u_{i}\right)+\sum_{l=1}^{d} \sum_{i=1}^{s} b_{l i} x b_{i}^{\sigma} x^{-1} p u_{l}+\sum_{\nu=1}^{t} \sum_{i=1}^{s} c_{\nu i} x b_{i}^{\sigma} x^{-1} v_{\nu} \\
& +\sum_{l=1}^{d} x c_{l}^{\sigma} x^{-1} p \varphi\left(u_{l}\right)+\sum_{k=1}^{t} x d_{k}^{\sigma} x^{-1} \phi\left(v_{k}\right)+\sum_{\eta=1}^{d} \sum_{k=1}^{t} d_{\eta k} x d_{k}^{\sigma} x^{-1} p u_{l}
\end{aligned}
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right), x \in G_{R}, \varphi \in \operatorname{Aut}_{R_{o} / p R_{o}}(U), \phi \in A u t_{R_{o} / p R_{o}}(V) ; b_{l i}, c_{\nu i}$, $d_{\eta k} \in R_{o} / p R_{o}$.

Like we did for Theorem 3.6, we deduce from this the following:
Proposition 3.9. Let R be a ring of characteristic p^{2} in which R_{o} lies in the center, with the invariants p, n, r, s, t, d and in which p does not lie in \mathcal{J}^{2}. Then ψ is an automorphism of R if and only if there exist $\sigma \in \operatorname{Aut}\left(R_{o}\right)$, $B \in G L\left(s, R_{o} / p R_{o}\right)$ and $C=\left(c_{\rho k}\right) \in G L\left(t+d, R_{o} / p R_{o}\right)$ such that $B^{T} A_{\rho} B=$ $\sum_{k=1}^{t+d} c_{\rho k} A_{k}^{\sigma}$, where A_{k} and A_{ρ} are structural matrices for R.
3.4. Rings of characteristic p^{3}. We now consider the case of rings of Theorem 2.1 and of characteristic p^{3}.

Theorem 3.10. Let R be a ring of Theorem 2.1 and of characteristic p^{3} with the invariants p, n, r, s, t, d.Then $\psi \in \operatorname{Aut}(R)$ if and only if

$$
\begin{aligned}
\psi\left(a_{o}\right. & \left.+a_{1} p+a_{2} p^{2}+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{k=1}^{t} d_{k} v_{k}\right) \\
= & x a_{o}^{\sigma} x^{-1}+x a_{1}^{\sigma} x^{-1} p+x a_{2}^{\sigma} x^{-1} p^{2}+\sum_{i=1}^{s} b_{o i} x b_{i}^{\sigma} x^{-1} p^{2}+\sum_{l=1}^{d} g_{o l} x c_{l}^{\sigma} x^{-1} p^{2} \\
& +\sum_{k=1}^{t} e_{o k} x d_{k}^{\sigma} x^{-1} p^{2}+\sum_{i=1}^{s} x b_{i}^{\sigma} x^{-1} \varphi\left(u_{i}\right)+\sum_{l=1}^{d} \sum_{i=1}^{s} b_{l i} x b_{i}^{\sigma} x^{-1} p u_{l} \\
& +\sum_{\nu=1}^{t} \sum_{i=1}^{s} c_{\nu i} x b_{i}^{\sigma} x^{-1} v_{\nu}+\sum_{l=1}^{d} x c_{l}^{\sigma} x^{-1} p \varphi\left(u_{l}\right)+\sum_{k=1}^{t} x d_{k}^{\sigma} x^{-1} \phi\left(v_{k}\right) \\
& +\sum_{\eta=1}^{d} \sum_{k=1}^{t} d_{\eta k} x d_{k}^{\sigma} x^{-1} p u_{\eta}
\end{aligned}
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right), x \in G_{R}, \varphi \in A u t_{R_{o} / p R_{o}}(U), \phi \in A u t_{R_{o} / p R_{o}}(V) ; b_{o i}, e_{o k}$, $g_{o l}, b_{l i}, c_{\nu i}, d_{\eta k} \in R_{o} / p R_{o}$.

From this we deduce the following matrix version of the result.

Proposition 3.11. Let R be a ring of Theorem 2.1 and of characteristic p^{3} with the invariants p, n, r, s, t, d. Then ψ is an automorphism of R if and only if there exist $\sigma \in \operatorname{Aut}\left(R_{o}\right), B \in G L\left(s, R_{o} / p R_{o}\right)$ and $C=\left(c_{\rho k}\right) \in$ $G L\left(1+t+d, R_{o} / p R_{o}\right)$ such that $B^{T} D_{\rho} B=\sum_{k=0}^{t+d} c_{\rho k} A_{k}^{\sigma}$, where A_{k} and A_{ρ} are structural matrices for R.

4. The main results

We now describe explicitly, the group of automorphisms of the ring R. In what follows, we provide the proof for the case when the characteristic of R is p^{2} and $p \in \mathcal{J}^{2}$; while the proofs for the other cases may be obtained through minor modifications of the proof of Theorem 4.1.

Theorem 4.1. Let R be a ring of Theorem 2.1, of characteristic p^{2} in which $p \in \mathcal{J}^{2}$ and with the invariants p, n, r, s, t. Then

$$
\begin{array}{r}
\operatorname{Aut}(R) \cong\left[\mathbb{M}_{(1+t) \times s}\left(R_{o} / p R_{o}\right) \times \mathbb{M}_{1 \times t}\left(R_{o} / p R_{o}\right) \times\left(p R_{o} \oplus U \oplus V\right)\right] \times_{\theta_{2}} \\
{\left[\operatorname{Aut}\left(R_{o}\right) \times_{\theta_{1}}\left(G L\left(s, R_{o} / p R_{o}\right) \times G L\left(t, R_{o} / p R_{o}\right)\right)\right] .}
\end{array}
$$

Proof. Let G be the subgroup of $\operatorname{Aut}(R)$ which contains all the automorphisms ψ defined by

$$
\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}^{\sigma}+a_{1}^{\sigma} p+\sum_{i=1}^{s} b_{i}^{\sigma} \varphi\left(u_{i}\right)+\sum_{k=1}^{t} c_{k}^{\sigma} \phi\left(v_{k}\right)
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right), \varphi \in \operatorname{Aut}_{R_{o} / p R_{o}}(U)$ and $\phi \in \operatorname{Aut}_{R_{o} / p R_{o}}(V)$.
Let G_{0} be the subgroup of G which contains all the automorphisms α_{σ} such that

$$
\alpha_{\sigma}\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}^{\sigma}+a_{1}^{\sigma} p+\sum_{i=1}^{s} b_{i}^{\sigma} u_{i}+\sum_{k=1}^{t} c_{k}^{\sigma} v_{k}
$$

where $\sigma \in \operatorname{Aut}\left(R_{o}\right)$. Then $G_{0} \cong \operatorname{Aut}\left(R_{o}\right)$. Let G_{1} be the subgroup of G which contains all the automorphisms ψ such that

$$
\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} \varphi\left(u_{i}\right)+\sum_{k=1}^{t} c_{k} v_{k}
$$

where $\varphi \in A u t_{R_{o} / p R_{o}}(U)$; and let G_{2} be the subgroup of G which contains all the automorphisms ψ such that

$$
\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} \phi\left(v_{k}\right)
$$

where $\phi \in A u t_{R_{o} / p R_{o}}(V)$. Then G_{1} and G_{2} are subgroups of G and $G_{1} \times G_{2}$ is a direct product. Moreover, $G_{1} \cong A u t_{R_{o} / p R_{o}}(U) \cong G L\left(s, R_{o} / p R_{o}\right)$ and $G_{2} \cong A u t_{R_{o} / p R_{o}}(V) \cong G L\left(t, R_{o} / p R_{o}\right)$.

Finally, let H be the subgroup of $\operatorname{Aut}(R)$ containing all the automorphisms ψ defined by

$$
\begin{aligned}
\psi\left(a_{o}\right. & \left.+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=x\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}\right. \\
& \left.+\sum_{i=1}^{s} b_{i} a_{1 i} p+\sum_{\rho=1}^{t} \sum_{i=1}^{s} b_{i} d_{\rho i} v_{\rho}+\sum_{k=1}^{t} c_{k} v_{k}+\sum_{k=1}^{t} c_{k} e_{1 k} p\right) x^{-1}
\end{aligned}
$$

where $x \in 1+\mathcal{J}, a_{1 i}, d_{\rho i}, e_{1 k} \in R_{o} / p R_{o} ; H_{1}$ be the subgroup of H which contains all the automorphisms ψ defined by
$\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{\rho=0}^{t} \sum_{i=1}^{s} b_{i} d_{\rho i} p+\sum_{k=1}^{t} c_{k} v_{k}$,
where $d_{\rho i} \in R_{o} / p R_{o}$ and $v_{o}=p ; H_{2}$ be the subgroup of H which contains all the automorphisms ψ such that
$\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}+\sum_{k=1}^{t} c_{k} e_{1 k} p$,
where $e_{1 k} \in R_{o} / p R_{o}$; and let H_{3} be the subgroup of H which contains all the automorphisms ψ such that

$$
\psi\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right)=x\left(a_{o}+a_{1} p+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{k=1}^{t} c_{k} v_{k}\right) x^{-1}
$$

where $x \in 1+\mathcal{J} \subset G_{R}$. Then it is easy to check that the direct product $H=H_{1} \times H_{2} \times H_{3}$ and the semidirect product $G=\left(G_{1} \times G_{2}\right) \times{ }_{\theta_{2}} G_{0}$ are subgroups of $\operatorname{Aut}(R)$, where if $\varphi \in G_{1} \times G_{2}$ and $\alpha_{\sigma} \in G_{0}$, then $\theta_{2}\left(\alpha_{\sigma}\right)(\varphi)=\varphi \sigma$.

Let $\varphi \in H \cap G$. Since every element of H is either fixing R_{o} elementwise or sending R_{o} to another maximal Galois subring of R and $\varphi \in G, \varphi$ fixes R_{o} elementwise.

Let $\varphi=\beta \psi_{x}$, where $\beta \in H_{1} \times H_{2}$ and $\psi_{x} \in H_{3}$. Since $x \in 1+\mathcal{J}$, clearly, $\varphi=\beta \psi_{x}=\beta$. Since $\beta \in G, \beta(U)=U$ and $\beta(V)=V$. But the only element of $H_{1} \times H_{2}$ which fixes U and V is the identity. Thus, $\varphi=i d_{R}$ and hence, $H \cap G=i d_{R}$. Now, it is easy to see that $\operatorname{Aut}(R)=H \times_{\theta_{1}} G$, where if $\beta \psi_{x} \in H_{1} \times H_{2}$ and $\varphi \alpha_{\sigma} \in G$, then $\theta_{1}\left(\varphi \alpha_{\sigma}\right)\left(\beta \psi_{x}\right)=\beta_{\sigma} \varphi_{\psi \alpha_{\sigma}}(x)$. It is trivial to check that the mappings $g: H_{1} \mapsto \mathbb{M}_{(1+t) \times s}\left(R_{o} / p R_{o}\right)$ given by $g\left(\beta_{M}\right)=\sum_{\rho=0}^{t} d_{\rho i} v_{\rho}$ and $h: H_{2} \mapsto \mathbb{M}_{1 \times t}\left(R_{o} / p R_{o}\right)$ given by $h\left(\beta_{M}\right)=e_{1 k} p$, are isomorphisms, and hence, combining with $f: H_{3} \rightarrow p R_{o} \oplus U \oplus V$, we obtain an isomorphism $H \cong \mathbb{M}_{(1+t) \times s}\left(R_{o} / p R_{o}\right) \times \mathbb{M}_{1 \times t}\left(R_{o} / p R_{o}\right) \times\left(p R_{o} \oplus U \oplus V\right)$.

Hence,

$$
\begin{array}{r}
A u t(R) \cong\left[\mathbb{M}_{(1+t) \times s}\left(R_{o} / p R_{o}\right) \times \mathbb{M}_{1 \times t}\left(R_{o} / p R_{o}\right) \times\left(p R_{o} \oplus U \oplus V\right)\right] \times_{\theta_{2}} \\
{\left[A u t\left(R_{o}\right) \times_{\theta_{1}}\left(G L\left(s, R_{o} / p R_{o}\right) \times G L\left(t, R_{o} / p R_{o}\right)\right)\right]}
\end{array}
$$

where

$$
\theta_{1}(\sigma)(B, C) \cdot\left(A_{0}, \ldots, A_{t}\right)=C \cdot\left(A_{o}^{\sigma}, \ldots, A_{t}^{\sigma}\right) \cdot C^{-1}
$$

and

$$
\theta_{2}(\sigma, B, C)\left(A_{0}, \ldots, A_{t}\right)=\left(B^{T} A_{0} B, B^{T} A_{1} B, \ldots, B^{T} A_{t} B\right)
$$

TheOrem 4.2. Let R be a ring of Theorem 2.1, of characteristic p^{2} in which $p \in \mathcal{J}-\mathcal{J}^{2}$ and with the invariants p, n, r, s, t, d. Then

$$
\begin{aligned}
& A u t(R) \cong\left[\mathbb{M}_{(d+t) \times s}\left(R_{o} / p R_{o}\right) \times \mathbb{M}_{d \times t}\left(R_{o} / p R_{o}\right) \times\left(p R_{o} \oplus U \oplus V\right)\right] \times_{\theta_{2}} \\
& \quad\left[A u t\left(R_{o}\right) \times_{\theta_{1}}\left(G L\left(s, R_{o} / p R_{o}\right) \times G L\left(t, R_{o} / p R_{o}\right) \times G L\left(d, R_{o} / p R_{o}\right)\right)\right] .
\end{aligned}
$$

Proof. Modify the proof of Theorem 4.1.
Theorem 4.3. Let R be a ring of Theorem 2.1 and of characteristic p^{3} with the invariants p, n, r, s, t, d. Then $\operatorname{Aut}(R)$ is isomorphic to

$$
\begin{aligned}
{\left[\mathbb{M}_{(1+d+t) \times s}(K) \times \mathbb{M}_{(1+t) \times d}(K) \times \mathbb{M}_{1 \times d}(K) \times\left(p R_{o} \oplus U \oplus V\right)\right] \times_{\theta_{2}} } \\
{\left[A u t\left(R_{o}\right) \times \times_{\theta_{1}}(G L(s, K) \times G L(t, K) \times G L(d, K))\right] }
\end{aligned}
$$

where $K=R_{o} / p R_{o}$.
Proof. Similar to Theorem 4.1 with some modifications.

References

[1] C. J. Chikunji, Automorphisms of completely primary finite rings of characteristic p, Colloq. Math. 111 (2008), 91-113.
[2] C. J. Chikunji, On a Class of Finite Rings, Comm. Algebra 27(1999), 5049-5081.
[3] C. J. Chikunji, A classification of cube zero radical completely primary finite rings, Demonstratio Math. 38 (2005), 7-20.
[4] W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33(1972), 25-28.
[5] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.
C. J. Chikunji

Department of Basic Sciences
Botswana College of Agriculture
Gaborone
Botswana
E-mail: jchikunj@bca.bw
Received: 5.7.2007.
Revised: 16.8.2007.

[^0]: 2000 Mathematics Subject Classification. 16N10, 20B25, 16N40, 15A03.
 Key words and phrases. Completely primary finite ring, automorphism group, Galois ring.

