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AUTOMORPHISM GROUPS OF FINITE RINGS OF

CHARACTERISTIC p2
AND p3

Chiteng’a John Chikunji

Botswana College of Agriculture, Botswana

Abstract. In this paper we describe the group of automorphisms of
a completely primary finite ring R of characteristic p2 or p3 with Jacobson
radical J such that J 3 = (0), J 2 6= (0); the annihilator of J coincides
with J 2; and the maximal Galois (coefficient) subring Ro of R lies in the
center of R.

1. Introduction

Throughout this paper we will assume that all rings are finite, associative
(but generally not commutative) with identities, denoted by 1 6= 0, that ring
homomorphisms preserve 1, a ring and its subrings have the same 1 and
that modules are unital. Recall that an Artinian ring R with radical J is
called primary if R/J is simple and is called completely primary if R/J is
a division ring. The object of this paper is to describe explicitly, the group
of automorphisms of a completely primary finite ring R of characteristic p2

or p3 such that if J is the Jacobson radical of R, then J 3 = (0), J 2 6= (0),
the annihilator of J coincides with J 2 and the coefficient subring Ro lies in
the center of R. The automorphisms of R are determined by their images on
the generators of the additive group of R and on the invertible element b of
order pr − 1 of the Galois subring Ro of R. This supplements the author’s
earlier work [1] on rings of characteristic p. We freely use the definitions and
notations introduced in [1, 2, 3, 5].

Let R be a completely primary finite ring, J the set of all zero divisors in
R, p a prime, k, n and r be positive integers. Then the following results will
be assumed (see [5]): |R| = pnr, J is the Jacobson radical of R, J n = (0),
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|J | = p(n−1)r, R/J ∼= GF (pr), the finite field of pr elements and charR = pk,
where 1 ≤ k ≤ n; the group of units GR is a semi-direct product GR =
(1+J )×θ〈b〉, of its normal subgroup 1+J of order p(n−1)r by a cyclic subgroup
〈b〉 of order pr − 1. If n = k, it is known that, up to isomorphism, there is
precisely one completely primary ring of order prk having characteristic pk

and residue field GF (pr). It is called the Galois ring GR(prk, pk) and a
concrete model is the quotient Zpk [X ]/(f), where f is a monic polynomial of
degree r, irreducible modulo p. Any such polynomial will do: the rings are all
isomorphic. Trivial cases are GR(pn, pn) = Zpn and GR(pn, p) = Fpn . In
fact, R = Zpn [b], where b is an element of R of multiplicative order pr − 1;
J = pR and Aut(R) ∼= Aut(R/pR) (see [5, Proposition 2]).

Let R be a completely primary finite ring, |R/J | = pr and charR = pk.
Then it can be deduced from [4] that R has a coefficient subring Ro of the
form GR(pkr, pk) which is clearly a maximal Galois subring of R. Moreover,

if R
′

o is another coefficient subring of R then there exists an invertible element

x in R such that R
′

o = xRox
−1 (see [5, Theorem 8]). Furthermore, there exist

m1, . . . ,mh ∈ J and σ1, . . . , σh ∈ Aut(Ro) such that R = Ro ⊕
h∑
i=1

Romi (as

Ro-modules), miro = rσi

o mi, for all ro ∈ Ro and any i = 1, . . . , h (use the
decomposition of Ro ⊗Z Ro in terms of Aut(Ro) and apply the fact that R is
a module over Ro ⊗Z Ro). Moreover, σ1, . . . , σh are uniquely determined by
R and Ro. We call σi the automorphism associated with mi and σ1, . . . , σh
the associated automorphisms of R with respect to Ro.

Now, let Ro = Zpk [b] be a coefficient subring of R of order pkr and

characteristic pk and let Ko = 〈b〉∪{0}, denote the set of coset representatives
of J in R. Then it is easy to show that every element of Ro can be written

uniquely as
∑k
i=0 aip

i, where ai ∈ Ko.

2. Cube zero radical completely primary finite rings

We now assume that R is a completely primary finite ring with Jacobson
radical J such that J 3 = (0) and J 2 6= (0). These rings were studied by
the author who gave their constructions for all characteristics, and for details
of the general background, the reader is referred to [2] and [3]. Since R is
such that J 3 = (0), then by one of the above results, charR is either p, p2

or p3. The ring R contains a coefficient subring Ro with charRo = charR,
and with Ro/pRo equal to R/J . Moreover, Ro is a Galois ring of the form
GR(pkr, pk), k = 1, 2 or 3. Let ann(J ) denote the two-sided annihilator of
J in R. Of course ann(J ) is an ideal of R. Because J 3 = (0), it follows easily
that J 2 ⊆ ann(J ).

We know from the above results that R = Ro⊕
h∑
i=1

Romi, where mi ∈ J ,

and that there exist automorphisms σi ∈ Aut(Ro) (i = 1, . . . , h) such that
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miro = rσi

o mi, for all ro ∈ Ro and for all i = 1, . . . , h; and the number h and
the automorphisms σ1, . . . , σh are uniquely determined by R and Ro. Again,
because J 3 = (0), we have that p2mi = 0, for all mi ∈ J . Further, pmi = 0
for all mi ∈ ann(J ). In particular, pmi = 0 for all mi ∈ J 2.

2.1. A construction of rings of characteristic p2 and p3. Let Ro be the Galois
ring GR(p2r, p2) or GR(p3r, p3). Let s, d, t be integers with either 1 ≤ 1+t ≤
s2 or 1 ≤ d + t ≤ s2 if charRo = p2 and 1 ≤ 1 + d + t ≤ s2 if charRo = p3.
Let V be an Ro/pRo-space which when considered as an Ro-module has a
generating set {v1, . . . , vt} and let U be an Ro-module with an Ro-module
generating set {u1, . . . , us}; and suppose that d ≥ 0 of the ui are such that
pui 6= 0. Since Ro is commutative, we can think of them as both left and
right Ro-modules.

Let (alij), for l = 0, 1, . . . , t or l = 1, 2, . . . , d+ t be s×s linearly indepen-

dent matrices with entries in Ro/pRo if charRo = p2 and l = 0, 1, . . . , d + t
be s×s linearly independent matrices with entries in Ro/pRo if charRo = p3.

On the additive group R = Ro ⊕ U ⊕ V we define multiplication by the
following relations:

uiuj = aoijp
f +

d∑

l=1

alijpul +

t∑

k=1

ad+tij vk;

(2.1) uivk = vkui = uiujuλ = pvk = vlvk = vkvl = 0;

uiα = αui, vkα = αvk; (1 ≤ i, j, λ ≤ s; 1 ≤ l ≤ d; 1 ≤ k ≤ t);

where α, aoij , a
l
ij , a

d+k
ij ∈ Ro/Jo, and f = 1 or 2, depending on whether

charRo = p2 or p3.
By the above relations, R is a completely primary finite ring of character-

istic p2 or p3 in which the maximal Galois subring lies in Z(R), the center of
R, and with Jacobson radical J = pR⊕U ⊕ V , ann(J ) = J 2, J 2 = pR⊕ V
or J 2 = pU ⊕ V (if charR = p2); J 2 = p2R ⊕ pU ⊕ V (if charR = p3), and
J 3 = (0). We call (alij) the structural matrices of the ring R and the numbers
p, n, r, s, d and t invariants of the ring R.

Throughout, we need the following result proved in [2, Theorem 6.1]

Theorem 2.1. Let R be a ring. Then R is a completely primary finite
ring of characteristic p2 or p3 in which the maximal Galois subring lies in
Z(R), with maximal ideal J such that J 3 = (0), J 2 6= (0), annihilator of J
coincides with J 2 if and only if R is isomorphic to one of the rings given by
the relations in (2.1).

Remark 2.2. We know that R = Ro⊕Rom1⊕. . .⊕Romh, where mi ∈ J ;
and that J = pRo ⊕Rom1 ⊕ . . .⊕Romh. Since J 3 = (0) and J 2 = ann(J ),
with J 2 6= (0), we can write

{m1, . . . ,mh} = {u1, . . . , us, v1, . . . , vt}
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where, u1, . . . , us ∈ J − J 2 and v1, . . . , vt ∈ J 2, so that s+ t = h.
In view of the above considerations and by 1.8 of [2], the non-zero elements

of

{1, p, u1, . . . , us, pu1, . . . , pus, v1, . . . , vt}(2.2)

form a “basis” for R over Ko.
Since pm = 0, for all m ∈ J 2, it is easy to check that if charR = p2, then

either

(i) p ∈ J 2; or
(ii) p ∈ J − J 2.

For clarity of our work, we consider the two cases separately in the rest of the
paper.

Remark 2.3. Suppose that charR = p2 and p lies in J 2. In this case,
(2.2) becomes

{1, p, u1, . . . , us, v1, . . . , vt};

and by [2, Proposition 3.2], 1 ≤ 1 + t ≤ s2. Hence, every element of R may
be written uniquely as

ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk; (ao, a1, bi, ck ∈ Ko);

and therefore,

uiuj = aoijp+
t∑

k=1

akijvk,

where aoij , a
k
ij ∈ Ro/pRo.

Remark 2.4. If charR = p2 and p lies in J−J 2, suppose that d ≥ 0 is the
number of the elements pui in (2.2) which are not zero and suppose, without
loss of generality, that pu1, . . . , pud are the d non-zero elements. Then, (2.2)
becomes

{1, p, u1, . . . , us, pu1, . . . , pud, v1, . . . , vt}

and by [2, Proposition 3.2], we have 1 ≤ d+ t ≤ s2. Hence, every element of
R may be written uniquely as

ao + a1p+

s∑

i=1

biui +

d∑

l=1

clpul +

t∑

k=1

dkvk; (ao, a1, bi, cl, dk ∈ Ko)

and

uiuj =

d∑

l=1

alijpul +

t∑

k=1

ak+dij vk,

where alij , a
k+d
ij ∈ Ro/pRo.
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Remark 2.5. If the characteristic of R is p3, the argument is similar to
that given in the case where charR = p2. However, in this case, p ∈ J − J 2

and p2 ∈ J 2 and an arbitrary element in R is of the form

ao + a1p+ a2p
2 +

s∑

i

biui +
d∑

l=1

clpul +
t∑

k

dkvk,

and we define multiplication by

uiuj = aoijp
2 +

d∑

l=1

alijpul +

t∑

k=1

ak+dij vk;

and the only parameters left in defining R are the s× s linearly independent
structural matrices Al = (alij) over Ro/pRo, for all l = 0, 1, . . . , t+1, . . . , t+d.

3. The group of automorphisms

First note that since R is generated by b, ui and vk, it is sufficient to give
the images of these elements to completely determine the automorphisms.
Next, any automorphism from R to R when reduced to Ro must fix Ro. So
to determine this group, we first show that the Galois subring Ro of R and
the ideal J 2 given by J 2 = pU ⊕ V (if charR = p2, and p ∈ J − J 2), are
invariant under any automorphism φ ∈ Aut(R). We then compute the image
of the rest of the generators, by a fixed element of Aut(R).

Lemma 3.1. Let φ ∈ Aut(R). Then φ(Ro) is a maximal Galois subring
of R which is equal to Ro.

Proof. Suppose there is an automorphism φ : R → R. It is obvious
that φ(Ro) is a maximal Galois subring of R so that there exists an invertible
element x ∈ R such that xφ(Ro)x

−1 = Ro.
Now, consider the map ψ : R → R given by r 7→ xφ(r)x−1 . Then, clearly,

ψ is an automorphism of R which sends Ro to itself.

Lemma 3.2. Let φ ∈ Aut(R) and suppose that charR = p2 and p ∈
J − J 2. Then φ(J 2) = J 2.

Proof. This follows easily since for any v ∈ J 2, we have φ(v) ∈ J 2

because [φ(v)]2 = φ(v2) = 0.

Remark 3.3. Following the above two results, we remark that if charR =
p2 and p ∈ J 2, then φ(pRo) ⊂ J 2; and if charR = p3, then φ(p2Ro) ⊆ J 2.

Lemma 3.4. Let R be a ring of Theorem 2.1 and let φ ∈ Aut(R). Then
for each j = 1, . . . , s; each k = 1, . . . , t; and each l = 1, . . . , d;

φ(uj) =

2∑

i=1

aijp
i +

s∑

µ=1

bµjuµ +

d∑

l=1

cljpul +

t∑

k=1

dkjvk;
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φ(vk) =

2∑

i=1

eikp
i +

d∑

η=1

gηkpuη +

t∑

ρ=1

fρkvρ,

and

φ(pul) = a1lp
2 +

d∑

µ=1

bµlpuµ,

where aij , bµl, clj , dkj , eik, gηk, fρk ∈ Ro/pRo; and for ro ∈ Ro, φ(ro) = rσo ,
for some σ ∈ Aut(Ro).

Proof. Since

uj ∈ J = pRo ⊕ U ⊕ V = pRo ⊕

s∑

j=1

Rouµ ⊕

t∑

k=1

Rovk,

for all i = 1, . . . , s; and

vk ∈ J 2 = pRo ⊕ V = pRo ⊕

t∑

ρ=1

Rovρ,

or

vk ∈ J 2 = pU ⊕ V =

d∑

η=1

Ropuη ⊕

t∑

ρ=1

Rovρ,

(if charR = p2), or

vk ∈ J 2 = p2Ro ⊕ pU ⊕ V = p2Ro ⊕

d∑

η=1

Ropuη ⊕

t∑

ρ=1

Rovρ,

(if charR = p3) for all ρ = 1, . . . , t and all η = 1, . . . , d; the result follows.
The last part may be deduced from Lemma 3.1 since φ|Ro

= σ ∈ Aut(Ro).

Remark 3.5. In Lemma 3.4, if charR = p2 and p ∈ J 2, then the coef-
ficients of p2, pul, puη, and puµ are all equal to zero; and if charR = p2 and
p ∈ J − J 2, the scalars a2j , eij and the coefficient of p2, are all zero.

3.1. Notation. We first establish some notation that will be useful in the rest
of the paper. So, let R be a ring of Theorem 2.1. If σ ∈ Aut(Ro) and x ∈ GR,
the group of unit elements in R, define the mappings ασ, ψx from R to R as
follows:

ασ(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)

=
2∑

i=0

aσi p
i +

s∑

j=1

bσj uj +
d∑

l=1

cσl pul +
t∑

k=1

dσkvk,
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and

ψx(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)

= x(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)x
−1.

Also, if

ψ(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)

=

2∑

i=0

aip
i +

s∑

j=1

bjϕ(uj) +

d∑

l=1

clpϕ(ul) +

t∑

k=1

dkφ(vk),

where ϕ ∈ AutRo/pRo
(U) and φ ∈ AutRo/pRo

(V ), let ψσ = ψασ; if

β(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)

=
2∑

i=0

aip
i +

s∑

j=1

bjuj +
2∑

i=1

s∑

j=1

aijbjp
i +

d∑

l=1

s∑

j=1

cljbjpul

+
t∑

k=1

s∑

j=1

bjdkjvk +
d∑

l=1

clpul +
t∑

k=1

dkvk,

where aij , clj , dkj ∈ Ro/pRo, let βσ = βασ ; if

γ(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk)

=

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

d∑

l=1

a1lclp
2 +

t∑

k=1

dkvk,

where a1l ∈ Ro/pRo, let γσ = γασ; and if

δ(

2∑

i=0

aip
i +

s∑

j=1

bjuj +

d∑

l=1

clpul +

t∑

k=1

dkvk) =

2∑

i=0

aip
i +

s∑

j=1

bjuj

+
d∑

l=1

clpul +
t∑

k=1

dkvk +
d∑

η=1

t∑

k=1

dkgηkpuη +
2∑

i=1

t∑

k=1

dkeikp
i,

where eik, gηk ∈ Ro/pRo, let δσ = δασ. Finally, if A = (aij), define Aσ =
(aσij).
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Due to some similarities of these rings, we present in this paper, detailed
proofs of results on rings of characteristic p2 in which p ∈ J 2. The other two
cases may be proved in a similar manner with minor modifications.

We start with the following.

3.2. Rings in which p ∈ J 2.

Theorem 3.6. Let R be a ring of Theorem 2.1 and of characteristic p2

in which p ∈ J 2, with the invariants p, n, r, s, and t. Then, ψ ∈ Aut(R) if
and only if

ψ(ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk)

=xaσox
−1 + xaσ1x

−1p+
s∑

i=1

a1ixb
σ
i x

−1p+
t∑

k=1

e1kxc
σ
kx

−1p

+

s∑

i=1

xbσi x
−1ϕ(ui) +

t∑

k=1

s∑

i=1

dkixb
σ
i x

−1vk +

t∑

k=1

xcσkx
−1φ(vk),

where σ ∈ Aut(Ro), x ∈ GR, ϕ ∈ AutRo/pRo
(U), φ ∈ AutRo/pRo

(V ); a1i, dki,
e1k ∈ Ro/pRo.

Proof. Let ψ ∈ Aut(R). Then there exists x ∈ GR such that ψ(Ro) =
xRox

−1, and hence, ψ(r) = xrσx−1, for any r ∈ Ro, for some automorphism
σ of Ro. Since

R = ψ(Ro) ⊕
∑

ψ(Ro)ψ(ui) ⊕
∑

ψ(Ro)ψ(vk)

and conjugation is an automorphism of R,

R = Ro ⊕
∑

Rox
−1ψ(ui)x⊕

∑
Rox

−1ψ(vk)x.

But J 3 = (0), J 2 6= (0), hence, x−1ψ(ui)x = αiψ(ui) and x−1ψ(vk)x =
βkψ(vk), where αi, βk ∈ Ro/pRo, for all i = 1, . . . , s; k = 1, . . . , t.

Thus,

R = Ro ⊕
∑

Roαiψ(ui) ⊕
∑

Roβkψ(vk)

and hence,

R = Ro ⊕
∑

Roψ(ui) ⊕
∑

Roψ(vk).

Therefore, for any i ∈ {1, . . . , s} and any k ∈ {1, . . . , t}, ψ(ui) = ϕ(ui) +
a1ip +

∑
dkivk and ψ(vk) = e1kp + φ(vk), where ϕ ∈ AutRo/pRo

(U); φ ∈
AutRo/pRo

(V ); and a1i, dki, e1k ∈ Ro/pRo.
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Conversely, let ψ be as defined above. We need to check that for every
r = ao + a1p+

∑s
i=1 biui +

∑t
k=1 ckvk ∈ R,

θ : r 7→ aσo + aσ1p+

s∑

i=1

a1ib
σ
i p+

t∑

k=1

e1kc
σ
kp+

s∑

i=1

bσi ϕ(ui) +

t∑

k=1

s∑

i=1

dkib
σ
i vk +

t∑

k=1

cσkφ(vk),

where ϕ(ui) = x−1θ(ui)x, and φ(vk) = x−1θ(vk)x, is an automorphism of R.

So, let s = do + d1p +
∑s
i=1 eiui +

∑t
k=1 fkvk be another element in R.

Then,

θ : s 7→ dσo + dσ1p+

s∑

i=1

a1ie
σ
i p+

t∑

k=1

e1kf
σ
k p+

s∑

i=1

eσi ϕ(ui) +

t∑

k=1

s∑

i=1

dkie
σ
i vk +

t∑

k=1

fσk φ(vk).

Now,

θ(r)θ(s) = aσod
σ
o + [aσod

σ
1 + aσ1d

σ
o ]p+

s∑

i=1

[aσoa1ie
σ
i + a1ib

σ
i d
σ
o ]p

+

t∑

k=1

[aσoe1kf
σ
k + e1kc

σ
kd

σ
o ]p+

s∑

i=1

[aσo e
σ
i + bσi d

σ
o ]ϕ(ui)

+

t∑

k=1

s∑

i=1

[aσodkie
σ
i + dkib

σ
i d
σ
o ]vk +

t∑

k=i

[aσof
σ
k + cσkd

σ
o ]φ(vk)

+
s∑

i,j=1

bσi e
σ
j ϕ(ui)ϕ(uj).

On the other hand,

θ(rs) = (aodo)
σ + (aod1 + a1do)

σp+

s∑

i=1

a1i(aoei + bido)
σp

+

t∑

k=1

e1k(aofk + ckdo)
σp+

s∑

i=1

(aoei + bido)
σϕ(ui)

+
t∑

k=1

s∑

i=1

dki(aoei + bido)
σvk +

t∑

k=1

(aofk + ckdo)
σφ(vk)

+

s∑

i,j=1

(bieja
o
ij)

σp+

t∑

k=1

s∑

i,j=1

(bieja
k
ij)

σφ(vk).
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From the above equalities, we deduce that

(3.1) (aoij)
σp+

t∑

k=1

(akij)
σφ(vk) =

s∑

i,j=1

ϕ(ui)ϕ(uj).

Now, it is obvious that ψ = ψxθ and hence, ψ is an automorphism of R.

From the assumptions that σ ∈ Aut(Ro), x ∈ GR, ϕ ∈ AutRo/pRo
(U)

and φ ∈ AutRo/pRo
(V ) one obtains the following: ϕ(ui) =

∑s
ν=1 bνiuν and

φ(vk) =
∑t
ρ=1 cρkvρ, with bνi, cρk ∈ Ro/pRo.

Hence, (3.1) implies that

(aoij)
σp+

t∑

ρ,k=1

cρk(a
k
ij)

σvρ =

t∑

ρ=0

s∑

ν,µ=1

bνibµja
ρ
νµvρ

or
t∑

ρ,k=0

cρk(a
k
ij)

σvρ =

t∑

ρ=0

s∑

ν,µ=1

bνibµja
ρ
νµvρ,

where coo = 1, c1k = e1k and vo = p. It follows that

s∑

ν,µ=1

bνibµja
ρ
νµ =

t∑

k=0

cρkψ(akij) (ρ = 0, 1, . . . , t).(3.2)

Hence, in matrix form, (3.2) implies that

BTAρB =

t∑

k=0

cρkA
σ
k (ρ = 0, 1, . . . , t),

where σ ∈ Aut(Ro), B ∈ GL(s,Ro/pRo) and C = (ckρ) ∈ GL(1 + t, Ro/pRo).
Conversely, suppose there exist σ ∈ Aut(Ro), B ∈ GL(s,Ro/pRo) and

C = (cρk) ∈ GL(1 + t, Ro/pRo), with

BTAρB =

t∑

k=0

cρkA
σ
k (ρ = 0, 1, . . . , t),

where coo = 1, c1k = e1k.
Consider the map ψ : R → R defined by

ψ(ao + a1p+
∑

i

biui
∑

k

ckvk) = aσo + [aσ1 +
∑

i

a1ib
σ
i +

∑

k

e1kc
σ
k ]p+

∑

ν

∑

i

bσi bνiuν +

∑

ρ

[
∑

i

bσi dρi +
∑

k

cσkcρk]vρ.

Then it is routine to verify that ψ is a homomorphism from R to R and
that it preserves the identity element.
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But Kerψ consists of all elements

ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk ∈ R

such that

aσo + [aσ1 +
∑

i

a1ib
σ
i +

∑

k

e1kc
σ
k ]p+

∑

ν

∑

i

bσi bνiuν+

∑

ρ

[
∑

i

bσi dρi +
∑

k

cσkcρk]vρ = 0;

which implies that

aσo + [aσ1 +
∑

i

a1ib
σ
i +

∑

k

e1kc
σ
k ]p = 0,

∑

ν

∑

i

bσi bνiuν = 0

and ∑

ρ

[
∑

i

bσi dρi +
∑

k

cσkcρk]vρ = 0.

Now,
∑

ν

∑

i

bσi bνiuν = 0 implies that
∑

i

bσi bνi = 0, for every ν = 1, . . . , s;

since {ui, . . . , us} is linearly independent over Ro/pRo. Further, (bνi) is in-
vertible, so that the homogeneous system

∑
i b
σ
i bνi = 0; ν = 1, . . . , s, has the

trivial solution as its unique solution and hence, bi = 0 (for every i = 1, . . . , s)
since σ ∈ Aut(Ro).

Similarly, ck = 0 for every k = 1, . . . , t since (cρk)t×t is invertible. Hence,

aσo + [aσ1 +
∑

i

a1ib
σ
i +

∑

k

e1kc
σ
k ]p = 0,

with ck = 0 for every k = 1, . . . , t and bi = 0 for every i = 1, . . . , s implies that
aσo + aσ1p = 0, so that aσ1p = −aσo . But aσ1p ∈ pRo, implying that aσo ∈ pRo, a
contradiction, since ao ∈ Ko. Hence, ao = a1 = 0.

Hence, Kerψ = (0) and therefore, ψ is injective, and since R is finite, ψ
is also surjective. Thus, ψ is an automorphism of R.

We have thus proved the following:

Proposition 3.7. Let R be a ring of Theorem 2.1 and of characteristic
p2 with the invariants p, n, r, s, t. Then ψ is an automorphism of R if
and only if there exist σ ∈ Aut(Ro), B ∈ GL(s,Ro/pRo) and C = (cρk) ∈

GL(1 + t, Ro/pRo) such that BTAρB =
∑t

k=0 cρkA
σ
k , where Aρ and Ak are

structural matrices for R and coo = 1, c1k = e1k.
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Thus, the set of elements σ ∈ Aut(Ro/pRo), C = (cρk) ∈ GL(1 +
t, Ro/pRo), B ∈ GL(s,Ro/pRo) and 1+J ∼= pRo⊕U ⊕V, determines all the
automorphisms of the ring R.

Consider the set of equations BTAρB =
∑t

k=1 cρkA
σ
k given in Proposition

3.7, with B = (bij) ∈ GL(s,Ro/pRo). Then, it is easy to see that B = (bij)
is the transition matrix between the bases (ui) of J /J 2. Equally, C = (cρk)
is the transition matrix between the bases (vk) (k = 0, 1, . . . , t) of J 2. By
calculating uνuµ (the images of the ui under ψ) and comparing coefficients
of (vρ) (ρ = 0, 1, . . . , t) (the images of the vk under ψ) we obtain equations,

which in matrix form, are BTAρB =
∑t
k=1 cρkA

σ
k .

The problem of determining the groups of automorphisms of our rings
amounts to classifying (1 + t)−tuples of linearly independent matrices Ao,
A1, . . . , At under the above relation, B, C being arbitrary invertible matrices,
σ being an arbitrary automorphism and 1 +J being the normal subgroup of
GR of order p(n−1)r.

Let A be the set of all (1 + t)−tuples (Ao, A1, . . . , At) of s× s matrices
over Ro/pRo. The group GL(s,Ro/pRo) acts on A by “congruence”:

(Ao, A1, . . . , At) · B = (BTAoB, B
TA1B, . . . , B

TAtB)

and on the left via

C · (Ao, A1, . . . , At)

= (c1oA
σ
o + c11A

σ
1 + · · · + c1tA

σ
t , . . . , ctoA

σ
o + ct1A

σ
1 + · · · + cttA

σ
t ),

where C = (cρk). Thus, these two actions are permutable and define a (left)
action of G = GL(s,Ro/pRo) ×GL(1 + t, Ro/pRo) on A:

(B, C) · (Ao, A1, . . . , At) = C · (Aσo , . . . , A
σ
t ) ·B

−1,

for some fixed automorphism σ. By restriction, G acts on the subset Y con-
sisting of (1 + t)−tuples A0, A1, . . . , At, linearly independent. This amounts
to studying the “congruence” action (via B) on GL(s,Ro/pRo) on the set Y of
1 + t−dimensional subspaces of Ms×s(Ro/pRo), C just representing a change
of basis in a given space. In the same way, the whole action of G on A may
be represented as an action of GL(1 + t, Ro/pRo) on the set A of subspaces
of dimension ≤ 1 + t. We may call two (1 + t)-tuples in the same G-orbit as
equivalent.

3.3. Rings in which p ∈ J − J 2.

Theorem 3.8. Let R be a ring of Theorem 2.1 and of characteristic p2 in
which p ∈ J −J 2, with the invariants p, n, r, s, t, and d. Then, ψ ∈ Aut(R)
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if and only if

ψ(ao + a1p+

s∑

i=1

biui +

d∑

l=1

clpul +

t∑

k=1

dkvk) = xaσox
−1 + xaσ1x

−1p

+
s∑

i=1

xbσi x
−1ϕ(ui) +

d∑

l=1

s∑

i=1

blixb
σ
i x

−1pul +
t∑

ν=1

s∑

i=1

cνixb
σ
i x

−1vν

+

d∑

l=1

xcσl x
−1pϕ(ul) +

t∑

k=1

xdσkx
−1φ(vk) +

d∑

η=1

t∑

k=1

dηkxd
σ
kx

−1pul,

where σ ∈ Aut(Ro), x ∈ GR, ϕ ∈ AutRo/pRo
(U), φ ∈ AutRo/pRo

(V ); bli, cνi,
dηk ∈ Ro/pRo.

Like we did for Theorem 3.6, we deduce from this the following:

Proposition 3.9. Let R be a ring of characteristic p2 in which Ro lies in
the center, with the invariants p, n, r, s, t, d and in which p does not lie in
J 2. Then ψ is an automorphism of R if and only if there exist σ ∈ Aut(Ro),
B ∈ GL(s,Ro/pRo) and C = (cρk) ∈ GL(t+ d,Ro/pRo) such that BTAρB =∑t+d

k=1 cρkA
σ
k , where Ak and Aρ are structural matrices for R.

3.4. Rings of characteristic p3. We now consider the case of rings of Theorem
2.1 and of characteristic p3.

Theorem 3.10. Let R be a ring of Theorem 2.1 and of characteristic p3

with the invariants p, n, r, s, t, d.Then ψ ∈ Aut(R) if and only if

ψ(ao + a1p+ a2p
2 +

s∑

i=1

biui +

d∑

l=1

clpul +

t∑

k=1

dkvk)

=xaσox
−1 + xaσ1x

−1p+ xaσ2x
−1p2 +

s∑

i=1

boixb
σ
i x

−1p2 +

d∑

l=1

golxc
σ
l x

−1p2

+

t∑

k=1

eokxd
σ
kx

−1p2 +

s∑

i=1

xbσi x
−1ϕ(ui) +

d∑

l=1

s∑

i=1

blixb
σ
i x

−1pul

+
t∑

ν=1

s∑

i=1

cνixb
σ
i x

−1vν +
d∑

l=1

xcσl x
−1pϕ(ul) +

t∑

k=1

xdσkx
−1φ(vk)

+

d∑

η=1

t∑

k=1

dηkxd
σ
kx

−1puη,

where σ ∈ Aut(Ro), x ∈ GR, ϕ ∈ AutRo/pRo
(U), φ ∈ AutRo/pRo

(V ); boi, eok,
gol, bli, cνi, dηk ∈ Ro/pRo.

From this we deduce the following matrix version of the result.
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Proposition 3.11. Let R be a ring of Theorem 2.1 and of characteristic
p3 with the invariants p, n, r, s, t, d. Then ψ is an automorphism of R if
and only if there exist σ ∈ Aut(Ro), B ∈ GL(s,Ro/pRo) and C = (cρk) ∈

GL(1 + t + d,Ro/pRo) such that BTDρB =
∑t+d
k=0 cρkA

σ
k , where Ak and Aρ

are structural matrices for R.

4. The main results

We now describe explicitly, the group of automorphisms of the ring R. In
what follows, we provide the proof for the case when the characteristic of R is
p2 and p ∈ J 2; while the proofs for the other cases may be obtained through
minor modifications of the proof of Theorem 4.1.

Theorem 4.1. Let R be a ring of Theorem 2.1, of characteristic p2 in
which p ∈ J 2 and with the invariants p, n, r, s, t. Then

Aut(R) ∼= [M(1+t)×s(Ro/pRo) × M1×t(Ro/pRo) × (pRo ⊕ U ⊕ V )]×θ2

[Aut(Ro) ×θ1 (GL(s,Ro/pRo) ×GL(t, Ro/pRo))].

Proof. Let G be the subgroup of Aut(R) which contains all the auto-
morphisms ψ defined by

ψ(ao + a1p+

s∑

i=1

biui +

t∑

k=1

ckvk) = aσo + aσ1p+

s∑

i=1

bσi ϕ(ui) +

t∑

k=1

cσkφ(vk),

where σ ∈ Aut(Ro), ϕ ∈ AutRo/pRo(U) and φ ∈ AutRo/pRo
(V ).

Let G0 be the subgroup of G which contains all the automorphisms ασ
such that

ασ(ao + a1p+

s∑

i=1

biui +

t∑

k=1

ckvk) = aσo + aσ1p+

s∑

i=1

bσi ui +

t∑

k=1

cσkvk,

where σ ∈ Aut(Ro). Then G0
∼= Aut(Ro). Let G1 be the subgroup of G which

contains all the automorphisms ψ such that

ψ(ao + a1p+

s∑

i=1

biui +

t∑

k=1

ckvk) = ao + a1p+

s∑

i=1

biϕ(ui) +

t∑

k=1

ckvk,

where ϕ ∈ AutRo/pRo
(U); and let G2 be the subgroup of G which contains all

the automorphisms ψ such that

ψ(ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk) = ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckφ(vk),

where φ ∈ AutRo/pRo
(V ). Then G1 and G2 are subgroups of G and G1 ×G2

is a direct product. Moreover, G1
∼= AutRo/pRo

(U) ∼= GL(s,Ro/pRo) and
G2

∼= AutRo/pRo
(V ) ∼= GL(t, Ro/pRo).
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Finally, let H be the subgroup of Aut(R) containing all the automor-
phisms ψ defined by

ψ(ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk) = x(ao + a1p+
s∑

i=1

biui

+

s∑

i=1

bia1ip+

t∑

ρ=1

s∑

i=1

bidρivρ +

t∑

k=1

ckvk +

t∑

k=1

cke1kp)x
−1,

where x ∈ 1 + J , a1i, dρi, e1k ∈ Ro/pRo; H1 be the subgroup of H which
contains all the automorphisms ψ defined by

ψ(ao+a1p+

s∑

i=1

biui+

t∑

k=1

ckvk) = ao+a1p+

s∑

i=1

biui+

t∑

ρ=0

s∑

i=1

bidρip+

t∑

k=1

ckvk,

where dρi ∈ Ro/pRo and vo = p; H2 be the subgroup of H which contains all
the automorphisms ψ such that

ψ(ao+ a1p+

s∑

i=1

biui+

t∑

k=1

ckvk) = ao+ a1p+

s∑

i=1

biui+

t∑

k=1

ckvk+

t∑

k=1

cke1kp,

where e1k ∈ Ro/pRo; and let H3 be the subgroup of H which contains all the
automorphisms ψ such that

ψ(ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk) = x(ao + a1p+
s∑

i=1

biui +
t∑

k=1

ckvk)x
−1,

where x ∈ 1 + J ⊂ GR. Then it is easy to check that the direct product
H = H1 × H2 × H3 and the semidirect product G = (G1 × G2) ×θ2 G0 are
subgroups ofAut(R), where if ϕ ∈ G1×G2 and ασ ∈ G0, then θ2(ασ)(ϕ) = ϕσ.

Let ϕ ∈ H ∩G. Since every element of H is either fixing Ro elementwise
or sending Ro to another maximal Galois subring of R and ϕ ∈ G, ϕ fixes Ro
elementwise.

Let ϕ = βψx, where β ∈ H1 × H2 and ψx ∈ H3. Since x ∈ 1 + J ,
clearly, ϕ = βψx = β. Since β ∈ G, β(U) = U and β(V ) = V . But the
only element of H1 ×H2 which fixes U and V is the identity. Thus, ϕ = idR
and hence, H ∩ G = idR. Now, it is easy to see that Aut(R) = H ×θ1 G,
where if βψx ∈ H1 ×H2 and ϕασ ∈ G, then θ1(ϕασ)(βψx) = βσϕψασ

(x). It
is trivial to check that the mappings g : H1 7→ M(1+t)×s(Ro/pRo) given by

g(βM ) =
∑t
ρ=0 dρivρ and h : H2 7→ M1×t(Ro/pRo) given by h(βM ) = e1kp,

are isomorphisms, and hence, combining with f : H3 → pRo⊕U⊕V, we obtain
an isomorphism H ∼= M(1+t)×s(Ro/pRo) × M1×t(Ro/pRo) × (pRo ⊕ U ⊕ V ).
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Hence,

Aut(R) ∼= [M(1+t)×s(Ro/pRo) × M1×t(Ro/pRo) × (pRo ⊕ U ⊕ V )]×θ2

[Aut(Ro) ×θ1 (GL(s,Ro/pRo) ×GL(t, Ro/pRo))],

where
θ1(σ)(B, C) · (A0, . . . , At) = C · (Aσo , . . . , A

σ
t ) · C

−1;

and
θ2(σ, B, C)(A0, . . . , At) = (BTA0B, B

TA1B, . . . , B
TAtB).

Theorem 4.2. Let R be a ring of Theorem 2.1, of characteristic p2 in
which p ∈ J − J 2 and with the invariants p, n, r, s, t, d. Then

Aut(R) ∼= [M(d+t)×s(Ro/pRo) × Md×t(Ro/pRo) × (pRo ⊕ U ⊕ V )]×θ2

[Aut(Ro) ×θ1 (GL(s,Ro/pRo) ×GL(t, Ro/pRo) ×GL(d,Ro/pRo))].

Proof. Modify the proof of Theorem 4.1.

Theorem 4.3. Let R be a ring of Theorem 2.1 and of characteristic p3

with the invariants p, n, r, s, t, d. Then Aut(R) is isomorphic to

[M(1+d+t)×s(K) × M(1+t)×d(K) × M1×d(K) × (pRo ⊕ U ⊕ V )]×θ2

[Aut(Ro) ×θ1 (GL(s,K) ×GL(t,K) ×GL(d,K))];

where K = Ro/pRo.

Proof. Similar to Theorem 4.1 with some modifications.
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