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Abstract. Let L(− 1
2
(l +1), 0) be the simple vertex operator algebra

associated to an affine Lie algebra of type A
(1)
l

with the lowest admissible

half-integer level −
1
2
(l + 1), for even l. We study the category of weak

modules for that vertex operator algebra which are in category O as mod-
ules for the associated affine Lie algebra. We classify irreducible objects in
that category and prove semisimplicity of that category.

1. Introduction

Let g be a simple finite-dimensional Lie algebra and ĝ the associated affine
Lie algebra. For any complex number k 6= −h∨, denote by L(k, 0) the sim-
ple vertex operator algebra associated to ĝ with level k. The representation
theory of L(k, 0) heavily depends on the choice of level k. If k is a positive
integer, L(k, 0) is a rational vertex operator algebra (cf. [12, 28]), i.e. the cat-
egory of Z+-graded weak L(k, 0)-modules is semisimple. Irreducible objects
in that category are integrable highest weight ĝ-modules of level k ([12, 22]).
The corresponding associative algebra A(L(k, 0)), defined in [28], is finite-
dimensional (cf. [18]). In some cases such as k /∈ Q or k < −h∨ (studied in
[19, 20]), categories of L(k, 0)-modules have significantly different structure
then categories of L(k, 0)-modules for a positive integer k. However, there are
examples of rational levels k such that the category of weak L(k, 0)-modules
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which are in the category O as ĝ-modules, has similar structure as the cate-
gory of Z+-graded weak L(k, 0)-modules for positive integer levels k. These
are so called admissible levels, defined in [16, 17].

The case of vertex operator algebras associated to affine Lie algebras of

type C
(1)
l with admissible half-integer levels has been studied in [1, 2]. Vertex

operator algebras associated to affine Lie algebras of type A
(1)
1 with arbitrary

admissible level have been studied in [4, 7]. In these cases vertex operator
algebra L(k, 0) has finitely many irreducible weak modules from the category
O and every weak L(k, 0)-module from the category O is completely reducible.
One can say that these vertex operator algebras are rational in the category
O. In [4], authors gave a conjecture that vertex operator algebras L(k, 0),
for all admissible levels k, are rational in the category O. In the case of

vertex operator algebras associated to affine Lie algebras of type B
(1)
l with

admissible half-integer levels, certain parts of this conjecture were verified in
[25]. Admissible modules for affine Lie algebras were also recently studied in
[3, 8, 13, 26, 27]. Vertex operator algebras associated to certain affine Lie
algebras with non-admissible negative integer levels have been studied in [5].

When k is an admissible level, vertex operator algebra L(k, 0) is a quotient
of the generalized Verma module by the maximal ideal generated by one
singular vector. The formula for this singular vector is very complicated for
general admissible level k (cf. [23]). But for some special cases of affine Lie
algebras and half-integer admissible levels k, this singular vector has conformal
weight 2, and the formula for this vector is relatively simple (cf. [1, 2, 25]). In
this paper we study one similar special case, for which we verify the conjecture
from [4].

We consider the case of an affine Lie algebra of type A
(1)
l and the corre-

sponding vertex operator algebra L(− 1
2 (l + 1), 0), for even l. We show that

− 1
2 (l + 1) is an admissible level for this affine Lie algebra. The results on

admissible modules from [16] imply that L(− 1
2 (l + 1), 0) is a quotient of the

generalized Verma module by the maximal ideal generated by a singular vec-
tor of conformal weight 2. Using results from [12, 28], we can identify the
corresponding associative algebra A(L(− 1

2 (l + 1), 0)) with a certain quotient

of U(g). Algebra A(L(− 1
2 (l+1), 0)) is infinite-dimensional in this case. Using

methods from [2, 4, 24], we get that irreducible A(L(− 1
2 (l + 1), 0))-modules

from the category O are in one-to-one correspondence with zeros of the cer-
tain set of polynomials P0. By determining a basis for the vector space P0, we
obtain the classification of irreducible A(L(− 1

2 (l + 1), 0))-modules from the
category O. Using results from [28], we obtain the classification of irreducible
weak L(− 1

2 (l + 1), 0)-modules from the category O. Using this classification

and results from [17], we show that every weak L(− 1
2 (l + 1), 0)-module from

the category O is completely reducible.
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In the case when l is odd, the lowest half-integer admissible level for affine

Lie algebra of type A
(1)
l is − 1

2 l, and the maximal submodule of the generalized
Verma module is generated by a singular vector of conformal weight 4. It is
more complicated to determine the formula for singular vector in that case,
and to use the method for classification from [2, 4, 24].

In this paper Z+ denotes the set of nonnegative integers.

2. Vertex operator algebras associated to affine Lie algebras

In this section we review certain results on vertex operator algebras and
corresponding modules. Specially, we recall some results on vertex operator
algebras associated to affine Lie algebras.

2.1. Vertex operator algebras and modules. Let (V, Y,1, ω) be a vertex oper-
ator algebra (cf. [6, 10, 11]). An ideal in a vertex operator algebra V is a
subspace I of V satisfying Y (a, z)I ⊆ I[[z, z−1]] for any a ∈ V . Given an
ideal I in V , such that 1 /∈ I, ω /∈ I, the quotient V/I admits a natural vertex
operator algebra structure.

Let (M, YM ) be a weak module for a vertex operator algebra V (cf. [22]).
A Z+-graded weak V -module ([12]) is a weak V -module M together with a
Z+-gradation M = ⊕∞

n=0M(n) such that

amM(n) ⊆ M(n + r − m − 1) for a ∈ V(r), m, n, r ∈ Z,

where M(n) = 0 for n < 0 by definition.
A weak V -module M is called a V -module if L(0) acts semisimply on M

with the decomposition into L(0)-eigenspaces M = ⊕α∈CM(α) such that for
any α ∈ C, dim M(α) < ∞ and M(α+n) = 0 for n ∈ Z sufficiently small.

2.2. Zhu’s A(V ) theory. Let V be a vertex operator algebra. Following [28],
we define bilinear maps ∗ : V × V → V and ◦ : V × V → V as follows. For
any homogeneous a ∈ V and for any b ∈ V , let

a ◦ b = Resz

(1 + z)wta

z2
Y (a, z)b,

a ∗ b = Resz

(1 + z)wta

z
Y (a, z)b

and extend to V × V → V by linearity. Denote by O(V ) the linear span
of elements of the form a ◦ b, and by A(V ) the quotient space V/O(V ). For
a ∈ V , denote by [a] the image of a under the projection of V onto A(V ). The
multiplication ∗ induces the multiplication on A(V ) and A(V ) has a structure
of an associative algebra.

Proposition 2.1 ([12, Proposition 1.4.2]). Let I be an ideal of V . As-

sume 1 /∈ I, ω /∈ I. Then the associative algebra A(V/I) is isomorphic to

A(V )/A(I), where A(I) is the image of I in A(V ).
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For any homogeneous a ∈ V we define o(a) = awta−1 and extend this
map linearly to V .

Proposition 2.2 ([28, Theorem 2.1.2, Theorem 2.2.1]). (a) Let M =
⊕∞

n=0M(n) be a Z+-graded weak V -module. Then M(0) is an A(V )-
module defined as follows:

[a].v = o(a)v,

for any a ∈ V and v ∈ M(0).
(b) Let U be an A(V )-module. Then there exists a Z+-graded weak V -

module M such that the A(V )-modules M(0) and U are isomorphic.

Proposition 2.3 ([28, Theorem 2.2.2]). The equivalence classes of the

irreducible A(V )-modules and the equivalence classes of the irreducible Z+-

graded weak V -modules are in one-to-one correspondence.

2.3. Modules for affine Lie algebras. Let g be a simple Lie algebra over C with
a triangular decomposition g = n−⊕h⊕n+. Let ∆ be the root system of (g, h),
∆+ ⊂ ∆ the set of positive roots, θ the highest root and (·, ·) : g× g → C the
Killing form, normalized by the condition (θ, θ) = 2.

The affine Lie algebra ĝ associated to g is the vector space g⊗C[t, t−1]⊕Cc
equipped with the usual bracket operation and the canonical central element c

(cf. [14]). Let h∨ be the dual Coxeter number of ĝ. Let ĝ = n̂− ⊕ ĥ ⊕ n̂+

be the corresponding triangular decomposition of ĝ. Denote by ∆̂ the set of
roots of ĝ, by ∆̂re (resp. ∆̂re

+) the set of real (resp. positive real) roots of ĝ

and by α∨ denote the coroot of a real root α ∈ ∆̂re.

For every weight λ ∈ ĥ∗, denote by M(λ) the Verma module for ĝ with
highest weight λ, and by L(λ) the irreducible ĝ-module with highest weight λ.

Let U be a g-module, and let k ∈ C. Let ĝ+ = g ⊗ tC[t] act trivially on
U and c as scalar k. Considering U as a g ⊕ Cc ⊕ ĝ+-module, we have the
induced ĝ-module (so called generalized Verma module)

N(k, U) = U(ĝ) ⊗U(g⊕Cc⊕ĝ+) U.

For a fixed µ ∈ h∗, denote by V (µ) the irreducible highest weight g-
module with highest weight µ. We shall use the notation N(k, µ) to denote
the ĝ-module N(k, V (µ)). Denote by J(k, µ) the maximal proper submodule
of N(k, µ) and L(k, µ) = N(k, µ)/J(k, µ).

2.4. Admissible modules for affine Lie algebras. Let ∆̂∨re (resp. ∆̂∨re
+ ) ⊂ ĥ

be the set of real (resp. positive real) coroots of ĝ. Fix λ ∈ ĥ∗. Let ∆̂∨re
λ =

{α ∈ ∆̂∨re | 〈λ, α〉 ∈ Z}, ∆̂∨re
λ+ = ∆̂∨re

λ ∩ ∆̂∨re
+ , Π̂∨ the set of simple coroots

in ∆̂∨re and Π̂∨

λ = {α ∈ ∆̂∨re
λ+ | α not equal to a sum of several coroots from

∆̂∨re
λ+ }. Define ρ in the usual way, and denote by w.λ the ”shifted” action of

an element w of the Weyl group of ĝ.
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Recall that a weight λ ∈ ĥ∗ is called admissible (cf. [16, 17, 27]) if the
following properties are satisfied:

〈λ + ρ, α〉 /∈ −Z+ for all α ∈ ∆̂∨re
+ ,

Q∆̂∨re
λ = QΠ̂∨.

The irreducible ĝ-module L(λ) is called admissible if the weight λ ∈ ĥ∗ is
admissible.

We shall use the following results from [16] and [17]:

Proposition 2.4 ([16, Corollary 2.1]). Let λ be an admissible weight.

Then

L(λ) =
M(λ)∑

α∈Π̂∨

λ
U(ĝ)vα

,

where vα ∈ M(λ) is a singular vector of weight rα.λ, the highest weight vector

of M(rα.λ) = U(ĝ)vα ⊂ M(λ).

Proposition 2.5 ([17, Theorem 4.1]). Let M be a ĝ-module from the

category O such that for any irreducible subquotient L(ν) the weight ν is

admissible. Then M is completely reducible.

2.5. Vertex operator algebras N(k, 0) and L(k, 0), for k 6= −h∨. Since V (0) is
the one-dimensional trivial g-module, it can be identified with C. Denote by
1 = 1 ⊗ 1 ∈ N(k, 0). We note that N(k, 0) is spanned by the elements of the
form x1(−n1 − 1) · · ·xm(−nm − 1)1, where x1, . . . , xm ∈ g and n1, . . . , nm ∈
Z+, with x(n) denoting the representation image of x⊗tn for x ∈ g and n ∈ Z.
Vertex operator map Y (·, z) : N(k, 0) → (End N(k, 0))[[z, z−1]] is uniquely
determined by defining Y (1, z) to be the identity operator on N(k, 0) and

Y (x(−1)1, z) =
∑

n∈Z

x(n)z−n−1,

for x ∈ g. In the case k 6= −h∨, N(k, 0) has a conformal vector

(2.1) ω =
1

2(k + h∨)

dim g∑

i=1

xi(−1)21,

where {xi}i=1,...,dim g is an arbitrary orthonormal basis of g with respect to the
form (·, ·). We have the following result from [12] (see also [9, 15, 21, 22, 24]):

Proposition 2.6. If k 6= −h∨, the quadruple (N(k, 0), Y,1, ω) defined

above is a vertex operator algebra.

The associative algebra A(N(k, 0)) is identified in next proposition:

Proposition 2.7 ([12, Theorem 3.1.1]). The associative algebra

A(N(k, 0)) is canonically isomorphic to U(g). The isomorphism is given by

F : A(N(k, 0)) → U(g)

F ([x1(−n1 − 1) · · ·xm(−nm − 1)1]) = (−1)n1+···+nmxm · · ·x1,
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for any x1, . . . , xm ∈ g and any n1, . . . , nm ∈ Z+.

Since every ĝ-submodule of N(k, 0) is also an ideal in the vertex operator
algebra N(k, 0), it follows that L(k, 0) is a vertex operator algebra, for any k 6=
−h∨. The associative algebra A(L(k, 0)) is identified in the next proposition,
in the case when the maximal ĝ-submodule of N(k, 0) is generated by one
singular vector.

Proposition 2.8. Assume that the maximal ĝ-submodule of N(k, 0) is

generated by a singular vector, i.e. J(k, 0) = U(ĝ)v. Then

A(L(k, 0)) ∼=
U(g)

I
,

where I is the two-sided ideal of U(g) generated by v′ = F ([v]).
Let U be a g-module. Then U is an A(L(k, 0))-module if and only if IU = 0.

2.6. Modules for associative algebra A(L(k, 0)). In this subsection we present
the method from [2, 4, 24] for classification of irreducible A(L(k, 0))-modules
from the category O by solving certain systems of polynomial equations. We
assume that the maximal ĝ-submodule of N(k, 0) is generated by a singular
vector v.

Denote by L the adjoint action of U(g) on U(g) defined by XLf = [X, f ]
for X ∈ g and f ∈ U(g). Let R be a U(g)-submodule of U(g) generated by
the vector v′ = F ([v]) under the adjoint action. Clearly, R is an irreducible
highest weight U(g)-module with the highest weight vector v′. Let R0 be the
zero-weight subspace of R. The next proposition follows from [2, Proposition
2.4.1], [4, Lemma 3.4.3]:

Proposition 2.9. Let V (µ) be an irreducible highest weight U(g)-module

with the highest weight vector vµ, for µ ∈ h∗. The following statements are

equivalent:

(1) V (µ) is an A(L(k, 0))-module,

(2) RV (µ) = 0,
(3) R0vµ = 0.

Let r ∈ R0. Clearly there exists the unique polynomial pr ∈ S(h) such
that

rvµ = pr(µ)vµ.

Set P0 = { pr | r ∈ R0}. We have:

Corollary 2.10. There is one-to-one correspondence between

(1) irreducible A(L(k, 0))-modules from the category O,

(2) weights µ ∈ h∗ such that p(µ) = 0 for all p ∈ P0.
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3. Simple Lie algebra of type Al

Let ∆ = {ǫi − ǫj | i, j = 1, . . . , l + 1, i 6= j} be the root system of type
Al. Fix the set of positive roots ∆+ = {ǫi − ǫj | i < j}. Then the simple
roots are α1 = ǫ1 − ǫ2, α2 = ǫ2 − ǫ3, . . . , αl = ǫl − ǫl+1. The highest root is
θ = ǫ1 − ǫl+1 = α1 + α2 + · · · + αl.

Let g be the simple Lie algebra associated to the root system of type
Al. Let ei, fi, hi, i = 1, . . . , l be the Chevalley generators of g. Fix the root
vectors:

eǫi−ǫj
= [ej−1, [ej−2, [. . . [ei+1, ei] . . .] ] ], i < j,

fǫi−ǫj
= [fi, [fi+1, [. . . [fj−2, fj−1] . . .] ] ], i < j.

Denote by hα = α∨ = [eα, fα] coroots, for any positive root α ∈ ∆+. It is
clear that hαi

= hi. Let g = n− ⊕ h ⊕ n+ be the corresponding triangular
decomposition of g. Denote by ω1, . . . , ωl ∈ h∗ the fundamental weights of g,
defined by ωi(α

∨
j ) = δij for all i, j = 1, . . . , l.

4. Vertex operator algebra L(− 1
2 (l + 1), 0) associated to affine

Lie algebra of type A
(1)
l , for even l

Let ĝ be the affine Lie algebra associated to simple Lie algebra g of type
Al. We want to show that the maximal ĝ-submodule of N(− 1

2 (l + 1), 0) is
generated by a singular vector, for even l. We need two lemmas to prove that.

Denote by λ the weight − 1
2 (l + 1)Λ0. Then N(− 1

2 (l + 1), 0) is a quotient

of M(λ) and L(− 1
2 (l + 1), 0) ∼= L(λ).

Lemma 4.1. The weight λ = − 1
2 (l + 1)Λ0 is admissible and

Π̂∨

λ = {(2δ − θ)∨, α∨

1 , α∨

2 , . . . , α∨

l }.

Proof. Clearly

〈λ + ρ, α∨

i 〉 = 1 for i = 1, . . . , l,

〈λ + ρ, α∨

0 〉 = −
1

2
(l − 1),

which implies

〈λ + ρ, (2δ − θ)∨〉 = 〈λ + ρ, 2α∨

0 + α∨

1 + . . . + α∨

l 〉 = 1.

The claim of lemma now follows easily.

Lemma 4.2. Vector

v =

l∑

i=1

l − 2i + 1

l + 1
hi(−1)eθ(−1)1−

l−1∑

i=1

eǫ1−ǫi+1
(−1)eǫi+1−ǫl+1

(−1)1

−
1

2
(l − 1)eθ(−2)1
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is a singular vector in N(− 1
2 (l + 1), 0).

Proof. It can be directly verified that

ej(0).v = 0, j = 1, . . . , l,

fθ(1).v = 0.

Theorem 4.3. The maximal ĝ-submodule of N(− 1
2 (l + 1), 0) is

J(− 1
2 (l + 1), 0) = U(ĝ)v, where

v =

l∑

i=1

l − 2i + 1

l + 1
hi(−1)eθ(−1)1−

l−1∑

i=1

eǫ1−ǫi+1
(−1)eǫi+1−ǫl+1

(−1)1

−
1

2
(l − 1)eθ(−2)1.

Proof. It follows from Theorem 2.4 and Lemma 4.1 that the maximal
submodule of the Verma module M(λ) is generated by l + 1 singular vectors
with weights

r2δ−θ.λ, rα1
.λ, . . . , rαl

.λ.

It follows from Lemma 4.2 that v is a singular vector of weight λ − 2δ + θ =
r2δ−θ.λ. Other singular vectors have weights

rαi
.λ = λ − 〈λ + ρ, α∨

i 〉αi = λ − αi, i = 1, . . . , l,

so the images of these vectors under the projection of M(λ) onto N(− 1
2 (l +

1), 0) are 0. Therefore, the maximal submodule of N(− 1
2 (l+1), 0) is generated

by the vector v, i.e. J(− 1
2 (l + 1), 0) = U(ĝ)v.

It follows that

L(−
1

2
(l + 1), 0) ∼=

N(− 1
2 (l + 1), 0)

U(ĝ)v
.

Using Theorem 4.3 and Proposition 2.8 we can determine the associative
algebra A(L(− 1

2 (l + 1), 0)):

Proposition 4.4. The associative algebra A(L(− 1
2 (l + 1), 0)) is isomor-

phic to the algebra U(g)/I, where I is the two-sided ideal of U(g) generated

by

v′ =
l∑

i=1

l − 2i + 1

l + 1
hieθ −

l−1∑

i=1

eǫi+1−ǫl+1
eǫ1−ǫi+1

+
1

2
(l − 1)eθ.

Proof. The maximal submodule J(− 1
2 (l + 1), 0) od N(− 1

2 (l + 1), 0) is
generated by the singular vector v. It follows from Proposition 2.8 that

A(L(−
1

2
(l + 1), 0)) ∼=

U(g)

I
,
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where I is the two-sided ideal in U(g) generated by v′ = F ([v]). Proposition
2.7 now implies that

v′ = F ([v]) =

l∑

i=1

l − 2i + 1

l + 1
eθhi −

l−1∑

i=1

eǫi+1−ǫl+1
eǫ1−ǫi+1

+
1

2
(l − 1)eθ

=

l∑

i=1

l − 2i + 1

l + 1
hieθ −

l−1∑

i=1

eǫi+1−ǫl+1
eǫ1−ǫi+1

+
1

2
(l − 1)eθ,

which implies the claim of proposition.

5. Classification of irreducible weak L(− 1
2 (l + 1), 0)-modules

from category O

In this section we classify irreducible weak L(− 1
2 (l + 1), 0)-modules that

are in category O as ĝ-modules, using methods from [2, 4, 24] presented in
Subsection 2.6. First, we determine a basis for the vector space P0 defined
in that subsection. Recall that L denotes the adjoint action of U(g) on U(g)
defined by XLf = [X, f ] for X ∈ g and f ∈ U(g).

Lemma 5.1. Let

pi(h) = hi




i−1∑

j=1

−2j

l + 1
hj +

l − 2i + 1

l + 1
hi +

l∑

j=i+1

2l − 2j + 2

l + 1
hj +

1

2
(l + 1) − i



,

for i = 1, . . . , l. Then p1, . . . , pl ∈ P0.

Proof. We claim that

(5.1) (−1)i(fifi−1 . . . f1fi+1 . . . fl)L v′ ∈ pi(h) + U(g)n+, for i = 1, . . . , l.

One can easily verify that for i ∈ {1, . . . , n} the following relations hold:

(fifi−1 . . . f1fi+1 . . . fl)L eθ = (−1)ihi,

(fifi−1 . . . f1)L eǫ1−ǫj+1
= (−1)ifǫj+1−ǫi+1

, j < i,

(fi+1 . . . fl)L eǫj+1−ǫl+1
= eǫj+1−ǫi+1

, j < i,

(fi−1fi−2 . . . f1)L eǫ1−ǫj+1
= (−1)i−1fǫj+1−ǫi

, j < i − 1,

(fifi+1 . . . fl)L eǫj+1−ǫl+1
= eǫj+1−ǫi

, j < i − 1.
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Using Proposition 4.4, we obtain

(fifi−1 . . . f1fi+1 . . . fl)L v′ ∈ (−1)i

l∑

j=1

l − 2j + 1

l + 1
hjhi

− (−1)i

i−2∑

j=1

(hihj + eǫj+1−ǫi+1
fǫj+1−ǫi+1

− eǫj+1−ǫi
fǫj+1−ǫi

)

− (−1)i(hihi−1 + eifi)

− (−1)i+1
l∑

j=i+1

hjhi +
1

2
(l − 1)(−1)ihi + U(g)n+.

Since

eǫj+1−ǫi+1
fǫj+1−ǫi+1

− eǫj+1−ǫi
fǫj+1−ǫi

∈ hǫj+1−ǫi+1
− hǫj+1−ǫi

+ U(g)n+ = hi + U(g)n+,

it follows that

(−1)i(fifi−1 . . . f1fi+1 . . . fl)L v′ ∈
l∑

j=1

l − 2j + 1

l + 1
hjhi

−
i−1∑

j=1

hjhi +
l∑

j=i+1

hjhi − (i − 1)hi +
1

2
(l − 1)hi + U(g)n+,

which implies relation (5.1).

Lemma 5.2.

P0 = spanC{p1, . . . , pl}.

Proof. Lemma 5.1 implies that p1, . . . , pl are linearly independent poly-
nomials in the set P0. It follows from the definition of set P0 that dimP0 =
dimR0, where R is the highest weight U(g)-module with highest weight θ,
and R0 the zero-weight subspace of R. Since R is isomorphic to the adjoint
module for g, it follows that dimR0 = l. Thus, polynomials p1, . . . , pl form a
basis for P0.

Proposition 5.3. For every subset S = {i1, . . . , ik} ⊆ {1, 2, . . . , l},
i1 < · · · < ik, we define weights

µS =

k∑

j=1




k∑

s=j+1

(−1)s−jis +

j−1∑

s=1

(−1)j−s+1is + (−1)k−j+1 l + 1

2



 ωij
,

where ω1, . . . , ωl are fundamental weights for g. Then the set

{V (µS) | S ⊆ {1, 2, . . . , l}}
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provides the complete list of irreducible A(L(− 1
2 (l + 1), 0))-modules from the

category O.

Proof. It follows from Corollary 2.10 and Lemma 5.2 that highest
weights µ ∈ h∗ of irreducible A(L(− 1

2 (l + 1), 0))-modules V (µ) are in one-
to-one correspondence with solutions of the system of polynomial equations

hi

(
−

i−1∑

j=1

jhj +
l − 2i + 1

2
hi +

l∑

j=i+1

(l − j + 1)hj(5.2)

+
1

4
(l + 1)2 −

1

2
i(l + 1)

)
= 0,

for i = 1, . . . , l.
Let i, j ∈ {1, 2, . . . , l}, i < j. If we multiply the i-th equation of system

(5.3) by hj , and the j-th equation by hi and then subtract these equations,
we obtain

(5.3) hihj (hi + 2hi+1 + 2hi+2 + . . . + 2hj−1 + hj + j − i) = 0.

Let S = {i1, . . . , ik}, i1 < . . . < ik be the subset of {1, 2, . . . , l} such that
hi = 0 for i /∈ S and hi 6= 0 for i ∈ S. From relation (5.3) and relation (5.3)
for i = ik, we get the system

hi1 + hi2 + i2 − i1 = 0

hi2 + hi3 + i3 − i2 = 0

...(5.4)

hik−1
+ hik

+ ik − ik−1 = 0

− i1hi1 − i2hi2 − . . . − ik−1hik−1

+
l − 2ik + 1

2
hik

+
1

4
(l + 1)2 −

1

2
ik(l + 1) = 0.

If we multiply the first equation of system (5.4) by i1, the second equation
by i2 − i1, the third equation by i3 − i2 + i1, . . . , the (k − 1)-th equation
by ik−1 − ik−2 + . . . + (−1)ki1 and then sum these equations and the k-th
equation, we obtain:

(
l + 1

2
− ik + ik−1 − . . . + (−1)ki1

)

×

(
hik

+
l + 1

2
− ik−1 + ik−2 − . . . + (−1)k−1i1

)
= 0.

Since l is even, we have

l + 1

2
− ik + ik−1 − . . . + (−1)ki1 6= 0,
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which implies

hik
= ik−1 − ik−2 + . . . + (−1)ki1 −

l + 1

2
.

Using the first k − 1 equations of system (5.4) one can easily obtain that

hij
=

k∑

s=j+1

(−1)s−jis +

j−1∑

s=1

(−1)j−s+1is + (−1)k−j+1 l + 1

2
, j = 1, . . . , k

is a solution of this system. Thus, V (µS) is an irreducible A(L(− 1
2 (l+1), 0))-

module which implies the claim of proposition.

It follows from Zhu’s theory that:

Theorem 5.4. The set

{L(−
1

2
(l + 1), µS) | S ⊆ {1, 2, . . . , l}}

provides the complete list of irreducible weak L(− 1
2 (l+1), 0)-modules from the

category O.

Theorem 5.4 implies that there are 2l irreducible weak L(− 1
2 (l + 1), 0)-

modules from category O. The weight µS is a dominant integral weight for g

if and only if S = ∅, i.e. if and only if µS = 0. It follows that

Corollary 5.5. L(− 1
2 (l + 1), 0) is the only irreducible L(− 1

2 (l + 1), 0)-
module.

6. Complete reducibility of weak L(− 1
2 (l + 1), 0)-modules from

category O

In this section we show that every weak L(− 1
2 (l + 1), 0)-module from

category O is completely reducible. We introduce the notation λS = − 1
2 (l +

1)Λ0 + µS , for every S ⊆ {1, 2, . . . , l}. The following lemma is crucial for
proving complete reducibility.

Lemma 6.1. The weight λS ∈ ĥ∗ is admissible, for every S ⊆ {1, 2, . . . , l}.

Proof. We have to show

〈λS + ρ, α̃∨〉 /∈ −Z+ for all α̃ ∈ ∆̂re
+ ,(6.1)

Q∆̂∨re
λS

= QΠ̂∨.(6.2)

First, let us prove relation (6.1). Any positive real root α̃ ∈ ∆̂re
+ of ĝ is of the

form α̃ = α +mδ, for m > 0 and α ∈ ∆ or m = 0 and α ∈ ∆+. Positive roots
of g are ǫi − ǫj , i < j, and negative roots are −(ǫi − ǫj), i < j.

Clearly, (ρ̄, ǫi − ǫj) = j − i. Let s, t ∈ {1, . . . , k} be the indices such
that S ∩ {i, i + 1, . . . , j − 1} = {is, . . . , it}. Clearly, is ≥ i and it ≤ j − 1.
Furthermore, (µS , ǫi − ǫj) = his

+ . . . + hit
.
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We obtain

(6.3) 〈λS + ρ, α̃∨〉 =
1

2
m(l + 1) + (ρ̄, α) + (µS , α),

where ρ̄ is the sum of fundamental weights of g. Let S = {i1, . . . , ik} ⊆

{1, 2, . . . , l}, i1 < . . . < ik. Proposition 5.3 implies that µS =
∑k

j=1 hij
ωij

,
where

hij
=

k∑

s=j+1

(−1)s−jis +

j−1∑

s=1

(−1)j−s+1is + (−1)k−j+1 l + 1

2
, j = 1, . . . , k.

First consider the case α = ǫi − ǫj , i < j and m ≥ 0.
If t − s + 1 is even, then using relations from system (5.4) we get

(µS , ǫi − ǫj) = −(is+1 − is) − . . . − (it − it−1) ≥ −(it − is),

and relation (6.3) implies

〈λS + ρ, α̃∨〉 ≥ (ρ̄, ǫi − ǫj) + (µS , ǫi − ǫj) ≥ (j − i) − (it − is)

= (j − it) + (is − i) > 0.

Suppose now that t − s + 1 is odd. Then (µS , ǫi − ǫj) /∈ Z, and if m = 0,
then 〈λS + ρ, α̃∨〉 /∈ Z. Let m ≥ 1. Then

(µS , ǫi − ǫj) = his
+ . . . + hit−1

+ hit

= −(is+1 − is) − . . . − (it−1 − it−2) + hit

≥ −(it−1 − is) + hit
.

We have

hit
=

k∑

s=t+1

(−1)s−tis +

t−1∑

s=1

(−1)t−s+1is + (−1)k−t+1 l + 1

2
.

Clearly,
∑t−1

s=1(−1)t−s+1is ≥ 0. If k − t is even, then

hit
≥ (it+2 − it+1) + . . . + (ik − ik−1) −

1

2
(l + 1) ≥ −

1

2
(l + 1),

which implies

(µS , ǫi − ǫj) ≥ −(it−1 − is) −
1

2
(l + 1).

It follows that

〈λS + ρ, α̃∨〉 ≥
1

2
(l + 1) + (ρ̄, ǫi − ǫj) + (µS , ǫi − ǫj)

≥
1

2
(l + 1) + (j − i) − (it−1 − is) −

1

2
(l + 1)

= (j − it−1) + (is − i) > 0.
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If k − t is odd, then

hit
≥ (it+2 − it+1) + . . . + (ik−1 − ik−2) − ik +

1

2
(l + 1) ≥

1

2
(l + 1) − ik,

which implies

(µS , ǫi − ǫj) ≥ −(it−1 − is) +
1

2
(l + 1) − ik.

We obtain

〈λS + ρ, α̃∨〉 ≥
1

2
(l + 1) + (ρ̄, ǫi − ǫj) + (µS , ǫi − ǫj)

≥
1

2
(l + 1) + (j − i) − (it−1 − is) +

1

2
(l + 1) − ik

= (l − ik) + (j − it−1) + (is − i) + 1 > 0.

Thus, we have proved that, if α = ǫi − ǫj , i < j and m ≥ 0, then
〈λS + ρ, α̃∨〉 /∈ −Z+.

Now, let us consider the case α = −(ǫi − ǫj), i < j and m ≥ 1.
Then

〈λS + ρ, α̃∨〉 =
1

2
m(l + 1) − (ρ̄, ǫi − ǫj) − (µS , ǫi − ǫj).

If t − s + 1 is even, then (µS , ǫi − ǫj) is an integer and (µS , ǫi − ǫj) ≤ 0,
so if m is odd, then 〈λS + ρ, α̃∨〉 /∈ Z. If m is even, then m ≥ 2, and we get

〈λS + ρ, α̃∨〉 ≥ (l + 1) − (j − i) = (l − j) + i + 1 > 0.

If t − s + 1 is odd, then

(µS , ǫi − ǫj) = his
+ . . . +hit−1

+hit
= −(is+1 − is)− . . .− (it−1− it−2)+hit

,

which implies

〈λS + ρ, α̃∨〉 ≥
1

2
(l + 1) − (j − i) + (is+1 − is) + . . . + (it−1 − it−2) − hit

.

If k − t is even, then

hit
= it−1−it−2+. . .+(−1)t−1i2+(−1)ti1+ik−ik−1+. . .+it+2−it+1−

1

2
(l+1),

which implies

〈λS + ρ, α̃∨〉 ≥
1

2
(l + 1) − (j − i) + (is−1 − is−2 + . . . + (−1)t+1i1)

− ik + (ik−1 − ik−2) + . . . + (it+3 − it+2) + it+1 +
1

2
(l + 1).

Clearly

is−1 − is−2 + . . . + (−1)t+1i1 ≥ 0,

from which we get

〈λS +ρ, α̃∨〉 ≥ (l−ik)+i+(it+1−j)+(ik−1−ik−2)+ . . .+(it+3−it+2)+1 > 0.
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If k − t is odd, then

hit
= it−1 − it−2 + . . . + (−1)ti1 − ik + ik−1 − . . . + it+2 − it+1 +

1

2
(l + 1),

which implies

〈λS + ρ, α̃∨〉 ≥
1

2
(l + 1) − (j − i) + (is−1 − is−2 + . . . + (−1)t+1i1)

+ ik − ik−1 + . . . + it+3 − it+2 + it+1 −
1

2
(l + 1)

≥ (it+1 − j) + i + (ik − ik−1) + . . . + (it+3 − it+2) > 0.

We have proved that, if α = −(ǫi − ǫj), i < j and m ≥ 1, then 〈λS + ρ, α̃∨〉 /∈
−Z+.

Thus, we have verified the relation (6.1). Moreover, one can easily check
that coroots

(δ − αij
)∨, j = 1, . . . , k,

α∨

ij
+ α∨

ij+1 + . . . + α∨

ij+1
, j = 1, . . . , k − 1,

α∨

i , i /∈ S, i ∈ {1, 2, . . . , l}

are elements of the set ∆̂∨re
λS

which implies Q∆̂∨re
λS

= QΠ̂∨, and relation (6.2)
is also proved.

Theorem 6.2. Let M be a weak L(− 1
2 (l+1), 0)-module from the category

O. Then M is completely reducible.

Proof. Let L(λ) be some irreducible subquotient of M . Then L(λ) is
an irreducible weak L(− 1

2 (l + 1), 0)-module, and Theorem 5.4 implies that

there exists S ⊆ {1, 2, . . . , l} such that λ = − 1
2 (l + 1)Λ0 + µS . It follows from

Lemma 6.1 that such λ is admissible. Theorem 2.5 now implies that M is
completely reducible.

Remark 6.3. Using the fact that L(− 1
2 (l + 1), 0) is the only irreducible

L(− 1
2 (l + 1), 0)-module (Corollary 5.5), one can show (as in [25, Lemma 26])

that every L(− 1
2 (l + 1), 0)-module is in the category O as ĝ-module. It fol-

lows now from Theorem 6.2 that every L(− 1
2 (l + 1), 0)-module is completely

reducible, which implies that it is a direct sum of copies of L(− 1
2 (l + 1), 0).
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