ON THE NUMBER OF SUBGROUPS OF GIVEN TYPE IN A FINITE p-GROUP

Yakov Berkovich
University of Haifa, Israel

Abstract

In $\S 1$ we study the p-groups G containing exactly $p+1$ subgroups of order p^{p} and exponent p. A number of counting theorems and results on subgroups of maximal class and p-groups with few subgroups of given type are also proved. Counting theorems play crucial role in the whole paper.

This paper is a continuation of [Ber1, Ber3, Ber4, BJ2]. We use the same notation, however, for the sake of convenience, we recall it in the following paragraph.

In what follows, p is a prime, n, m, k, s, t are natural numbers, G is a finite p-group of order $|G|, o(x)$ is the order of $x \in G, \Omega_{n}(G)=\left\langle x \in G \mid o(x) \leq p^{n}\right\rangle$, $\Omega_{n}^{*}(G)=\left\langle x \in G \mid o(x)=p^{n}\right\rangle$ and $\mho_{n}(G)=\left\langle x^{p^{n}} \mid x \in G\right\rangle$. A p-group G is said to be absolutely regular if $\left|G / \mho_{1}(G)\right|<p^{p}$. Let $e_{p}(G)$ be the number of subgroups of order p^{p} and exponent p in G and $\mathrm{c}_{n}(G)$ the number of cyclic subgroups of order p^{n} in G. A p-group G of order p^{m} is said to be of maximal class if $m>2$ and $\operatorname{cl}(G)=m-1$. As usually, $G^{\prime}, \Phi(G), \mathrm{Z}(G)$ denote the derived subgroup, Frattini subgroup and center of G, respectively. Let $\Gamma_{i}=$ $\left\{H<G\left|\Phi(G) \leq H,|G: H|=p^{i}\right\}\right.$ so that Γ_{1} is the set of maximal subgroups of G. If $H<G$, then $\Gamma_{1}(H)$ is the set of maximal subgroups of H. Let $\mathrm{K}_{n}(G)$ be the n-th member of the lower central series of G. If $M \subseteq G$, then $\mathrm{C}_{G}(M)$ $\left(\mathrm{N}_{G}(M)\right)$ is the centralizer (normalizer) of M in G. Next, $\mathrm{K}_{n}(G)$ and $\mathrm{Z}_{n}(G)$ is the nth member of the lower and upper central series of G, respectively. Given $n>2$ and $n>3$ for $p=2$, let $\mathrm{M}_{p^{n}}=\left\langle a, b \mid a^{p^{n-1}}=b^{p}=1, a^{b}=a^{1+p^{n-2}}\right\rangle$. Let $\mathrm{D}_{2^{m}}, \mathrm{Q}_{2^{m}}$ and $\mathrm{SD}_{2^{m}}$ be dihedral, generalized quaternion and semidihedral groups of order 2^{m}, and let $\mathrm{C}_{p^{n}}, \mathrm{E}_{p^{n}}$ be cyclic and elementary abelian groups

[^0]of order p^{n}. We write $\eta(G) / \mathrm{K}_{3}(G)=\mathrm{Z}\left(G / \mathrm{K}_{3}(G)\right)$; clearly, $G^{\prime} \leq \eta(G)$. Let $\mathrm{H}_{p}(G)=\langle x \in G \mid o(x)>p\rangle$ be the H_{p}-subgroup of G. Let $\mu_{n}(G)$ be the number of subgroups of maximal class and order p^{n} in G.

In Lemma J we gathered some known results which are due to P. Hall, N. Blackburn and the author (proofs all of them are presented in [Ber1-4, Bla1-2, Hal1-2]).

Lemma J. Let G be a nonabelian p-group of order p^{m}.
(a) (Blackburn) If G has no normal subgroup of order p^{p} and exponent p, it is either absolutely regular or of maximal class.
(b) (Berkovich, Blackburn, independently) If G is neither absolutely regular nor of maximal class, then $\mathrm{c}_{1}(G) \equiv 1+p+\cdots+p^{p-1}\left(\bmod p^{p}\right)$, $\mathrm{c}_{n}(G) \equiv 0\left(\bmod p^{p-1}\right)(n>1)$ and $e_{p}(G) \equiv 1(\bmod p)$.
(c) (Berkovich) If $B \leq G$ is nonabelian of order p^{3} and $\mathrm{C}_{G}(B)<B$, then G is of maximal class.
(i) (Berkovich) If $H<G$ and $\mathrm{N}_{G}(H)$ is of maximal class, then G is also of maximal class.
(ii) (Blackburn) Let G be of maximal class. Then, for $i \in$ $\{2, \ldots, m\}, G$ has exactly one normal subgroup of index p^{i}. If, in addition, $m \geq p+1$, then G is irregular and $\left|G / \mho_{1}(G)\right|=p^{p}$.
(e) (i) If G is irregular of maximal class and $H<G$ is of order p^{p} and exponent p, then H is a maximal regular subgroup of $G, \mathrm{~N}_{G}(H)$ is of maximal class and $\Omega_{1}(\Phi(G))<H$.
(ii) [Ber3, Theorem 10.1] If R be a maximal regular subgroup of order p^{p} of an irregular p-group G, then G is of maximal class.
(f) If G is of maximal class, $M \triangleleft G$ and $|G: M|>p$, then $M \leq \Phi(G)$ is absolutely regular and $|\mathrm{Z}(M)|>p$, unless $|M| \leq p$. If $p>2$ and $m>3$, then G has no normal cyclic subgroup of order p^{2}.
(g) (Berkovich) If $H<G$ is of order $\leq p^{p-1}$ and exponent p and G is neither absolutely regular nor of maximal class, then the number of subgroups of order $p|H|$ and exponent p between H and G is $\equiv 1(\bmod p)$.
(h) (Blackburn) Let G be irregular of maximal class; then $m>p$. If G has a normal subgroup of order p^{p} and exponent p, then $m=p+1$. If $m=p+2$, then all maximal subgroups of G have exponent p^{2}. If $m>p+1$, then exactly p maximal subgroups of G are of maximal class and one maximal subgroup, which we denote by G_{1} (the fundamental subgroup of G), is absolutely regular. If $n>2$, then $c_{n}(G)=c_{n}\left(G_{1}\right)$.
(i) [Ber1, Theorem 7.4] Let H be a subgroup of maximal class and index p in G. If $\mathrm{d}(G)=2$, then G is also of maximal class. Now let $\mathrm{d}(G)=3$ and $m>p+1$. Then $G / \mathrm{K}_{p}(G)$ is of order p^{p+1} and exponent p and exactly $p+1$ members, say T_{1}, \ldots, T_{p+1} of the set Γ_{1}, are neither absolutely regular nor of maximal class and exactly p^{2} members of the
set Γ_{1} are irregular of maximal class. We have $\left|G: \bigcap_{i=1}^{p+1} T_{i}\right|=p^{2}$ and $\left|T_{i} / T_{i}^{\prime}\right|>p^{2}$ for $i=1, \ldots, p+1$.
(j) (Berkovich, Blackburn, independently) If $m>p+1$, then an irregular group G is of maximal class if and only if $\mathrm{c}_{1}(G) \equiv 1+p+\cdots+p^{p-2}$ $\left(\bmod p^{p}\right)$.
(k) (Hall) If G is regular of exponent $\geq p^{n}$, then

$$
\exp \left(\Omega_{n}(G)\right)=p^{n}, \Omega_{n}^{*}(G)=\Omega_{n}(G), \mathrm{c}_{n}(G)=\frac{\left|\Omega_{n}(G)-\Omega_{n-1}(G)\right|}{p^{n-1}(p-1)}
$$

If $\operatorname{cl}(G)<p$ or $\exp (G)=p$, then G is regular.
(1) (Berkovich) If G has an absolutely regular maximal subgroup A and irregular subgroup M of maximal class, then G is also of maximal class.
(m) (Burnside, 1897) Let a nonabelian p-group G contain a cyclic subgroup of index p. Then G is either $\mathrm{M}_{p^{n}}$ or a 2-group of maximal class.
(n) (Blackburn) Let G be neither absolutely regular nor of maximal class. If $H \in \Gamma_{1}$ is absolutely regular, then $G=H \Omega_{1}(G)$, where $\left|\Omega_{1}(G)\right|=p^{p}$.
(o) (Suzuki) If $A<G$ is of order p^{2} and $\mathrm{C}_{G}(A)=A$, then G is of maximal class.
(p) [Ber1, Theorem 5.2] If $p>2, G$ is of maximal class and $H<G$ is such that $\mathrm{d}(H)>p-1$, then $G \cong \Sigma_{p^{2}}$, a Sylow p-subgroup of the symmetric group of degree p^{2}.
(q) (Hall) If G is irregular, then G^{\prime} contains a characteristic subgroup of order $\geq p^{p-1}$ and exponent p.
(r) (Huppert) If $p>2$ and $\left|G / \mho_{1}(G)\right| \leq p^{2}$, then G is metacyclic.
(s) [Ber1, Lemma 2.1] Suppose that $\left|\Omega_{2}(G)\right|=p^{3}$. Then G is one of the following groups:
(i) abelian of type $\left(p^{m-1}, p\right)$,
(ii) $\mathrm{M}_{\mathrm{p}^{\mathrm{m}}}$,
(iii) $p=2$ and $G=\left\langle a, b \mid a^{2^{m-2}}=1, b^{4}=a^{2^{m-3}}, a^{b}=a^{-1}\right\rangle$.
(t$)$ (Redei) If G is minimal nonabelian, then $G=\langle a, b\rangle$ and one of the following holds:
(i) $a^{p^{u}}=b^{p^{v}}=1, a^{b}=a^{1+p^{u-1}}(u+v=m)$,
(ii) $a^{p^{u}}=b^{p^{v}}=1, c=[a, b],[a, c]=[b, c]=1(u+v+1=m)$,
(iii) $G \cong \mathrm{Q}_{8}$.

It follows from Lemma $\mathrm{J}(\mathrm{f})$ the following easy but important fact. If G is a p-group of maximal class, $M \in \Gamma_{1}$ is of maximal class and order $>p^{3}$ and M_{1} is the fundamental subgroup of M, then $M \cap G_{1}=M_{1}$. Indeed, M_{1} is characteristic in M so normal in G. Since $\left|G: M_{1}\right|=p^{2}$, we get $M_{1}=\Phi(G)<G_{1}$.

The paper is self contained modulo Lemma J and few results from [Ber1Ber4].

1. p-GROUPS WITH EXACTLY $p+1$ SUBGROUPS OF ORDER p^{p} AND

EXPONENT p

In view of Lemma $\mathrm{J}(\mathrm{b})$, it is natural to investigate the p-groups G satisfying $e_{p}(G)=1+k p$ for $k=0$ and 1 . The case $k=0$ has been treated only for $p=2$ in the fundamental paper [Jan1]. In Theorems 1.1-1.3 we analyze the structure of p-groups G satisfying $e_{p}(G)=p+1$. Below we consider the p-groups G satisfying $e_{p}(G)<p+1$.

Case 1. Let $e_{p}(G)=0$. Then G has no subgroup of order p^{p} and exponent p so G is either absolutely regular or of maximal class (Lemma $\mathrm{J}(\mathrm{a})$); in that case, $\left|\Omega_{1}(G)\right|<p^{p}$.

Case 2. Let $e_{p}(G)=1$. Then $\left|\Omega_{1}(G)\right|=p^{p}$. Indeed, let H be the unique subgroup of G of order p^{p} and exponent p and $D<H$ be G-invariant of index p in H. Assume that there is $x \in G-H$ of order p. Then $U=\langle x, D\rangle$ is of order p^{p} and exponent p (Lemma $\left.\mathrm{J}(\mathrm{k})\right)$ and $U \neq H$, a contradiction.

CASE 3. Let $1<e_{p}(G) \leq p$. Then, by Lemma $\mathrm{J}(\mathrm{b}), G$ is of maximal class since it is not regular, by Lemma $\mathrm{J}(\mathrm{k})$. If, in addition, $e_{p}(G)<p$, then G has a normal subgroup of order p^{p} and exponent p so $|G|=p^{p+1}$ (Lemma $\mathrm{J}(\mathrm{f}))$. Now let $e_{p}(G)=p, m>p+1$ and let $H<G$ be a subgroup of order p^{p} and exponent p. Since H is not normal in G (Lemma J(e,h)), we get $\left|G: \mathrm{N}_{G}(H)\right|=p$. Then $\mathrm{N}_{G}(H)$ is of maximal class and order p^{p+1} (Lemma $\mathrm{J}(\mathrm{e})(\mathrm{i}))$ so $m=p+2$. (Note that $\mathrm{e}_{2}\left(\mathrm{SD}_{2^{4}}\right)=2$.) Clearly, $e_{p}\left(\mathrm{~N}_{\mathrm{G}}(\mathrm{H})\right)=\mathrm{e}_{\mathrm{p}}(\mathrm{G})$.

Remark 1.1. Suppose that a p-group G is not of maximal class. We claim that if $\left|\Omega_{1}(G)\right|=p^{p+1}$, then $\exp \left(\Omega_{1}(G)\right)=p$. Assume that this is false. Then $\Omega_{1}(G)$ is of maximal class so it has exactly $p+1$ maximal subgroups. Obviously, all $e_{p}(G)$ subgroups of order p^{p} and exponent p are maximal subgroups of $\Omega_{1}(G)$. However, by hypothesis, $e_{p}(G)>1$ so $e_{p}(G) \geq p+1$ (Lemma $\mathrm{J}(\mathrm{b}))$; then $\exp \left(\Omega_{1}(G)\right)=p$, contrary to Lemma $\mathrm{J}(\mathrm{h})$.

Remark 1.2. We claim that if G is a p-group with $1<e_{p}(G)<p^{2}+p+1$, then intersection of all its subgroups of order p^{p} and exponent p has order p^{p-1}. Indeed, let $R \triangleleft G$ be of order p^{p-1} and exponent p (R exists, by Lemma $\mathrm{J}(\mathrm{a}))$ and let $S<G$ be of order p^{p} and exponent p such that $R \not \leq S$. Set $H=R S$; then $|H| \geq p^{p+1}$. Assume that $|H|=p^{p+1}$. Then $\mathrm{d}(H) \geq 3$, $\mathrm{cl}(H)<p$ and $\exp (H)=p$ so all $\geq p^{2}+p+1$ maximal subgroups of order H have order p^{p} and exponent p, contrary to the hypothesis. Now we let $|H|>p^{p+1}$. Set $D=R \cap S$; then $|S / D|=p^{n} \geq p^{3}$. Let $U_{1} / D, \ldots, U_{k} / D$ be all subgroups of order p in $S / D, k=1+p+\cdots+p^{n-1} \geq p^{2}+p+1$. Set $S_{i}=R U_{i}, i=1, \ldots, k$. Then S_{1}, \ldots, S_{k} are pairwise distinct and have order p^{p} and exponent p, contrary to the hypothesis since $e_{p}(G)<p^{2}+p+1$. Thus, R is contained in all subgroups of G of order p^{p} and exponent p. In particular, R is the unique normal subgroup of order p^{p-1} in G.

Remark 1.3. Let G be a p-group of order $>p^{p+1}$ with $e_{p}(G)=1$. Then $R=\Omega_{1}(G)$ is the unique subgroup of G of order p^{p} and exponent p (see Case $2)$. Then one of the following holds: (a) $R \leq \Phi(G)$, (b) all members of the set Γ_{1} not containing R, are absolutely regular, (c) all p^{2} members of the set Γ_{1} not containing R, are of maximal class. Indeed, the group G is not of maximal class since $|G|>p^{p+1}$ (Lemma $\mathrm{J}(\mathrm{f})$). Assume that $R \not \leq \Phi(G)$. Let $R \not \leq M \in \Gamma_{1}$; then $\Omega_{1}(M)=R \cap M$ is of order p^{p-1} so M is either absolutely regular or of maximal class (Lemma $J(a)$). Assume that M is of maximal class and let $R \not \leq K \in \Gamma_{1}$. By Lemma $\mathrm{J}(\mathrm{l}), K$ is not absolutely regular. Thus, all members of the set Γ_{1} not containing R, are of maximal class, and the number of such members equals p^{2} (Lemma $\mathrm{J}(\mathrm{i})$). This argument also shows that if M is absolutely regular, then the set Γ_{1} has no members of maximal class. This supplements Lemma J(n).

Remark 1.4. Suppose that G is a p-group and $R \leq G$ is of order p^{p} and exponent p. We claim that then $\Omega_{1}(G)$ is generated by subgroups of order p^{p} and exponent p. Indeed, it follows from Lemma $\mathrm{J}(\mathrm{g}, \mathrm{i})$ that G has a normal subgroup D of order p^{p-1} and exponent p. If $x \in G-D$ is of order p, then $U=\langle x, D\rangle$ is of order p^{p} so it is regular. Since $|U|=p^{p}$ and $\Omega_{1}(U)=U$, we get $\exp (U)=p($ Lemma $\mathrm{J}(\mathrm{k}))$, and our claim follows.

Theorem 1.5. Let G be a p-group of order $>p^{p+3}$ with $e_{p}(G)=p+1$, and let R_{1}, \ldots, R_{p+1} be all its subgroups of order p^{p} and exponent p. Set $H=\Omega_{1}(G)$. Then one of the following holds:
(a) H is of order p^{p+1} and exponent p and $\mathrm{d}(H)=2$.
(b) $|H|=p^{p+2}, \exp (H)=p^{2}, \mathrm{~d}(H)=3, \cap_{i=1}^{p+1} R_{i}=\Phi(H)$. One may assume that $R=R_{1} \triangleleft G$. Then
(b1) $\Gamma_{1}(H)=\left\{M_{1}, \ldots, M_{p^{2}}, T_{1}, \ldots, T_{p+1}\right\}$, where $M_{1}, \ldots, M_{p^{2}}$ are of maximal class, T_{1}, \ldots, T_{p+1} are regular with $\left|\Omega_{1}\left(T_{i}\right)\right|=p^{p}$. Exactly one of subgroups T_{i}, say T_{1}, is normal in G.
(b2) $H \not \approx \Phi(G)$.
(b3) If $H \not \leq M \in \Gamma_{1}$, then $e_{p}(M)=1$. In particular, M is not of maximal class.
In what follows we assume that $R=R_{1}$ is the unique normal subgroup of order p^{p} and exponent p in G. Set $N=\mathrm{N}_{G}\left(R_{2}\right)$; then $|G: N|=p$ so $N \in \Gamma_{1}$.
(b4) $R<T_{1} \cap \Phi(G)$ so, if $M \in \Gamma_{1}$ does not contain H, then $\Omega_{1}(M)=$ R.
(b5) $R R_{2}, \ldots, R R_{p+1}$ are distinct conjugate subgroups of maximal class and order p^{p+1} with $e_{p}\left(R R_{i}\right)=2$ for $i=2, \ldots, p+1$.
(b6) T_{2}, \ldots, T_{p+1} are conjugate in G. One can choose numbering so that $\Omega_{1}\left(T_{i}\right)=R_{i}$ for $i=2, \ldots, p+1$.
(b7) Let $K \in \Gamma_{1}(H)$ be of maximal class. Assume that $K<L<G$ but $H \not \leq L \not 又 N$. Then L is of maximal class and order p^{p+2} and $e_{p}(L)=e_{p}(K) \in\{0, p\}$.
(b8) If $K \in \Gamma_{1}(H)$ is of maximal class and $0<e_{p}(K)<p$, then K is not normal in G.
(b9) Suppose that there is $K \in \Gamma_{1}(H)$ with $e_{p}(K)=p$. Then $K \triangleleft G$ is of maximal class. In that case, H contains exactly $p-1$ maximal subgroups L such that $e_{p}(L)=0$, and all these L are G-invariant. Exactly $p^{2}-p$ members of the set $\Gamma_{1}(H)$ of maximal class are not normal in G and their normalizers are all equal to N.

Proof. Since the set $\left\{R_{i}\right\}_{1}^{p+1}$ of cardinality $p+1$ is G-invariant, one may assume that $R=R_{1} \triangleleft G$. Then, by Lemma $\mathrm{J}(\mathrm{h}), G$ is not of maximal class. By Remark 1.2, $D=\bigcap_{i=1}^{p+1} R_{i}$, where D is the unique normal subgroup of order p^{p-1} and exponent p in G. If G has a subgroup of order p^{p+1} and exponent p, then that subgroup contains all R_{i} so coincides with $\Omega_{1}(G)$ (Remark 1.4), and G is as stated in part (a). Next we assume that G has no subgroup of order p^{p+1} and exponent p.

Set $N=\mathrm{N}_{G}\left(R_{2}\right)$. Then, since R_{2} has at most p conjugates, we get $|G: N| \leq p$ so N is normal in G. In any case, all $R_{i}<N$. Indeed, $R<N$ since $\left|R R_{2}\right|=p^{p+1}$ so R normalizes R_{2}. Our claim is obvious if $R_{2} \triangleleft G$ since then all $R_{i} \triangleleft G$. If R_{2} is not normal in G, then R_{2}, \ldots, R_{p+1} are conjugate in G, and again $R_{i}<N$ for $i>1$ since $N \triangleleft G$. Since $\mathrm{N}_{G}\left(R_{i}\right)=N$ for all $i>1, R_{s} R_{t}<G$ and $R_{s} R_{t}$ is of maximal class and order p^{p+1} for $s \neq t$, $1 \leq s, t \leq p+1$ (indeed, $R_{s} \cap R_{t}=D$, by the previous paragraph). By Lemma $\mathrm{J}(\mathrm{n})$, the set Γ_{1} has no absolutely regular member.

Since G has no subgroup of order p^{p+1} and exponent p, then $\exp \left(\Omega_{1}(G)\right)>$ p and $\left|\Omega_{1}(G)\right|>\left|\bigcup_{i=1}^{p+1} R_{i}\right|=p^{p+1}$. One may assume that $R_{3} \not \leq R R_{2}$. Set $H=R R_{2} R_{3}$; then $|H|=p^{p+2}$ since $R_{3} \cap R R_{2}=D$, and so $H / D \cong \mathrm{E}_{p^{3}}$; then $\exp (H)=p^{2}$ (see the first paragraph) and $\mathrm{d}(H)=3$ since $\mathrm{d}\left(R R_{2}\right)=2$. By Lemma $\mathrm{J}(\mathrm{b}), e_{p}(H) \equiv 1(\bmod p)$ so $e_{p}(H)=p+1$ since $e_{p}(H)>1$. It follows that $H=\Omega_{1}(G)$ (Remark 1.4). Thus, $\left|\Omega_{1}(G)\right|=|H|=p^{p+2}$.

By Lemma $\mathrm{J}(\mathrm{f}), H$ is not of maximal class, therefore $\Gamma_{1}(H)$ is such as given in (b1) (Lemma J(i)). Let $\Gamma_{1}(H)=\left\{U_{1}, \ldots, U_{p^{2}}, T_{1}, \ldots, T_{p+1}\right\}$, all U_{i} 's are of maximal class and all T_{i} 's are regular. One may assume that $T_{1} \triangleleft G$.

Assume that $H \leq \Phi(G)$. In that case, $|R \cap \mathrm{Z}(\Phi(G))|>p$ (indeed, every G-invariant subgroup of R of order p^{2} is contained in $\left.\mathrm{Z}(\Phi(G))\right)$. Then $R \cap$ $\mathrm{Z}(\Phi(G)) \leq \mathrm{Z}\left(R R_{2}\right)$, a contradiction since $R R_{2}$ is of maximal class. Thus, $H \not \leq \Phi(G)$, proving (b2).

Suppose that $H \not \leq M \in \Gamma_{1}$. As we have noticed, M is not absolutely regular. Since $e_{p}(M)<e_{p}(H)=p+1$, it follows that $e_{p}(M) \leq p$ so either $\left|\Omega_{1}(M)\right|=p^{p}$ or M is of maximal class (Lemma $\mathrm{J}(\mathrm{b})$). Assume that M is of
maximal class. Since $|M|>p^{p+2}, M$ has no normal subgroup of order p^{p} and exponent p. Write $F=M \cap H \triangleleft M$; then $|F|=p^{p+1}$. Assume that $F=T_{i}$ for some i. Since T_{i} is not absolutely regular, $\Omega_{1}\left(T_{i}\right) \triangleleft G$ is of order p^{p} and exponent p, a contradiction. If $F=U_{j}$, then $|M: F|=p$ (Lemma J(f)) so $|M|=p^{p+2}$, contrary to the hypothesis. Thus, M is not of maximal class so $\left|\Omega_{1}(M)\right|=p^{p}$. As by product, we established that if R is the unique normal subgroup of G of order p^{p} and exponent p, then $R \leq \Phi(G)$.

In what follows we assume that R_{2} is not normal in G; then R is the unique normal subgroup of G of order p^{p} and exponent p and R_{2}, \ldots, R_{p+1} are conjugate in G. By the previous paragraph, $R \leq \Phi(G)$ and $|G: N|=p$. Next, $R_{2}, \ldots, R_{p+1} \not \leq \Phi(G)$.

Since $\mathrm{d}\left(R R_{2}\right)=2$ and $\exp \left(R R_{2}\right)>p$, not all conjugates of R_{2} are contained in $R R_{2}$ so $R R_{2}$ is not normal in G. Then $\mathrm{N}_{G}\left(R R_{2}\right)=N=\mathrm{N}_{G}\left(R_{2}\right)$ and $R R_{2}, \ldots, R R_{p+1}$ is a class of p conjugate subgroups of G. Since $R R_{i} \cap R R_{j}=$ R for $i, j>1$ and $i \neq j$, we get $e_{p}\left(R R_{i}\right)=2$ for all $i>1$ since $e_{p}(G)=p+1$, and the proof of (b5) is complete.

Since G has no subgroup of order p^{p+1} and exponent p, we get $\exp \left(T_{i}\right)=$ p^{2}. By Lemma $\mathrm{J}(\mathrm{n})$ applied to H, T_{i} is not absolutely regular so $\Omega_{1}\left(T_{i}\right)$ is of order p^{p} and exponent p. By assumption, $T_{1} \triangleleft G$ so $\Omega_{1}\left(T_{1}\right)=R$. Since $H / R \cong \mathrm{E}_{p^{2}}, R$ is contained in exactly $p+1$ maximal subgroups of H, namely, in $T_{1}, R R_{2}, \ldots, R R_{p+1}$. Therefore, if $i>1$, then T_{i} is not normal in G since $R \neq \Omega_{1}\left(T_{i}\right)$. Without loss of generality, one may assume that $\Omega_{1}\left(T_{i}\right)=R_{i}$ for all i (indeed, if $R_{j}<T_{i}$ for $j \neq i$, then regular subgroup $T=R_{i} R_{j}$ is of exponent p).

Let $H \not \leq M \in \Gamma_{1}$. Then, by the above, $\Omega_{1}(M)=R$ so $\Omega_{1}(\Phi(G))=R$. Since $H \cap M \triangleleft G$ and maximal in H, it follows that $H \cap M=T_{1}$ since T_{1} is the unique G-invariant member X of the set $\Gamma_{1}(H)$ such that $\Omega_{1}(X)=R$. Thus, T_{1} is contained in all members of the set Γ_{1} so $T_{1} \leq \Phi(G)$, and the proof of (b4) is complete.

Let $K \in \Gamma_{1}(H)$ be of maximal class. Assume that $K<L<G$ but $H \not 又 L$. Then $L \cap H=K \triangleleft L$ so $e_{p}(L)=e_{p}(K)=s \leq p$. If $s>1$, then L is of maximal class (Lemma $\mathrm{J}(\mathrm{b}))$ so $|L|=p^{p+2}($ Lemma $\mathrm{J}(\mathrm{f}))$ and $R \not \leq L$. Now let $s=1$ and $R \not \leq K$. In that case, $e_{p}(L)=1$ so $L \leq \mathrm{N}_{G}\left(\Omega_{1}(K)\right)=N$ since $\Omega_{1}(K) \neq R$, and this completes the proof of (b7).

Let $K \in \Gamma_{1}(H)$ be of maximal class and $1 \leq e_{p}(K)<p$. Then K is not normal in G. This is clear if $R<K$, by (b5). If $R \not \leq K$ and $K \triangleleft G$, then all subgroups of order p^{p} and exponent p in K are normal in G, a contradiction since R is the unique G-invariant subgroup of order p^{p} and exponent p. This proves (b8).

Assume that $K \in \Gamma_{1}(H)$ and $e_{p}(K)=p$. Then $R \not \leq K$ (see (b5)) and $R_{i} R_{j}=K$ for distinct $i, j>1$. If $i>1$, then R_{i} is contained in exactly $p-1$ maximal subgroups of H distinct of K and T_{i} (all these $p-1$ subgroups are of maximal class). Therefore, the set $\Gamma_{1}(H)$ contains exactly $p(p-1)$ pairwise
distinct members M of maximal class different of K and such that $e_{p}(M)>0$. All remaining $p-1$ members L of maximal class of the set $\Gamma_{1}(H)-\{K\}$ satisfy $e_{p}(L)=0$, and all these L are G-invariant. Indeed, since $\left\{R_{2}, \ldots, R_{p+1}\right\}$ is the class of conjugate in G subgroups, it follows that $K=R_{2} \ldots R_{p+1} \triangleleft G$. Next, all above mentioned $p(p-1)$ members of the set $\Gamma_{1}(H)$, by (b5), are not normal in G (otherwise, R_{2}, \ldots, R_{p+1} are normal in G). It follows that $p-1$ subgroups $L \in \Gamma_{1}(H)$ with $e_{p}(L)=0$ are G-invariant, completing the proof of (b9).

Let G be a group of Theorem 1.5(b). Taking into account that $D=$ $\bigcap_{i=1}^{p+1} R_{i}$ is of order p^{p-1}, we get
$\mathrm{c}_{1}(G)=\mathrm{c}_{1}(D)+\sum_{i=1}^{p+1}\left(\mathrm{c}_{1}\left(R_{i}\right)-\mathrm{c}_{1}(D)\right)=1+p+\cdots+p^{p-2}+(p+1) p^{p-1}$
(1.1) $=1+p+\cdots+p^{p}$.

Therefore, the following result is of some interest.
THEOREM 1.6. Let G be a p-group with $\exp \left(\Omega_{1}(G)\right)>p$. Then the following conditions are equivalent:
(a) $e_{p}(G)=p+1$.
(b) $\mathrm{c}_{1}(G)=1+p+\cdots+p^{p}$.

By (1.1), (a) \Rightarrow (b). The reverse implication is a consequence of the following

Lemma 1.7. Let G be a p-group, $\exp (G)>p, \Omega_{1}(G)=G$ and $\mathrm{c}_{1}(G)=$ $1+p+\cdots+p^{p}$. Then
(a) G is irregular of order p^{p+2}; all members of the set Γ_{1} have exponent p^{2}.
(b) $\mathrm{d}(G)=3, \Phi(G)=G^{\prime}$ is of order p^{p-1} and exponent p.
(c) $G / \mho_{1}(G)$ is of order p^{p+1} so $\mho_{1}(G)=\mathrm{K}_{p}(G)$ is of order p.
(d) $\mathrm{c}_{2}(G)=p^{p}$.
(e) $\Gamma_{1}=\left\{M_{1}, \ldots, M_{p^{2}}, T_{1}, \ldots, T_{p+1}\right\}$, where $M_{1}, \ldots, M_{p^{2}}$ are of maximal class, T_{1}, \ldots, T_{p+1} are regular of exponent p^{2} and $\eta(G)=\bigcap_{i=1}^{p+1} T_{i}$ has exponent p^{2} and index p^{2} in G.
(f) $e_{p}(G)=p+1$, all subgroups of order p^{p} and exponent p contain $\Phi(G)$ so these subgroups are normal in G.
(g) Exactly p^{2} subgroups of G of order p^{p}, containing $\Phi(G)$, have exponent p^{2}.
(h) Let $L \in \Gamma_{2}$. If $L \neq \eta(G)$, then exactly p members of the set Γ_{1}, containing L, are of maximal class.
Proof. We have $|G|>|\{x \in G \mid o(x) \leq p\}|=1+(p-1) \mathrm{c}_{1}(G)=p^{p+1}$ since $\exp (G)>p$. By Lemma $\mathrm{J}(\mathrm{k}), G$ is irregular. By Lemma $\mathrm{J}(\mathrm{j}), G$ is not of maximal class so there is $R \triangleleft G$ of order p^{p} and exponent p (Lemma $\mathrm{J}(\mathrm{a})$).
(a) Set $\sigma(G)=\left[p^{-p} \cdot \mathrm{c}_{1}(G)\right]$, where $[x]$ is the integer part of a real number x; then $\sigma(G)=1$. By [BJ2, Theorem 2.1], $|G| \leq p^{p+1+\sigma(G)}=p^{p+2}$ whence $|G|=p^{p+2}$. It follows from $\Omega_{1}(G)=G$ that $G / R \cong \mathrm{E}_{p^{2}}$ so $\exp (G)=p^{2}$ and $\exp (H)=p^{2}$ for all $H \in \Gamma_{1}$ since $\mathrm{c}_{1}(G)>\mathrm{c}_{1}(H)$.
(b) If $x \in G-R$ is of order p and $M=\langle x, R\rangle$, then $\exp (M)>p$, by the previous two paragraphs, so $M \in \Gamma_{1}$ is of maximal class (Lemma $\mathrm{J}(\mathrm{k})$); then $\mathrm{d}(G)=3$, by Lemma $\mathrm{J}(\mathrm{i})$, and we conclude that $\Phi(G)=G^{\prime}=\Phi(M)=M^{\prime}$ has exponent p.
(c) follows from Lemma $\mathrm{J}(\mathrm{i})$.
(d) By (a), $\mathrm{c}_{2}(G)=\frac{|G|-(p-1) \mathrm{c}_{1}(\mathrm{G})-1}{\varphi\left(p^{2}\right)}=p^{p}$ (here $\varphi(*)$ is Euler's totient function).
(e) The first assertion follows from Lemma $\mathrm{J}(\mathrm{i})$. Assume that $\exp (\eta(G))=$ p. If $x \in G-\eta(G)$ is of order p, then $\operatorname{cl}(\langle x, \eta(G)\rangle)<p$ so the subgroup $\langle x, \eta(G)\rangle \in \Gamma_{1}$ is regular of order p^{p+1} and exponent p (Lemma $\mathrm{J}(\mathrm{k})$), contrary to (a).
(f) Assume that S is a nonnormal subgroup of order p^{p} and exponent p in G; then $\Phi(G)=G^{\prime} \not \leq S$ so $H=S \Phi(G) \in \Gamma_{1}$. We have $\Omega_{1}(H)=H$ and, by (a), $\exp (H)=p^{2}$ so H is irregular, i.e., H is of maximal class (Lemma $\mathrm{J}(\mathrm{k})$); in that case, as we have proved, $\Phi(G)=\Phi(H)$. Then, since $S \in \Gamma_{1}(H)$, we get $\Phi(G)=\Phi(H)<S$, contrary to the assumption. Thus, all subgroups of order p^{p} and exponent p are normal in $G\left(=\Omega_{1}(G)\right)$ so contain $G^{\prime}=\Phi(G)$. If $e_{p}(G)=t$, then

$$
\begin{aligned}
1+p+\cdots+p^{p-2}+(p+1) p^{p-1} & =\mathrm{c}_{1}(G)=\mathrm{c}_{1}(\Phi(G))+t p^{p-1} \\
& =1+p+\cdots+p^{p-2}+t p^{p-1}
\end{aligned}
$$

so $t=p+1$.
(g) follows from (a), (b) and (f).
(h) By (e), the intersection of two distinct regular members of the set Γ_{1} coincides with $\eta(G)$. Let $L \neq \eta(G)$ be a normal subgroup of index p^{2} in G; then L is contained in at most one regular maximal subgroup of G and $G / L \cong \mathrm{E}_{p^{2}}$ since $G=\Omega_{1}(G)$. Let D be a G-invariant subgroup of index p^{2} in L. Set $C=\mathrm{C}_{G}(L / D)$; then $|G: C| \leq p$. Let $L<H \leq C$, where $H \in \Gamma_{1}$; then H is regular since H / D is abelian of order $p^{3}($ Lemma $\mathrm{J}(\mathrm{k}))$. It follows that L is contained in exactly one regular member of the set Γ_{1} so it contained in exactly p irregular members of that set.

Let $G=D * C$, where D is of maximal class and order p^{p+1}, C is cyclic of order p^{2} and $D \cap C=\mathrm{Z}(D)$; then $e_{p}(G)=p+1$. Indeed, by [Ber2, Appendix 16, Exercise A], we have $\mathrm{c}_{1}(G)=1+p+\cdots+p^{p}$ so $\Omega_{1}(G)=G$, and then, by Lemma 1.7, $e_{p}(G)=p+1$.

Proof of Theorem 1.6. It remains to show that (b) \Rightarrow (a). Let $H=$ $\Omega_{1}(G)$; then $\exp (H)>p$, by hypothesis. As in the proof of Lemma 1.7(a),
we get $|H| \leq p^{p+2}$. By Remark 1.1, however, $|H|>p^{p+1}$. Thus, $|H|=p^{p+2}$. Next, H has no maximal subgroup which has exponent p (indeed, if F is such a subgroup, then $\left.\mathrm{c}_{1}(G)>\mathrm{c}_{1}(F)=1+p+\cdots+p^{p}\right)$. In that case, by Lemma 1.7, applied to H, we get $e_{p}(H)=p+1$. But $e_{p}(G)=e_{p}(H)$.
2. p-GRoups G with small $\left|\Omega_{i}(G)\right|(i=1,2)$

We begin with the following remark which deals with a partial case of Proposition 2.2.

Remark 2.1. Let G be a p-group of exponent $>p$ such that $\left|\Omega_{2}(G)\right|=$ $p^{p+2}, \Omega_{1}(G)=F<H=\Omega_{2}(G), e_{p}(G)>p+1$. Then $\mathrm{d}(F)>2$ so F is of order p^{p+1} and exponent p, and we conclude that G is not of maximal class [Bla]. Then $H / F=\Omega_{1}(G / F)$ is of order p so G / F is either cyclic or generalized quaternion.

The p-groups G satisfying $\left|\Omega_{2}(G)\right|=p^{p+1}$ are classified in [Ber1, Lemma 2.1]. Now we consider the p-groups $G, p>2$, satisfying $\left|\Omega_{2}(G)\right|=p^{p+2}$. (The 2 -groups G satisfying $\left|\Omega_{2}(G)\right|=2^{4}$, are classified in [Jan3].)

Proposition 2.2. Let G be a p-group, $p>2,|G|>p^{p+2}=\left|\Omega_{2}(G)\right|$. Then
(a) G has a normal subgroup $E \cong \mathrm{E}_{p^{3}}$.
(b) G / E is either absolutely regular or irregular of maximal class.
(c) Let G / E be irregular of maximal class. Then $p=3, \Omega_{1}(G / E) \cong \mathrm{E}_{3^{2}}$ and E is the unique normal subgroup $\cong \mathrm{E}_{3^{3}}$ in G. Next, E is a maximal normal subgroup of exponent 3 in G.
(d) If $M \triangleleft G$ is of order p^{p+1} and exponent p, then G / M is cyclic.
(e) If $p>3$, then G / E is absolutely regular.
(f) If $p=3$ and G / E is irregular of order $\geq 3^{5}$, then $E \leq \mathrm{Z}\left(\Omega_{2}(G)\right)$ so $c l\left(\Omega_{2}(G)\right) \leq 2$ and $E=\Omega_{1}(G)$. Next, $E<\Phi(G)$.

Proof. (a) In view of $\Omega_{2}(G)<G, G$ is not of maximal class; then $\Omega_{2}(G)$ is not of maximal class as well [Ber1, Remark 7.8]. It follows from $p+2 \geq 3+2=5$ that G has a normal subgroup $E \cong \mathrm{E}_{p^{3}}$, by Blackburn's Theorem (see [Ber3, Theorem 6.1]).
(b) By hypothesis, $\left|\Omega_{1}(G / E)\right|<p^{p}$, so G / E is either absolutely regular or irregular of maximal class (Lemma $J(a)$).
(c, e) Suppose that G / E is irregular of maximal class; then $|G / E| \geq p^{p+1}$ (Lemma $\mathrm{J}(\mathrm{k})$). Assume that $E<U \triangleleft G$, where U is of order p^{4} and exponent p (Lemma $\mathrm{J}(\mathrm{g})$). Then $\left|\Omega_{1}(G / U)\right|<p^{p-1}$ so G / U is absolutely regular (Lemma $\mathrm{J}(\mathrm{a}, \mathrm{q}))$ and $|G / U| \geq p^{p}$, contrary to Lemma $\mathrm{J}(\mathrm{d})$. Thus, E is a maximal normal subgroup of G of exponent p. It follows from Lemma $\mathrm{J}(\mathrm{a})$ that $p=3$. Assume that E_{1} is another normal elementary abelian subgroup of G of order 3^{3}. Then $\operatorname{cl}\left(E E_{1}\right) \leq 2$, by Fitting's Lemma so $\exp \left(E E_{1}\right)=3($ Lemma $J(\mathrm{k}))$,
contrary to what has just been proved. The proof of (c) is complete. Now, (b) and (c) imply (e).
(d) follows since $\Omega_{1}(G / M)=\Omega_{2}(G) / M$ is of order p.
(f) Let L / E be the fundamental subgroup of G / E; then L / E is metacyclic but has no cyclic subgroup of index 3 [Ber2, Theorem 9.6] so $\Omega_{1}(L / E)=$ $\Omega_{2}(G) / E \cong \mathrm{E}_{3^{2}}$. In that case, $L / \mathrm{C}_{L}(E)$ is isomorphic to a subgroup of $\mathrm{E}_{3^{2}}$ since a Sylow 3 -subgroup of $\operatorname{Aut}(E)$ is nonabelian of order 3^{3} and exponent 3 , and we conclude that $\Omega_{2}(G) \leq \mathrm{C}_{L}(E)$. Then $\operatorname{cl}\left(\Omega_{2}(G)\right) \leq 2$ so $\Omega_{1}(G)=$ $\Omega_{1}\left(\Omega_{2}(G)\right)=E$, by (c).

Assume that $E \not \leq \Phi(G)$. Then $G=E M$ for some $M \in \Gamma_{1}$. In that case, M has no G-invariant subgroup $\cong \mathrm{E}_{3^{3}}$ so, by [Ber4, Theorem 6], M has no normal subgroup $\cong \mathrm{E}_{3^{3}}$. Then, M is of maximal class since $M /(M \cap E) \cong$ G / E is irregular. In that case, by [Ber1, Remark 7.8], $M=\Omega_{2}(M) \leq \Omega_{2}(G)$, a contradiction, since $|M|=3^{2}|G / E| \geq 3^{7}>3^{5}=\left|\Omega_{2}(G)\right|$.

Proposition 2.3. Let G be a p-group, $p>2$. Suppose that $\left|\Omega_{1}(\mathrm{Z}(G))\right|=$ p^{n}. Let \mathcal{E}_{k} be the set of elementary abelian subgroups of order p^{k} in G. Then
(a) If $k \leq n$, then $\left|\mathcal{E}_{k}\right| \equiv 1(\bmod p)$.
(b) If $\Omega_{1}(\mathrm{Z}(G))<\Omega_{1}(G)$, then $\left|\mathcal{E}_{n+1}\right| \equiv 1(\bmod p)$.

Proof. One may assume in (a) that $\Omega_{1}(\mathrm{Z}(G))<\Omega_{1}(G)$; then every maximal elementary abelian subgroup U of G has order at least p^{n+1}. Suppose that we have proved that $\left|\mathcal{E}_{k-1}\right| \equiv 1(\bmod p)$. Write

$$
\mathcal{E}_{k-1}=\left\{A_{1}, \ldots, A_{r}\right\}, \mathcal{E}_{k}=\left\{B_{1}, \ldots, B_{s}\right\}, V=\Omega_{1}(\mathrm{Z}(G)) .
$$

If $A_{i} \leq V$, then, taking $x \in \Omega_{1}(G)-V$, we see that $A_{i}<\left\langle x, A_{i}\right\rangle \in \mathcal{E}_{k}$. If $A_{i} \not \leq V$, then $A_{i}<B_{j} \in \mathcal{E}_{k}$, where $B_{j}=\left\langle x, A_{i}\right\rangle$ for $x \in V-A_{i}$. Thus, in any case, $A_{i}<B_{j}$ for some j. By assumption, $r \equiv 1(\bmod p)$. Let α_{i} be the number of members of the set \mathcal{E}_{k}, containing A_{i}, and let β_{j} be the number of members of the set \mathcal{E}_{k-1} contained in B_{j}. By [Ber4, Theorem 1], $\alpha_{i} \equiv 1$ $(\bmod p)$ for all i. By Sylow's Theorem, $\beta_{j} \equiv 1(\bmod p)$ for all j. Therefore, by double counting, $1 \equiv r \equiv \alpha_{1}+\cdots+\alpha_{r}=\beta_{1}+\cdots+\beta_{s} \equiv s(\bmod p)$. Part (a) is proved. The same argument also suits for proof of (b).

Proposition 2.3 is not true for $p=2$ as the group $G \cong \mathrm{D}_{8}$ shows.
The following result supplements the previous one.
Proposition 2.4. Let G be a nonabelian p-group, $|\mathrm{Z}(G)|=p^{n}$ and let $k \leq n+1$. Let \mathcal{A}_{i} be the set of normal abelian subgroups of order p^{i} in G. Then $\left|\mathcal{A}_{k}\right| \equiv 1(\bmod p)$.

Proof. Write $\mathcal{A}_{k-1}=\left\{U_{1}, \ldots, U_{r}\right\}, \mathcal{A}_{k}=\left\{V_{1}, \ldots, V_{s}\right\}$. Since $k \leq n+1$, the sets \mathcal{A}_{k-1} and \mathcal{A}_{k} are nonempty. We have to prove that $s \equiv 1(\bmod p)$. We use induction on k. By induction, $r \equiv 1(\bmod p)$. Let α_{i} be the number of members of the set \mathcal{A}_{k} that contain U_{i} and let β_{j} be the number of members of the set \mathcal{A}_{k-1} that contained in V_{j}. By Sylow, $\beta_{j} \equiv 1(\bmod p)$. Let $U_{i} \leq \mathrm{Z}(G)$
and let $T / U_{i} \triangleleft G / U_{i}$ be of order p; then $T=V_{j} \in \mathcal{A}_{k}$ for some j. If $U_{i} \not \leq \mathrm{Z}(G)$ and $T / U_{i} \leq U_{i} \mathrm{Z}(G) / U_{i}$ is of order p, then $T=V_{j} \in \mathcal{A}_{k}$. It follows, by the double counting, that $\alpha_{1}+\cdots+\alpha_{r}=\beta_{1}+\cdots+\beta_{s} \equiv s(\bmod p)$ so it suffices to prove that $\alpha_{i} \equiv 1(\bmod p)$ for all i. Let \mathcal{M}_{i} be the set of all members of the set \mathcal{A}_{k} that contain U_{i}; then $\left|\mathcal{M}_{i}\right|=\alpha_{i}$. All members of the set \mathcal{M}_{i} are contained in $\mathrm{C}_{G}\left(U_{i}\right)$. Therefore, without loss of generality, one may assume that $\mathrm{C}_{G}\left(U_{i}\right)=G$. Let $D=\left\langle H \mid H \triangleleft G \in \mathcal{M}_{i}\right\rangle$; then D / U_{i} is elementary abelian. If $V / U_{i} \leq D / U_{i}$ is of order p, then $V \in \mathcal{M}_{i}$ since $D / U_{i} \leq \mathrm{Z}\left(G / U_{i}\right)$, so $\alpha_{i} \equiv\left|\mathcal{M}_{i}\right|=\mathrm{c}_{1}\left(D / U_{i}\right) \equiv 1(\bmod p)$, and we are done.

Proposition 2.5. Let p^{p} be the maximal order of subgroups of exponent p in a p-group G. Then either $\left|\Omega_{1}(G)\right|=p^{p}$ or the intersection K of all subgroups of order p^{p} and exponent p in G has order p^{p-1}, and K is the unique normal subgroup of order p^{p-1} and exponent p in G.

Proof. If $e_{p}(G)=1$, then $\left|\Omega_{1}(G)\right|=p^{p}$ (see Case 2, preceding Theorem 1.5). Now we let $e_{p}(G)>1$; then G is irregular (indeed, let R and S be two distinct subgroups of G of order p^{p} and exponent p and $V=\langle R, S\rangle$; then $\exp (V)>p$, by hypothesis, and the claim follows, by Lemma $\mathrm{J}(\mathrm{k}))$. One may assume that G is not of maximal class since for such groups the assertion is true, by Lemma $\mathrm{J}(\mathrm{e})(\mathrm{i})$. Then G contains a normal subgroup R of order p^{p} and exponent p (Lemma $\mathrm{J}(\mathrm{a})$). We have $R<\Omega_{1}(G)$. Now let F_{0} be a subgroup of order p^{p} and exponent p in $G, F_{0} \neq R$. Let R_{0} be a G-invariant subgroup of R minimal such that $R_{0} \not \leq F_{0}$. Set $F=F_{0} R_{0}$; then $\Omega_{1}(F)=F$ and $|F|=p^{p+1}$. By hypothesis, $\exp (F)>p$ so F is irregular hence it is of maximal class (Lemma $J(\mathrm{k})$). In that case, $\left|R_{0}\right|=p^{p}=|R|$ (otherwise, if $\left|R_{0}\right|<p^{p}$, then $R_{0} \leq \Phi(F)<F_{0}$, and we get $\left.F=R_{0} F_{0}=F_{0}<F\right)$ so $R_{0}=R$. In particular, F_{0} contains all proper G-invariant subgroups of R so that $F_{0} \cap R=K=\Phi(F)$. Thus, K is the intersection of all subgroups of order p^{p} and exponent p in G. Since every G-invariant subgroup of order p^{p-1} and exponent p is contained in at least two distinct subgroups of order p^{p} and exponent p, it coincides with K.

3. Groups and subgroups of maximal class

In this section we study subgroups of maximal class in a p-group. We also prove a number of new assertions on p-groups of maximal class.

THEOREM 3.1. Let G be a p-group and $M<G$ be of maximal class.
(a) Write $D=\Phi(M), N=\mathrm{N}_{G}(M)$ and $C=\mathrm{C}_{N}(M / D)$. Let t be the number of subgroups $K \leq G$ of maximal class such that $M<K$ and $|K: M|=p$. Then t equals the number of subgroups of order p in N / M not contained in C / M. If $C=M$, then G is of maximal class. If $C>M$, then t is a multiple of p.
(b) Suppose, in addition, that M is irregular and G is not of maximal class. Let a positive integer k be fixed. Then the number t of subgroups $L<G$ of maximal class and order $p^{k}|M|$ such that $M<L$, is a multiple of p.

Proof. (a) All subgroups of G of order $p|M|$ that contain M, are contained in N. Note that $|N: C| \leq|\operatorname{Aut}(M / D)|_{p}=p$. First assume that $M<C$. If K / M is a subgroup of order p in C / M, then K / D is abelian of order p^{3} so K is not of maximal class. Now let K / M be a subgroup of order p in N / M not contained in C / M. Then K / D is nonabelian of order p^{3}. Since $D=\Phi(M) \leq \Phi(K)$, it follows that $\mathrm{d}(K)=\mathrm{d}(K / D)=2$ so K is of maximal class, by Lemma J(i). If $C=N$, then $t=0$. If $C=M$, then $|N: M|=p$ and N is of maximal class, by the above; then G is also of maximal class (Lemma $\mathrm{J}(\mathrm{d}))$. Now let $M<C<N$; then the number of subgroups of order p in C / M is $\equiv 1(\bmod p)$ so the number of subgroups $L / M<N / M$ of order p not contained in C / M, is a multiple of p (Sylow); since L, by the above, is of maximal class, we get $t \equiv 0(\bmod p)$.
(b) Let \mathcal{M} be the set of all wanted subgroups. One may assume that $\mathcal{M} \neq \emptyset$.

If $k=1$, the assertion follows from (a). Indeed, assume that p does not divide t. It follows from (a) that then $C=M$ and N is of maximal class so G is also of maximal class (Lemma $\mathrm{J}(\mathrm{d})$), contrary to the hypothesis. Now let $k>1$. We proceed by induction on k. Let $\mathcal{N}=\left\{P_{1}, \ldots, P_{u}\right\}$ be the set of subgroups of maximal class and order $p^{k-1}|M|$ in G containing M (by Lemma $J(h), \mathcal{N} \neq \emptyset$ since $\mathcal{M} \neq \emptyset)$. By induction, $u \equiv 0(\bmod p)$. Let $\mathcal{M}_{i}=\left\{V_{1}, \ldots, V_{a}\right\}$ and $\mathcal{M}_{j}=\left\{W_{1}, \ldots, W_{b}\right\}$ be the sets of those subgroups of maximal class and order $p\left|P_{1}\right|$ in G which contain P_{i} and P_{j}, respectively, $i \neq j$. By (a), a and b are multiples of p. Assume that $X \in\left\{V_{1}, \ldots, V_{a}\right\} \cap$ $\left\{W_{1}, \ldots, W_{b}\right\}$. Then P_{i} and and P_{j} are distinct subgroups of index p in X so $X=P_{i} P_{j}$. Since X is of maximal class, we get $\mathrm{d}(X)=2$ so $P_{i} \cap P_{j}=\Phi(X)$. Since $M \leq P_{i} \cap P_{j}=\Phi(X)$ and $\Phi(X)$ is absolutely regular (Lemma $\left.J(f)\right)$ and M is irregular, we get a contradiction. Thus, $\left\{V_{1}, \ldots, V_{a}\right\} \cap\left\{W_{1}, \ldots, W_{b}\right\}=\emptyset$. Clearly, in this way we have counted all members of the set \mathcal{M}. It follows that $\mathcal{M}=\bigcup_{i=1}^{u} \mathcal{M}_{i}$ is a partition, and we conclude that $t=\sum_{i-1}^{u}\left|\mathcal{M}_{i}\right| \equiv 0$ $(\bmod p)$.

If $M<G$ are irregular p-groups of maximal class and $p^{k} \leq|G: M|$, then the number of subgroups of G of maximal class and order $p^{k}|M|$ that contain M, equals 1. Indeed, if M_{1} and M_{2} are distinct irregular subgroups of maximal class and the same order in G, then $M_{1} \cap M_{2}$ is absolutely regular.

Remark 3.2. Let $A<G$, where G is a p-group. If every subgroup of G of order $p|A|$ containing A, is of maximal class, then G is also of maximal class (here we do not assume, as in Theorem 3.1(a), that A is of maximal
class; obviously, $|A|>p$). Indeed, assume that G is not of maximal class. By Lemma $\mathrm{J}(\mathrm{d}), N=\mathrm{N}_{G}(A)$ is not of maximal class. Then, by hypothesis, $|N: A|>p$. To obtain a contradiction, it suffices to assume that $N=G$; then $A \triangleleft G$. Let D be a G-invariant subgroup of index p^{2} in A. Set $C=\mathrm{C}_{G}(A / D)$; then $|G: C| \leq p$ so $A<C$. If B / A is a subgroup of order p in C / A, then B / D is abelian of order p^{3} so B is not of maximal class, contrary to the hypothesis.

Theorem 3.1(b) is also true if $|M|=p^{p}$. Indeed, consider part (b) for $k>1$ since case $k=1$ follows from part (a). In that case, $p>2$ and $M \not \leq \Phi(X)$, where X is such as in the proof of the theorem since $\Phi(X)$ is absolutely regular (Lemma $J(f))$. Now the proof is continued as in the proof of Theorem 3.1(b).

Theorem 3.3. Suppose that a subgroup of maximal class H is normal in a p-group G and G / H is cyclic of order $>p$. If $|H|>p^{p+1}$, then G has only one normal subgroup of order p^{p} and exponent p.

Proof. The group G is not of maximal class since $G / G^{\prime} \neq \mathrm{E}_{\mathrm{p}^{2}}$. Set $\Phi=\Phi(H), C=\mathrm{C}_{G}(H / \Phi)$; then $|G: C| \leq p$ and C / Φ is abelian of rank 3 since, if $L / H=\Omega_{1}(G / H)$, then L is not of maximal class so $\mathrm{d}(L)=3$, by Lemma $\mathrm{J}(\mathrm{i})$. Since C is neither absolutely regular nor of maximal class, it contains a G-invariant subgroup R of order p^{p} and exponent p (Lemma $\mathrm{J}(\mathrm{b})$). Since $|H|>p^{p+1}$, we get $R \not \leq H$ (Lemma J(h)).

Let H_{1} be the fundamental subgroup of H; then H_{1} is characteristic in H so normal in G. Since G / H is cyclic of order $>p$, we get $\Omega_{1}(G) \leq H R$ and $|H R|=p|H|$ so $H \cap R=H_{1} \cap R$ has order p^{p-1} hence $\left|H_{1} R\right|=p\left|H_{1}\right|=|H|$, by the product formula. Next, $\Omega_{1}\left(H_{1} R\right)=R($ Lemma $\mathrm{J}(\mathrm{n}))$ since $H_{1} R$ is neither absolutely regular nor of maximal class and absolutely regular subgroup $H_{1} \in$ $\Gamma_{1}\left(H_{1} R\right)$ (Lemma $\mathrm{J}(\mathrm{h})$). Assume that G has another normal subgroup R_{1} of order p^{p} and exponent p. Then $R_{1} H=R H$ since $R_{1}<\Omega_{1}(G) \leq R H$, and $R \cap R_{1}=H \cap R=H_{1} \cap R$ is of order p^{p-1} (indeed, H has exactly one normal subgroup of order p^{p-1}, namely, $\Omega_{1}\left(H_{1}\right)$). By Lemma $\mathrm{J}(\mathrm{b}), e_{p}(G) \geq p+1$.

Assume that $R_{2} \triangleleft G$ is of order p^{p} and exponent p such that $R_{2} \not \leq R R_{1}$. We have $R \cap R_{2}=R \cap R_{1}=R \cap H$ (see the previous paragraph). Then $H \cap R R_{1}=H \cap R R_{2}=T$, where T is absolutely regular of order p^{p} (note that $\left.R R_{1}, R R_{2} \leq \Omega_{1}(G) \leq H R\right)$. In that case, $T R_{1}=T R=R R_{1}, T R_{2}=T R$ so $T R_{1}=T R_{2}=R R_{1}$, hence $R_{2}<R R_{1}$, contrary to the assumption. Thus, $R_{2}<R R_{1}$, i.e., all G-invariant subgroups of order p^{p} and exponent p are contained in $R R_{1}$. As we know, $\left|R R_{1}\right|=p^{p+1}$. Since H has no normal subgroup of order p^{p} and exponent $p, \exp \left(H \cap\left(R R_{1}\right)\right)>p$ so $\exp \left(R R_{1}\right)>p$. By Lemma $\mathrm{J}(\mathrm{k}), R R_{1}$ is irregular so of maximal class whence $\mathrm{d}\left(R R_{1}\right)=2$. Since all $e_{p}(G) \geq p+1$ normal subgroups of order p^{p} and exponent p are maximal subgroups of the 2 -generator group $R R_{1}$, by what has just been proved, we conclude that $\exp \left(R R_{1}\right)=p$, a contradiction. Thus, R_{1} does not exist.

Let $H \in \operatorname{Syl}_{p}\left(\mathrm{~S}_{p^{2}}\right), p>2$. As $G=H \times \mathrm{C}_{p^{2}}$ shows, Theorem 3.3 is not true for $|H|=p^{p+1}$.

Let $\mathcal{M}_{n}(G)$ be the set of subgroups of maximal class and order p^{n} in a p group G of order p^{m}, and write $\mu_{n}(G)=\left|\mathcal{M}_{n}(G)\right|$. By Lemma J(i), if $m>3$, then $\mu_{m-1}(G) \equiv 0\left(\bmod p^{2}\right)$, unless G is of maximal class. By Mann's Theorem 5.3 below, we also have $\mu_{3}(G) \equiv 0\left(\bmod p^{2}\right)$ provided $m \geq 5$. Therefore, it is natural to study the p-groups G satisfying $\mu_{n}(G)=p^{2}$ for $n \geq 3$. Note that, if G is of maximal class and $n>p$, then $G=\left\langle A \mid A \in \mathcal{M}_{n}(G)\right\rangle$.

Theorem 3.4. Let G be a group of order $p^{m}, 3 \leq n<m$ and $\mu_{n}(G)=p^{2}$. Take $S \in \mathcal{M}_{n}(G)$ and set $N=\mathrm{N}_{G}(S), D=\left\langle A \mid A \in \mathcal{M}_{n}(G)\right\rangle$. Then one of the following holds:
(a) $G=D$ is of maximal class and $m=n+2$.
(b) $|D|=p^{n+1}, \mathrm{~d}(D)=3, \mathrm{c}_{1}(N / S)=1$, i.e., N / S is either cyclic or generalized quaternion.

Proof. We use the notation introduced in the statement of the theorem. We have $|G: N| \leq \mu_{n}(G)=p^{2}$. Set $C=\mathrm{C}_{N}(S / \Phi(S))$.
(i) Suppose that $|N: S|>p$. Then $C / \Phi(S)>S / \Phi(S)$ in view of $|N: C| \leq|\operatorname{Aut}(S / \Phi(S))|_{p}=p$. Take a subgroup U / S of order p in C / S; then $U / \Phi(S)$ is abelian of order p^{3} so U is not of maximal class. In that case, by Lemma $\mathrm{J}(\mathrm{i}),\left|\mathcal{M}_{n}(U)\right|=p^{2}=\left|\mathcal{M}_{n}(G)\right|$ so $U=D,|D|=p^{n+1}, \mathrm{~d}(D)=3$. It follows that $\mathrm{c}_{1}(N / S)=1$. Indeed, let V / S be a subgroup of order p in N / S and $V \neq U(=D)$. Since all members of the set $\mathcal{M}_{n}(G)$ are contained in U, S is the unique member of the set $\mathcal{M}_{n}(G)$, which contained in V, and this is impossible (Lemma $\mathrm{J}(\mathrm{i})$). Thus, $\mathrm{c}_{1}(N / S)=1$, i.e., N / S is either cyclic or generalized quaternion, and G is as stated in (b).
(ii) Now let $|N: S|=p$ for all $S \in \mathcal{M}_{n}(G)$ (then N / S is cyclic).
(ii1) Suppose that $\mathrm{d}(N)=2$. Then N is of maximal class (Lemma J(i)) so G is also of maximal class (Lemma $\mathrm{J}(\mathrm{d})$). Since $1<\mu_{n}(N) \leq p$, we get $N<D$ and D is of maximal class (Lemma J(d)). Assume that $|G: N|=p^{2}$; then all members of the set $\mathcal{M}_{n}(G)$ are conjugate in G so $D \in \Gamma_{1}$ and $|G|=$ $|G: N||N|=p^{n+3}$. If $n>p$, then $D=G$ (see the paragraph, preceding the theorem), a contradiction. Therefore, if $D<G$, we get $D \in \Gamma_{1}$ and $n \leq p$ so $p>2$. Since $\mu_{m-1}(G)>1$, there is $T \in \Gamma_{1}-\{D\}$ which is of maximal class. Since $\mu_{n+1}(T)>1, T$ contains a subgroup U of maximal class and index p which is not contained in D (indeed, $\left.T=\left\langle K \mid K \in \mathcal{M}_{n}(T)\right\rangle\right)$. Similarly, $\mu_{n}(U)>1$ so U contains a subgroup V of maximal class and index p which is not contained in D, contrary to definition of D since $|V|=p^{n}$. Thus, $|G: N|=p$ so $D=G, m=n+2$, and G is as stated in (a).
(ii2) Now let $\mathrm{d}(N)=3$. Then $N=D$ since $\mu_{n}(N)=p^{2}($ Lemma $J(i))$, and G is as stated in (b).

Remark 3.5. Let $H<G$, where H is a nonnormal subgroup of G of order p^{p} and exponent p and let the p-group G be not of maximal class. Suppose that H^{G}, the normal closure of H in G, is irregular of maximal class. We claim that then G has a normal subgroup F of order p^{p} and exponent p such that $|H F|=p^{p+1}$ and $H \cap F \triangleleft G$. Indeed, it follows from $\left|H^{G}\right| \geq p^{p+1}$ that $R=\Omega_{1}\left(\Phi\left(H^{G}\right)\right)$ is G-invariant of order p^{p-1} and exponent p and $R<H$ (Lemma $\mathrm{J}(\mathrm{e})(\mathrm{i}))$. By Lemma $\mathrm{J}(\mathrm{g}), R<F$, where $F \triangleleft G$ is of order p^{p} and exponent p. Then $H \cap F=R \triangleleft G$ so $|H F|=p^{p+1}$, by the product formula.

Remark 3.6. Let G be a p-group of order $p^{m}, m>p+1$, and let $M \in \Gamma_{1}$. If G contains a subgroup H of order p^{p+1} such that $H \not 又 M$, and all such H are of maximal class, then G is also of maximal class. Indeed, if $m=p+2$, then $\mathcal{M}_{m-1}(G)=\Gamma_{1}-\{M\}$ so $\left|\mathcal{M}_{m-1}(G)\right| \not \equiv 0\left(\bmod p^{2}\right)$, hence G is of maximal class, by Lemma J(i). Now let $m>p+2$ and H be as above. Let $R \neq M \cap H$ be a maximal subgroup of H. Then R is a maximal regular subgroup of G, by hypothesis, and we conclude that G is of maximal class (Lemma J(e)(ii)) since $|R|=p^{p}$.

Remark 3.7. Let G be an irregular p-group of maximal class and order $>p^{p+1}, p>2$. Let us estimate $p^{a}=\max \left\{|A| \mid A<G, A^{\prime}=\{1\}, A \not \leq G_{1}\right\}$, where G_{1} is the fundamental subgroup of G. It follows from description of subgroups of G ([Bla1] and [Ber2, Theorems 9.5 and 9.6]) that $a \leq p$. We claim that $a<p$. Assume that this is false, and let $A<G$ be an abelian subgroup of order $\geq p^{p}$ such that $A \not \leq G_{1}$. Then $|G: A|>p$ (otherwise, $A=G_{1}$). Let $A<M<G$, where $|M: A|=p$. Then M is of maximal class [Ber2, Theorem 13.19] so A is characteristic in M, by Fitting's Lemma. Since $\mathrm{N}_{G}(M)$ is of maximal class and order $\geq p^{p+2}$ and $\mathrm{N}_{G}(M) \leq \mathrm{N}_{G}(A)$ so $\mathrm{N}_{G}(A)$ is also of maximal class, we get, by Lemma $\mathrm{J}(\mathrm{f}), A \leq \Phi\left(\mathrm{N}_{G}(A)\right) \leq \Phi(G)<G_{1}$, a contradiction (in fact, according to the deep result from [Bla1], $a \leq 2$).

Remark 3.8. Let H is a nonnormal subgroup of a p-group $G,|G|>p^{p+1}$, $|H|>p^{2}$ and $\mathrm{N}_{G}(H)$ is of maximal class. Then G is also of maximal class (Lemma $\mathrm{J}(\mathrm{d})$) and $H \not \subset G_{1}$, where G_{1} is the (absolutely regular) fundamental subgroup of G (indeed, $\left|\mathrm{Z}\left(\mathrm{G}_{1}\right)\right|>\mathrm{p}$). We claim that $\left|\mathrm{N}_{G}(H): H\right|=p$. Assume that this is false. Then H is characteristic in $\mathrm{N}_{G}(H)($ Lemma $\mathrm{J}(\mathrm{d}))$ so $\mathrm{N}_{G}(H)=G$, contrary to the hypothesis. Let $K \neq H \cap G_{1}$ be maximal in H and assume that $\mathrm{N}_{G}(K)>H$. Let $H<F \leq \mathrm{N}_{G}(K)$, where $|F: H|=p$; then $F=\mathrm{N}_{G}(H)$ (compare orders) so F is of maximal class. Since $|F: K|=|F: H||H: K|=p^{2}$ and $K \triangleleft F$, we get $K=\Phi(F)<\Phi(G)<G_{1}$ so $K=H \cap G_{1}$, a contradiction.

Remark 3.9. Suppose that a p-group G satisfies the following conditions: (i) G contains a proper abelian subgroup A of order $\geq p^{p}$. (ii) Whenever $A<H \leq G$ and $|H: A|=p$, then $|\mathrm{Z}(H)|=p$. Then: (a) G is of maximal class. (b) If $p>2$, then A has index p in G. Indeed, let $A<H \leq G$
with $|H: A|=p$. Then H is of maximal class, by [Ber2, Lemma 1.1] and induction, and (a) follows from Remark 3.2. Now let $p>2$. Using induction, one may assume that $|G: A|=p^{2}$, and obtain a contradiction. Let H be as above. Then A is characteristic in H (Fitting's Lemma) so normal in G. It follows that $A=\Phi(G)$. Then, by hypothesis, all members of the set Γ_{1} are of maximal class, a contradiction since $\mathrm{C}_{G}\left(\mathrm{Z}_{2}(G)\right) \in \Gamma_{1}$ is not of maximal class. Thus, $|G: A|=p$, as required.

Remark 3.10. Let A be a proper absolutely regular subgroup of a p-group $G, p>2, \exp (A)>p$ such that, whenever $A<B \leq G$ with $|B: A|=p$, then $\Omega_{1}(B)=B$. Then G is of maximal class. If, in addition, $|A|>p^{p}$, then $A=G_{1}$. Assume that the first assertion is false; then $\mathrm{N}_{G}(A)$ is not of maximal class (Lemma $J(d)$). Therefore, one may assume that $\mathrm{N}_{G}(A)=G$. If $B / A \leq G / A$ is of order p, then, in view of $\exp (B) \geq \exp (A)>p$ and $\Omega_{1}(B)=B$, we conclude that B is irregular (Lemma $\mathrm{J}(\mathrm{k})$). Assume that B is not of maximal class. Since B is also not absolutely regular, we get $B=A \Omega_{1}(B)$, where $\Omega_{1}(B)(=B)$ is of exponent p (Lemma $\mathrm{J}(\mathrm{n})$), contrary to the hypothesis. Thus, every subgroup of G of order $p|A|$, containing A, is of maximal class so G is of maximal class, by Remark 3.2. Let, in addition, $|A|>p^{p}$ and assume that $A \neq G_{1}$. Then $|G: A|>p$. Let $A<B<T \leq G$ with $|B: A|=p=|T: B|$. Then $A \triangleleft T$ since A is characteristic in B, and T is of maximal class. It follows that $A=\Phi(T) \leq \Phi(G)<G_{1}$, a contradiction.

Proposition 3.11. Let R be a subgroup of order p of a nonabelian pgroup G. If there is only one maximal chain connecting R with G, then either $\mathrm{C}_{G}(R) \cong \mathrm{E}_{p^{2}}$ (then G is of maximal class, by Lemma $J(o)$) or $G \cong \mathrm{M}_{p^{n+2}}$.

Proof. We have $\mathrm{C}_{G}(R)=R \times Z$, where Z is cyclic of order, say p^{n}. Assume that $n>1$. We have $\Omega_{1}\left(\mathrm{C}_{G}(R)\right)=U \cong \mathrm{E}_{p^{2}}$. Then $\mathrm{N}_{G}(U) / U$ is cyclic so $\mathrm{N}_{G}(U) \cong \mathrm{M}_{p^{m}}$ since $n>1$. Since $U=\Omega_{1}\left(\mathrm{~N}_{G}(U)\right)$ is characteristic in $\mathrm{N}_{G}(U)$, we get $\mathrm{N}_{G}(U)=G$.

Now let $n=1$. In that case, any subgroup of G, properly containing U, is of maximal class (Lemma $\mathrm{J}(\mathrm{o})$). Let $U \leq B<G$. Then $\mathrm{N}_{G}(B)$ is of maximal class so $\left|\mathrm{N}_{G}(B): B\right|=p$ (Lemma $\left.\mathrm{J}(\mathrm{b})\right)$ so G satisfies the hypothesis.

Theorem 3.12. Let G be a p-group. Then the number of irregular members of maximal class in the set Γ_{2} is a multiple of p.

Proof. Let Γ_{2}^{\prime} be the set of all irregular members of maximal class in the set Γ_{2}. We may assume that $\Gamma_{2}^{\prime} \neq \emptyset$; then G is not of maximal class, $\mathrm{d}(G) \leq 4$ and $|G| \geq p^{p+3}$. Let \mathcal{M} be the set of all normal (irregular) subgroups of maximal class and index p^{2} in G. Since $\Phi(G) \notin \Gamma_{2}^{\prime}$ (the center of each member of the set Γ_{2}^{\prime} is of order p), we get $\mathrm{d}(G)>2$.

By Lemma $\mathrm{J}(\mathrm{i}), p| | \mathcal{M} \mid$ (this is the only place where we use irregularity of all members of the set Γ_{2}). Therefore, we may assume that $\mathcal{M} \neq \Gamma_{2}^{\prime}$ so there is $H \triangleleft G$ of maximal class such that $G / H \cong \mathrm{C}_{p^{2}}$.

Assume that $\mathrm{d}(G)=4$. Let $L \in \mathcal{M}$. Since $|G: \Phi(L)|=|G: L| \mid L:$ $\Phi(L)\left|=p^{4}=|G: \Phi(G)|\right.$ and $\Phi(L) \leq \Phi(G)$, we get $\Phi(L)=\Phi(G)$ so $L \in \Gamma_{2}^{\prime}$, $\Gamma_{2}^{\prime}=\mathcal{M}$, contrary to the assumption. Thus, $\mathrm{d}(G)=3,\left|G / G^{\prime}\right|=p^{4}$ so G / G^{\prime} is abelian of type (p^{2}, p, p) and $G^{\prime}=H^{\prime}$ (compare indices!).

Let $F \in \Gamma_{2}^{\prime}$; then $G^{\prime}=F^{\prime}$ (compare indices!). Set $T / G^{\prime}=\Omega_{1}\left(G / G^{\prime}\right)$; then $T / G^{\prime} \cong \mathrm{E}_{p^{3}}$. Since $G / F \cong \mathrm{E}_{p^{2}}$, there is $M / F<G / F$ of order p such that $M \neq T$. We have $M^{\prime}=F^{\prime}=G^{\prime}$ since $\left|F: F^{\prime}\right|=p^{2}$ and $G^{\prime}=F^{\prime} \leq M^{\prime} \leq G^{\prime}$, and so M / G^{\prime} is abelian of type $\left(p^{2}, p\right)$. Let L be a G-invariant subgroup of index p in G^{\prime}. Then F / L is nonabelian of order p^{3} since F is of maximal class. The group M / L is minimal nonabelian since $L<G^{\prime}=M^{\prime}<\Phi(M)$ so $\mathrm{d}(M)=\mathrm{d}(M / L)=2$ and $(M / L)^{\prime}$ is of order p [BJ2, Lemma 3.2(a)]. This is a contradiction: M / L contains a proper nonabelian subgroup F / L. Thus, H does not exist so $\mathcal{M}=\Gamma_{2}^{\prime}$, completing the proof.

Theorem 3.13. Let G be an irregular p-group of order $>p^{p+1}$. If $K=$ $\Omega_{1}(G)<G$ is of maximal class, then one of the following holds:
(a) If K is irregular, then G is of maximal class and $|G: K|=p$.
(b) If K is regular, then $p>2, K$ is of order p^{p} and exponent p and all maximal subgroups of G not containing K, are absolutely regular.

Proof. Since $|\mathrm{Z}(K)|=p$ and K is noncyclic, we get $K \not 又 \Phi(G)$.
(i) Suppose that K is irregular; then $|K| \geq p^{p+1}$. If $|K|=p^{p+1}$, then G is of maximal class (Remark 1.1). If $|K|>p^{p+1}$, then $\mathrm{e}_{p}(G)=e_{p}(K) \equiv 0$ $(\bmod p)$ so G is of maximal class (Lemma $\mathrm{J}(\mathrm{b}))$. In both cases, $|G: K|=p$, by Lemma J(f).
(ii) Now let K be regular. Then $\exp (K)=p(\operatorname{Lemma} J(\mathrm{k}))$ so $p>2$: K is nonabelian. Since G is irregular, we get $|K| \geq p^{p-1}$ (Lemma J(q)).

If $|K|=p^{p-1}$, then G is of maximal class (Lemma $\mathrm{J}(\mathrm{a})$). In that case, $K \leq \Phi(G)$, and K is not of maximal class (Lemma $\mathrm{J}(\mathrm{f})$), a contradiction.

Therefore, since the order of regular p-group of maximal class is at most p^{p}, we must have $|K|=p^{p}$. If G is of maximal class, then $|G|=p^{p+1}$ (Lemma $\mathrm{J}(\mathrm{h})$), and in this case (b) is true. Next assume that G is not of maximal class; then $|G|>p^{p+1}$. Then K has a G-invariant abelian subgroup $R \cong \mathrm{E}_{\mathrm{p}^{2}}$. Setting $\mathrm{C}_{G}(R)=M$, we get $K \not 又 M$ so $|G: M|=p$. Then $\Omega_{1}(M)=K \cap M$ is of order p^{p-1} and exponent p (recall that $\left.K=\Omega_{1}(G)\right)$ so M is absolutely regular since it is not of maximal class (Lemma $\mathrm{J}(\mathrm{a})$). Now let $F \in \Gamma_{1}$ be of maximal class. Since $M \in \Gamma_{1}$ is absolutely regular, it follows that G is of maximal class (Lemma J(l)), a contradiction. Taking, from the start, $F \nsupseteq K$, we see that F is absolutely regular. Thus, all maximal subgroups of G not containing K, are absolutely regular.

Proposition 3.14. Let G be a p-group of exponent $>p$ and $H<G$ be either absolutely regular or of maximal class.
(a) If $\mathrm{H}_{p}(G) \leq H<G$, then G is of maximal class. In that case, G is irregular, $\left|G: \mathrm{H}_{p}(G)\right|=p$ and H is absolutely regular.
(b) Let $\exp (H)>p$. If $H \cap Z=\{1\}$ for each cyclic $Z<G$ with $Z \not \leq H$, then G is of maximal class.

Proof. (a) The group G is irregular (otherwise, $\mathrm{H}_{p}(G)=G$).
(i) If H is absolutely regular, then each subgroup of G of order $p|H|$, containing H, is generated by elements of order p so G is of maximal class (Remark 3.10).
(ii) Now suppose that H is of maximal class but not absolutely regular. Since $\exp (H)=\exp (G)>p$, we get $|H| \geq p^{p+1}$ so H is irregular (Lemma $\mathrm{J}(\mathrm{h}))$. Assume that $|H|>p^{p+1}$. Then $\mathrm{c}_{1}(G) \equiv \mathrm{c}_{1}(H)\left(\bmod p^{p}\right)$ so G is of maximal class (Lemma $\mathrm{J}(\mathrm{b})$). Now let $|H|=p^{p+1}$. Assume that G is not of maximal class. In view of Theorem 3.1(b), one may assume that $|G: H|=p$. Let T_{1}, \ldots, T_{p+1} be all regular members of the set Γ_{1} (Lemma $\mathrm{J}(\mathrm{i})$); then $\Omega_{1}\left(T_{i}\right)=T_{i}$ so $\exp \left(T_{i}\right)=p$ for all i. It follows from $G=\bigcup_{i=1}^{p+1} T_{i}$ (Lemma $\mathrm{J}(\mathrm{i}))$ that $\exp (G)=p$, a contradiction.
(b) If $H<M \leq G$ with $|M: H|=p$, then $H \geq \mathrm{H}_{p}(M)$ so M is of maximal class, by (a). Thus, all containing H subgroups of G of order $p|H|$ are of maximal class so G is of maximal class, by Remark 3.2.

In proofs of known Proposition 3.15 and Corollaries 3.16 and 3.17 we use the description of the set Γ_{1} only.

Proposition 3.15. Suppose that a p-group G of maximal class, $p>3$, contains two distinct elementary abelian subgroups of order p^{p-1}. Then $|G|=$ p^{p+1}. In particular, if G contains $>p+1$ elementary abelian subgroups of order p^{p-1}, then G is isomorphic to a Sylow p-subgroup of the symmetric group of degree p^{2}.

Proof. By [Ber1, Theorem 7.14(b)], there is $\mathrm{E}_{p^{p-1}} \cong E \triangleleft G$. Let $E_{1}<G$ be another elementary abelian subgroup of order p^{p-1} and set $H=E E_{1}$. Then $|G|>p^{p}$ (otherwise, $G=H$ and, by Fitting's Lemma, $\operatorname{cl}(G) \leq 2<p$) so G is irregular (Lemma $\mathrm{J}(\mathrm{d})$). It follows that $E \leq \Phi(G)$ (Lemma $\mathrm{J}(\mathrm{f})$). We claim that H is regular. Assume that this is false. Then $|H| \geq p^{p+1}$ so H is of maximal class and we get $E \leq \Phi(H)$ so $H=E E_{1}=E_{1}$, a contradiction. Thus, $\exp (H)=p($ Lemma $\mathrm{J}(\mathrm{k}))$ so $|H|=p^{p}$ (recall that a p-group of maximal class has no subgroup of order p^{p+1} and exponent p), and then $\operatorname{cl}(H) \leq 2$, by Fitting's Lemma.

Assume that $|G|>p^{p+1}$. We have $E=\Omega_{1}(\Phi(G))$. Next, H is nonabelian (Lemma $\mathrm{J}(\mathrm{p})$; see also Remark 3.7) so $\mathrm{Z}(H)=E \cap E_{1}$ has index p^{2} in H. Let $A<H$ be minimal nonabelian; then $|A|=p^{3}$ since $\exp (A)=p$ (Lemma $\mathrm{J}(\mathrm{t}))$. By the product formula, $H=A \mathrm{Z}(H)$ so, if $\mathrm{Z}(H)=\mathrm{Z}(A) \times E_{0}$, then $H=A \times E_{0}$ so $H^{\prime}=A^{\prime}$. Since all subgroups of G, that contain H, are of maximal class, it follows that $H^{\prime}=\mathrm{Z}(G)$. Let $H<F<M \leq G$, where
$|F: H|=p=|M: F| ;$ then F and M are of maximal class. By Lemma J(f), H is not normal in M. Therefore, $H_{1}=H^{x} \neq H$ for every $x \in M-F$ and $H_{1}<F$. As above, $H_{1}^{\prime}=\mathrm{Z}(G)$. In that case, $H / \mathrm{Z}(G)$ and $H_{1} / \mathrm{Z}(G)$ are two distinct abelian maximal subgroups of $F / \mathrm{Z}(G)$ so $\mathrm{cl}(F / \mathrm{Z}(G)) \leq 2$ (Fitting's Lemma). In that case, $\operatorname{cl}(F) \leq 3$, a contradiction since F is of maximal class and order p^{p+1} so $\operatorname{cl}(F)=p \geq 5$. Thus, $|G|=p^{p+1}$.

Let, in addition, $\left\{E_{1}, \ldots, E_{k}\right\}$ be the set of elementary abelian subgroups of order p^{p-1} in G, and $k>p+1$. To prove that $G \cong \Sigma_{p^{2}}$, it suffices to show that G has an elementary abelian subgroup of index p (Lemma J(p)). Assume that this is false. By the above, one may assume that $E_{1}=\Phi(G)$. Then, for $i>1, E_{i}$ is not normal in G so $N_{i}=\mathrm{N}_{G}\left(E_{i}\right) \in \Gamma_{1}$ and all conjugates of E_{i} are contained in N_{i}. Then $\operatorname{cl}\left(N_{i}\right) \leq 2, i>1$ (Fitting's Lemma) so $\exp \left(N_{i}\right)=p$. The subgroup $N_{i}(i>1)$ is nonabelian (otherwise, $\mathrm{d}\left(N_{i}\right)=p$ so $G \cong \Sigma_{p^{2}}$, by Lemma $\mathrm{J}(\mathrm{p}))$. Then N_{2} has at most $p+1$ abelian subgroups of index p so one may assume that $\mathrm{N}_{G}\left(E_{p+2}\right)=N_{p+2} \neq N_{2}$. Again $\operatorname{cl}\left(N_{p+2}\right)=2$. Then, by Fitting's Lemma,

$$
\operatorname{cl}(G)=\operatorname{cl}\left(N_{2} N_{p+2}\right) \leq \operatorname{cl}\left(N_{2}\right)+\operatorname{cl}\left(N_{p+2}\right)=2+2=4<p=\operatorname{cl}(G)
$$

a contradiction.
Corollary 3.16. Let $p>3$ and suppose that a p-group G of maximal class contains an abelian subgroup A such that $\mathrm{d}(A)=p-1$ and $\exp (A)>p$. Then $A \leq G_{1}$, where G_{1} is the fundamental subgroup of G, and there is a G-invariant abelian subgroup B of order p^{p} such that $\Omega_{1}(A)<B \leq G_{1}$.

Proof. We have $|A| \geq p^{p}$. If $|G|=p^{p+1}$, then $A=G_{1}$, and we are done. Now let $|G|>p^{p+1}$. Then, by Proposition 3.15, $\Omega_{1}(A)$ is the unique elementary abelian subgroup of order p^{p-1} in G so $\Omega_{1}(A)=\Omega_{1}(\Phi(G))$. Then $A \leq \mathrm{C}_{\mathrm{G}}\left(\Omega_{1}(\mathrm{~A})\right) \leq \mathrm{C}_{\mathrm{G}}\left(\mathrm{Z}_{2}(\mathrm{G})\right)=\mathrm{G}_{1}$ (here $\mathrm{Z}_{2}(G)$ is the second member of the upper central series of G) so $A<G_{1}$. By [Ber4, Theorem 1], $\Omega_{1}(A)<B \triangleleft G$, where B is abelian of order p^{p}. Since $|G: B|>p$, we get $B \leq \Phi(G)<G_{1}$. (We have $\exp (B)=p^{2}$, unless G is a Sylow subgroup of the symmetric group of degree p^{2}; see [Ber1, Theorem 5.2]).

Corollary 3.17. Let $p>3$ and suppose that a p-group G of maximal class contains an abelian subgroup A with $\mathrm{d}(A)=p-1, \exp (A)=p^{k}>p$ and $|A|=p^{(p-1) k-\epsilon}, \epsilon \in\{0,1\}$. If $\epsilon=0$, then $A \triangleleft G$. If $\epsilon=1$, then there exists in G a normal abelian subgroup B such that $|B|=|A|$ and $\exp (B)=p^{k}$. We also have $A, B \leq G_{1}$.

Proof. By Corollary 3.16, $A \leq \Omega_{k}\left(G_{1}\right)$, and we are done if $\epsilon=0$. If $\epsilon=1$, then $\Omega_{k}\left(G_{1}\right)$ contains $\equiv 1(\bmod p)$ abelian subgroups of order $|A|$ since $\left|\Omega_{k}\left(G_{1}\right): A\right| \leq p$.

Remark 3.18. If every maximal abelian subgroup of a nonabelian p group G is either cyclic or of exponent p, then one of the following holds:
(a) $\exp (G)=p$, (b) G is a 2-group of maximal class, (c) $p>2$ and G is of maximal class and order p^{p+1} at most. Indeed, suppose that $\exp (G)>p$ and G is not a 2-group of maximal class. Then G has a maximal abelian subgroup, say A, which is cyclic. Since $\mathrm{Z}(G)<\mathrm{C}_{\mathrm{G}}(\mathrm{A})=\mathrm{A}$, the center $\mathrm{Z}(G)$ is cyclic. Let $R \triangleleft G$ be abelian of type (p, p) and set $C=\mathrm{C}_{G}(R)$. Then $\mho_{1}(A)<C$ since $|\operatorname{Aut}(R)|_{p}=p$ and so $|G: C|=p$. Every maximal abelian subgroup, say B, of C contains R so noncyclic. If $B \leq D<G$, where D is maximal abelian in G, then $\exp (D)=p$. It follows that $\exp (B)=p$, and we get $\exp (C)=p$ so $A \cong \mathrm{C}_{p^{2}}$. It follows from $\mathrm{C}_{G}(A)=A$ that G is of maximal class (Lemma $\mathrm{J}(\mathrm{o})$). Since G has no subgroup of order p^{p+1} and exponent p (by induction and Lemma J(i)), we get $|G|=p|C| \leq p^{p+1}$.

Remark 3.19. Let G be a p-group of order $>p^{p+1}$ such that it is not of maximal class and $\left|G / \mathrm{K}_{p}(G)\right|=p^{p}$. Then $\mathrm{K}_{p}(G) / \mathrm{K}_{p+1}(G)$ is noncyclic. Assume that this is false. Then $p>2$, by Taussky's Theorem. By [Ber1, Theorem 5.1(b)], $G / \mathrm{K}_{p+1}(G)$ is not of maximal class so $\left|\mathrm{K}_{\mathrm{p}}(\mathrm{G}) / \mathrm{K}_{\mathrm{p}+1}(\mathrm{G})\right|>$ p. By the way of contradiction, assume that $\mathrm{K}_{p}(G) / \mathrm{K}_{p+1}(G) \cong \mathrm{C}_{p^{2}}$ and $\mathrm{K}_{p+1}(G)=\{1\}$. Obviously, $G / \Omega_{1}\left(\mathrm{~K}_{p}(G)\right)$ must be of maximal class. Let $\mathrm{E}_{p^{2}} \cong R \triangleleft G$ and $\Omega_{1}\left(\mathrm{~K}_{p}(G)\right)<R$. However, $\mathrm{E}_{p^{2}} \cong R \mathrm{~K}_{p}(G) / \Omega_{1}\left(\mathrm{~K}_{p}(G)\right) \leq$ $\mathrm{Z}\left(G / \Omega_{1}\left(\mathrm{~K}_{p}(G)\right)\right)$, a contradiction.

Remark 3.20. Suppose that a p-group G is neither absolutely regular nor of maximal class. Then one of the following holds: (a) G has a characteristic subgroup of order $\geq p^{p}$ and exponent p, (b) G has an irregular characteristic subgroup H of class p such that $\Phi(H)$ is of order p^{p-1} and H is generated by G invariant subgroups of order p^{p} and exponent p containing a fixed $(=\Phi(H))$ characteristic subgroup of G of order p^{p-1} and exponent p. Indeed, if G is regular, then $\left|\Omega_{1}(G)\right| \geq p^{p}$, and (a) holds (Lemma $\mathrm{J}(\mathrm{k})$). Therefore, in what follows we may assume that G is irregular. We also assume that (a) is not true. By Lemma $\mathrm{J}(\mathrm{q}), G^{\prime}$ has a characteristic subgroup R of order $\geq p^{p-1}$ and exponent p; then R is characteristic in G and $|R|=p^{p-1}$. Let $\left.\bar{H}=\langle M \triangleleft G| R<M,|M|=p^{p}, \exp (M)=p\right\rangle$; then $\Omega_{1}(H)=H, H$ is characteristic in G and so $|H|>p^{p}$ so H is irregular and then $\operatorname{cl}(H)=p$ since H / R is elementary abelian. By Lemma $\mathrm{J}(\mathrm{q}), R=\Phi(H)$.

Remark 3.21. Let G be a group of exponent p and order $p^{m}>p^{p}$. We claim that then $G / \mathrm{K}_{p}(G)$ is not of maximal class. Assume that this is false. Then $\mathrm{K}_{p}(G)>\{1\}$. Passing to quotient group, one may assume that $\mathrm{K}_{p}(G)$ is of order p. In that case, $\mathrm{cl}(G)=p$ so G is of maximal class and order p^{p+1}, contrary to Lemma $J(h)$.

We divide the p-groups of maximal class and order $>p^{p+1}$ in three disjoint families.

Definition 3.22. Let G be a group of maximal class and order $p^{m}, m>$ $p+1$. Then G is said to be
(i) a $\mathcal{Q}_{p-\text { group, if }}\left|\Omega_{1}(G)\right|=p^{p-1}$,
(ii) a \mathcal{D}_{p}-group, if $\Omega_{1}(G)=G$,
(iii) an $\mathcal{S D}_{p}$-group, if $\left|\Omega_{1}(G)\right|=p^{m-1}$.

Motivation: a \mathcal{Q}_{2}-group is generalized quaternion, a \mathcal{D}_{2}-group is dihedral and an $\mathcal{S D}_{2}$-group is semidihedral. It follows from Lemma $\mathrm{J}(\mathrm{f})$ that, if G is of maximal class and order $>p^{p+1}$, it is one of the above three types.

Definition 3.23. Let G be a \mathcal{D}_{p}-group of maximal class. Then G is said to be a \mathcal{D}_{p}^{0}-group if $G_{1}=\mathrm{H}_{p}(G)<G$, and a \mathcal{D}_{p}^{1}-group if $G=\mathrm{H}_{p}(G)$, where $H_{p}(G)=\langle x \in G \mid o(x)>p\rangle$.

Note that $\mathrm{D}_{2^{m}}$ is a \mathcal{D}_{2}^{0}-group so \mathcal{D}_{2}^{1}-groups do not exist. If G is either a $\mathcal{Q}_{p^{-}}$or $\mathcal{S} \mathcal{D}_{p^{-}}$-group, then $G=\mathrm{H}_{p}(G)$ so a p-group G of maximal class and order $>p^{p+1}$ is a \mathcal{D}_{p}^{0}-group if and only if $\mathrm{H}_{p}(G)<G$.

If G is a \mathcal{D}_{p}^{0}-group, then $\mathrm{H}_{p}(G)=G_{1}$ so all members of the set $\Gamma_{1}-\left\{G_{1}\right\}$ are also \mathcal{D}_{p}^{0}-groups since all elements of the set $G-G_{1}$ have order p. If G is a \mathcal{D}_{p}^{1}-group, then the set $G-G_{1}$ has an element of order p^{2} (by [B2, Theorem 13.19], the set $G-G_{1}$ has no elements of order $>p^{2}$). If a p-group G is of maximal class and order $>p^{p+2}$, then $G / \mathrm{Z}(G)$ is a \mathcal{D}_{p}^{0}-group.

Theorem 3.24. Let G be a p-group of maximal class and order $p^{m}, p>2$, $m>p+2$, and let $\Gamma_{1}=\left\{G_{1}, G_{2}, \ldots, G_{p+1}\right\}$, where G_{1} is the fundamental subgroup of G. Then
(a) If G is a \mathcal{Q}_{p}-group, then G_{2}, \ldots, G_{p+1} are \mathcal{Q}_{p}-groups.
(b) If G is a \mathcal{D}_{p}^{0}-group, then G_{2}, \ldots, G_{p+1} are \mathcal{D}_{p}^{0}-groups.
(c) G has no maximal subgroup which is an $\mathcal{S D}_{p}$-group.
(d) Let G be an $\mathcal{S D}_{p}$-group and let $\Omega_{1}(G)=G_{2}$. Then G_{2} is a \mathcal{D}_{p}-group and G_{3}, \ldots, G_{p+1} are \mathcal{Q}_{p}-groups.
(e) If G is a \mathcal{D}_{p}-group, then at least two of subgroups G_{2}, \ldots, G_{p+1} are \mathcal{D}_{p}-groups.
Proof. Since 2-groups of maximal class are classified and the theorem holds for them, one may assume that $p>2$. If $i>1$, then G_{i} is of maximal class and so (a) is obvious.
(b) We have $\mathrm{H}_{p}(G)=G_{1}$, the fundamental subgroup of G. If $i>1$, then $\mathrm{H}_{p}\left(G_{i}\right) \leq G_{i} \cap G_{1}=\Phi(G)<G_{i}$ so G_{i} is a \mathcal{D}_{p}^{0}-group.
(c) Let $M \in \Gamma_{1}$ be not a \mathcal{Q}_{p}-group; then $\gamma(M)=\left|G: \Omega_{1}(M)\right| \leq p^{2}$. If $\gamma(M)=p^{2}$, then $\Omega_{1}(M)=\Phi(G)$ is absolutely regular and order $\geq p^{p+1}$, which is impossible. Thus, $\Omega_{1}(M)=M$ so M is a \mathcal{D}_{p}-group. This argument shows that the set Γ_{1} has no members which are $\mathcal{S D} \mathcal{D}_{p}$-groups.
(d) By definition, G_{2} is a $\mathcal{D}_{p^{-}}$group. Let $i>2$; then G_{i} is not an $\mathcal{S D}_{p^{-}}$ group, by (c). Since $\Omega_{1}\left(G_{i}\right) \leq G_{i} \cap G_{2}=\Phi(G)$ is absolutely regular so of order p^{p-1}, it follows that G_{i} is a \mathcal{Q}_{p}-group.
(e) By hypothesis, $\Omega_{1}(G)=G$. Let $R<G$ be of order p^{p} and exponent p and let $R<M \in \Gamma_{1}$. Since M is neither absolutely regular nor a \mathcal{Q}_{p}-group, we conclude that M is a \mathcal{D}_{p}-group, by (c). Let $x \in G-M$ be of order p; then $R_{1}=\left\langle x, \Omega_{1}\left(G_{1}\right)\right\rangle$ is of order p^{p} and exponent p. A maximal subgroup L of G such that $R_{1}<L$, is a \mathcal{D}_{p}-group and $L \neq M$.

Below we do not use deep properties of p-groups of maximal class.
Proposition 3.25. Let $B<G$ be nonabelian of order p^{3}, G is a p-group and $C_{G}(B)<B$. Then G is of maximal class and
(a) $Z_{2}(G)<B$.
(b) Each maximal subgroup $K \neq \mathrm{Z}_{2}(G)$ of B satisfies $C_{G}(K)=K$.

Proof. Obviously, $\mathrm{Z}(G)<B$. By Lemma $\mathrm{J}(\mathrm{c})$, all subgroups between B and G are of maximal class.
(a) We have $B \neq \mathrm{Z}_{2}(G)$ since $|B|>p^{2}=\left|\mathrm{Z}_{2}(G)\right|$. Assume that $\mathrm{Z}_{2}(G) \not \leq$ B. Set $H=B Z_{2}(G)$; then H is of maximal class and order p^{4}. In that case, $\mathrm{Z}_{2}(G)=\Phi(H)$ so $H=B \Phi(H)=B$, a contradiction. Thus, $\mathrm{Z}_{2}(G)<B$.
(b) Assume that $\mathrm{C}_{G}(K) \neq K$. Since $B<\mathrm{N}_{G}(K)$ and $\mathrm{C}_{G}(K) \triangleleft \mathrm{N}_{G}(K)$, then B normalizes $C_{G}(K)$. Next, $\mathrm{Z}_{2}(G) \not \leq \mathrm{C}_{G}(K)$ since $\mathrm{Z}_{2}(G) K=B$ is nonabelian. Let $U / K \leq \mathrm{C}_{G}(K) / K$ be of order p and $U \triangleleft \mathrm{~N}_{G}(K)$. Set $F=U B$; then F is of class 3 and order p^{4}. In that case, U and $\mathrm{C}_{F}\left(\mathrm{Z}_{2}(G)\right)$ are two distinct abelian maximal subgroups of F so $\operatorname{cl}(F) \leq 2$ (Fitting's Lemma), a contradiction. Thus, $\mathrm{C}_{G}(K)=K$.

Proposition 3.26. Suppose that a nonabelian group G of order $p^{m}>p^{3}$ has only one normal subgroup N of index p^{3} and let K be a G-invariant subgroup of index p in N. Then one of the following holds:
(a) $\mathrm{d}(G)=2$ and $G^{\prime}<\Phi(G)$. In that case, $K=\{1\}$ and $G \cong \mathrm{M}_{p^{4}}$.
(b) $p>2, \mathrm{~d}(G)=2, G^{\prime}=\Phi(G), N=\mathrm{K}_{3}(G), G / N$ is nonabelian of exponent p. In that case, G / K is of maximal class.
(c) $p=2, G$ is a 2-group of maximal class.
(d) $\mathrm{d}(G)=3, N=\Phi(G)=G^{\prime}$. Then $\mathrm{Z}(G / K)$ is cyclic of order p^{2} and $G / K=(E / K) \mathrm{Z}(G / K)$, where E / K is nonabelian of order p^{3} and $\mathrm{Z}(G / K) \cong \mathrm{C}_{p^{2}}$. If, in addition, $p>2$ and $E_{1} / K=\Omega_{1}(G / K)$, then E_{1} / K is nonabelian of order p^{3} and exponent p and $G / K=$ $\left(E_{1} / K\right) \mathrm{Z}(G / K)$.

Proof. We have $\left|G / G^{\prime}\right| \leq p^{3}$ so $\mathrm{d}(G) \leq 3$. The hypothesis is inherited by nonabelian epimorphic images of G. If a minimal nonabelian p-group X has only one normal subgroup of index p^{3}, then either $|X|=p^{3}$ or $X \cong \mathrm{M}_{p^{4}}$ (Lemma J(t)).
(i) Suppose that $\mathrm{d}(G)=2$. In that case, $G / \mathrm{K}_{3}(G)$ is minimal nonabelian so either its order equals p^{3} or $G / \mathrm{K}_{3}(G) \cong \mathrm{M}_{p^{4}}$, by the previous paragraph.

Let $\left|G / G^{\prime}\right|=p^{3}$; then $N=G^{\prime}<\Phi(G), G / G^{\prime}$ is abelian of type $\left(p^{2}, p\right)$. In that case, G / K is minimal nonabelian so $\cong \mathrm{M}_{p^{4}}$. Assume that $K>\{1\}$. Let L be a G-invariant subgroup of index p in K. Then G / L has two distinct cyclic subgroups A / L and B / L of index p, and we get $A \cap B=\mathrm{Z}(G)$ so G / L is minimal nonabelian of order p^{5}, a contradiction. We obtained the group from (a).

Let $\left|G: G^{\prime}\right|=p^{2}$. Then $N=\mathrm{K}_{3}(G)$ so G / K is of maximal class and order p^{4}. If $p=2$, then G itself is of maximal class, by Taussky's Theorem. If $p>2$, then, as in the previous paragraph, $\exp (G / N)=p$. We obtained groups from (b) and (c).
(ii) Suppose that $\mathrm{d}(G)>2$; then $G / G^{\prime} \cong \mathrm{E}_{p^{3}}$ so $N=G^{\prime}=\Phi(G)$. Let E / K be a minimal nonabelian subgroup in G / K; then $E<G$ since $\mathrm{d}(G / K)=$ $3>2=\mathrm{d}(E / K)$. By Lemma $\mathrm{J}(\mathrm{c}), G / K=(E / K) \mathrm{Z}(G / K)$. Since G / K has only one normal subgroup of order p, we conclude that $\mathrm{Z}(G / K)$ is cyclic. Let $p>2$ and set $E_{1} / K=\Omega_{1}(G / K)$. Then E_{1} / K is of order p^{3} since G / K is regular. It follows that E_{1} / K is nonabelian since $G / K=\left(E_{1} / K\right) \mathrm{Z}(G / K)$.
■

If a group G of order 2^{6} has only one normal subgroup of index 2^{3}, then one of the following holds: (i) G is cyclic, (ii) G is of maximal class, (iii) G is the Suzuki 2 -group (see [HS]).

We claim that if a metacyclic p-group G of order $>p^{3}$ has only one normal subgroup of index p^{3} if and only if one of the following holds: (i) G is cyclic, (ii) G is a 2 -group of maximal class, (iii) $G \cong \mathrm{M}_{\mathrm{p}^{4}}$. Assume that G has no cyclic subgroup of index p. Then $\bar{G}=G / \mho_{2}(G)$ is metacyclic of order p^{4} and exponent p^{2}. Then $\Omega_{1}\left(\mathrm{Z}(\overline{\mathrm{G}}) \cong \mathrm{E}_{\mathrm{p}^{2}}\right.$ so \bar{G} has two distinct normal subgroups A and B of order p. Since $|G: A|=p^{3}=|G: B|$, we get a contradiction. Next, a p-group of order $>p^{3}$ contains a cyclic subgroup and has only one normal subgroup of index p^{3} if and only if it is one of groups (i)-(iii).

Remark 3.27. Let $H<G$ be nonnormal, $|G|=p^{m}>p^{p+1},|H|>p^{2}$ and $\mathrm{N}_{G}(H)$ is of maximal class. Then G is of maximal class (Lemma J(d)) and $H \not 又 G_{1}$ since $\left|\mathrm{Z}\left(G_{1}\right)\right|>p$. Let us prove that, if $K \neq H \cap G_{1}$ is maximal in H, then $\mathrm{N}_{G}(K)=H$. Indeed, $\left|\mathrm{N}_{G}(H): H\right|=p$ (Lemma J(f)). Assume that $\mathrm{N}_{G}(K)>H$. Let $H<F \leq \mathrm{N}_{G}(K)$, where $|F: H|=p$. Then $F=\mathrm{N}_{G}(H)$ (compare the orders!). By the choice, $K \triangleleft F$ and F is of maximal class. Since $|F: K|=|F: H||H: K|=p^{2}$, we get $K=\Phi(F)<\Phi(G)<G_{1}$ so $K=H \cap G_{1}$, a contradiction.

Let G be a 3 -group of maximal class and order $>3^{4}$ and let $x \in G-G_{1}$; then $B=\left\langle x, \mathrm{Z}_{2}(G)\right\rangle$ is of order 3^{3} [Ber2, Theorem 13.19] and nonabelian since $\mathrm{C}_{G}\left(\mathrm{Z}_{2}(G)\right)=G_{1}$. Assume that $\mathrm{C}_{G}(B) \not 又 B$. If $y \in \mathrm{C}_{G}(B)-B$, then $\mathrm{d}(\langle y, B\rangle)=3$, which is impossible, by Lemma $\mathrm{J}(\mathrm{p})$.

4. p-GROUPS WITH EXACTLY ONE NONCYCLIC ABELIAN SUBGROUP OF ORDER p^{3}

In the proof of Theorem 4.2 we use the following
Remark 4.1. If U is a cyclic subgroup of order p^{2} of a nonabelian p group G such that $\mathrm{C}_{G}(U)>U$ is cyclic, then $p=2$ and G is a 2-group of maximal class. Indeed, if $\mathrm{C}_{G}(U)<H \leq G$ with $\left|H: \mathrm{C}_{G}(U)\right|=p$, then H is nonabelian with cyclic subgroup of index p. It follows from Lemma $\mathrm{J}(\mathrm{m})$ that $p=2$ and H is of maximal class. Assuming that G is not of maximal class, we get $H<G$. Let $H<F \leq G$ with $|F: H|=2$. Since $|H|>8$, the subgroup U is characteristic in H so $U \triangleleft F$. In that case, $\left|F: \mathrm{C}_{F}(U)\right|=2$ so $\left|\mathrm{C}_{F}(U)\right|=|H|>\left|\mathrm{C}_{G}(U)\right|$, a contradiction.

Theorem 4.2. Let G be the p-group of order $p^{m}>p^{4}$ with exactly one noncyclic abelian subgroup A of order p^{3}. Then one of the following holds:
(a) G is abelian of type $\left(p^{m-1}, p\right)$.
(b) $G \cong \mathrm{M}_{\mathrm{p}^{\mathrm{m}}}$.
(c) $p=2$ and $G=\left\langle a, b \mid a^{2^{m-2}}=1, b^{4}=a^{2^{m-3}}, a^{b}=a^{-1}\right\rangle$.

Proof. Obviously $A \triangleleft G$ and G is not a 2 -group of maximal class (all abelian subgroups of order 8 in a 2 -group of maximal class are cyclic).

Assume that G is of maximal class, $p>2$. Let $U \triangleleft G$ be of order p^{2} and let $L<\mathrm{C}_{\mathrm{G}}(\mathrm{U})$ be G-invariant of order p^{4}. If $p=3$, then L is metacyclic of exponent 9 and either abelian or minimal nonabelian. In that case, L has $3+1$ distinct noncyclic abelian subgroups of order 3^{3}, contrary to the hypothesis. If $p>3$, then $\exp (L)=p$ and L is nonabelian since, otherwise, it has >1 (noncyclic) abelian subgroups of order p^{3}. Let $M<L$ be minimal nonabelian; then $U \not \leq M$. In that case, $L=M \times V$ for some subgroup $V<U$ of order p so L has $p+1$ distinct noncyclic abelian subgroups of order p^{3}, a contradiction. Thus, G is not of maximal class.
(i) If $B<G$ is nonabelian of order p^{3}, then $\mathrm{C}_{G}(B)<B$ (otherwise, $B * \mathrm{C}_{\mathrm{G}}(\mathrm{B})$ has two distinct noncyclic abelian subgroups of order $\left.p^{3}\right)$. Then G is of maximal class (Lemma $J(c)$), contrary to the previous paragraph. Thus, G has no nonabelian subgroup of order p^{3}.
(ii) Let $U \leq G$ be minimal nonabelian. In that case (see (i) and Lemma $\mathrm{J}(\mathrm{t})), U \cong M_{p^{n}}, n>3$ so $A<U$ and $\Omega_{1}(A) \cong E_{p^{2}}$; then A is abelian of type $\left(p^{2}, p\right)$ and $\Omega_{1}(A) \triangleleft G$.
(iii) Assume that there is $x \in G-A$ of order p. Then $B=\left\langle x, \Omega_{1}(A)\right\rangle$ is of order p^{3}. By (i), B is noncyclic abelian, a contradiction since $B \neq A$, by the choice of x. Thus, $\Omega_{1}(G)=\Omega_{1}(A)$.
(iii) Assume that there is $y \in G-A$ of order p^{2}. Write $Y=\langle y\rangle$. Set $H=\Omega_{1}(A) Y$; then $|H|=p^{3}$, by (iii), so H is noncyclic abelian, by (i), and $H \neq A$, by the choice of y, a contradiction.

Thus, $\Omega_{2}(G)=A$ so G is one of groups (a), (b), (c) (Lemma J(s)).

Theorem 4.2 is not true for $m=4$ and $p>2$. Indeed, if G is a nonabelian subgroup of order p^{4} of a Sylow p-subgroup of the symmetric group of degree p^{2}, then G, as a group of class 3 , has exactly one noncyclic abelian subgroup A of order p^{3} (Fitting's Lemma) and $A \cong \mathrm{E}_{p^{3}}$.

Remark 4.3. Suppose that the 2 -group G has exactly one abelian subgroup, say A, of type (4,2). We claim that then $\mathrm{c}_{2}(G)=2$ (see [Ber1, Theorem 2.4] where such G are described). Clearly, G is not of maximal class, G has no abelian subgroups of types $(4,2,2)$ and $(4,4)$ and it has no subgroup $\cong \mathrm{D}_{8} * \mathrm{C}_{4}$ of order 16. Assume that $L<G$ be cyclic of order 4 such that $L \notin A$. If $\Phi(A) \not \leq L$, then $L \times \Phi(A) \neq A$ is abelian of type $(4,2)$, a contradiction. Thus, $\Phi(A)<L$. Then $L A$ of order 16 is nonabelian (otherwise, it must be of order 16 and exponent 4 , and such group has two distinct abelian subgroups of type $(4,2))$. Then, by Lemma $\mathrm{J}(\mathrm{o}), \mathrm{C}_{A}(L)$ is of order 4 since $L A$ is not of maximal class, so $\mathrm{C}_{A}(L) L(\neq A)$ is abelian of type $(4,2)$, a contradiction.

We claim that if an irregular p-group G of order $>p^{p+1}$ is neither absolutely regular nor of maximal class, then one of the following holds: (a) G has a subgroup E of order p^{p+1} and exponent p or (b) there is $H \in \Gamma_{1}$ such that $\left|\Omega_{1}(H)\right|=p^{p}$. Indeed, by Lemma $\mathrm{J}(\mathrm{a})$, there is $R \triangleleft G$ of order p^{p} and exponent p. Let D be a G-invariant subgroup of index p^{2} in R. Set $C=\mathrm{C}_{G}(R / D)$. If an element $x \in C-R$ has order p, then $E=\langle x, R\rangle$ is of order p^{p+1} and class $\leq p-1$ so regular; then $\exp (E)=p$. Now suppose that (a) is not true; then $\left|\Omega_{1}(C)\right|=p^{p}$. In that case, if $R / D<H / D \leq C / D$ and H / D is maximal in G / D (the equality $C=G$ is possible), then $R \leq \Omega_{1}(H) \leq \Omega_{1}(C)=R$ and (b) holds.

Let G be a p-group of maximal class. Then it contains a self centralizing subgroup H of order p^{2} (Blackburn). We use this in Proposition 4.4.

Proposition 4.4. Let G be a group of maximal class and order $p^{m}>$ $p_{\bar{D}}^{p+1}, p>2$. Set $\bar{G}=G / Z(G)$. Let $\bar{D}<\bar{G}$ be of order p^{2} such that $C_{\bar{G}}(\bar{D})=$ \bar{D}. Then
(a) D is nonabelian of order p^{3} and $C_{G}(D)<D$.
(b) D has exactly p subgroups R of order p^{2} such that $C_{G}(R)=R$.

Proof. Since $|\mathrm{Z}(G)|=p$, we get $|D|=p^{3}$. If $u \in G-D$ centralizes D, then \bar{u} centralizes \bar{D} and $\bar{u} \notin \bar{D}$, contrary to the choice of \bar{D}. Thus, $\mathrm{C}_{G}(D) \leq D$. Since \bar{G}_{1} is not of maximal class, we get $\bar{D} \nsubseteq \bar{G}_{1}(\operatorname{Lemma} J(\mathrm{o}))$ so $D \not \leq G_{1}$, where G_{1} is the fundamental subgroup of G. Since $\mathrm{Z}(\bar{G})<\bar{D}$, we get $\mathrm{Z}_{2}(G)<D$. Since $m>p+1$, we get $\mathrm{C}_{G}\left(\mathrm{Z}_{2}(G)\right)=G_{1}$ (Lemma $\mathrm{J}(\mathrm{h})$) so D is nonabelian, completing the proof of (a). Now (b) follows from Proposition 3.25.

5. Some counting theorems

The following proposition is known.

Proposition 5.1. Let G be a p-group of maximal class and order $>p^{3}$. Then
(a) G contains exactly one maximal subgroup, say A, such that $\left|A: A^{\prime}\right|>$ p^{2}.
(b) G contains exactly one maximal subgroup, say B, such that $|\mathrm{Z}(B)|>p$.

Proof. (a) Such A exists since group $G / K_{4}(G)$ of order p^{4} has the abelian maximal subgroup. Assume that $B \in \Gamma_{1}-\{A\}$ is such that $\left|B: B^{\prime}\right|>p^{2}$. Since $A^{\prime}, B^{\prime} \triangleleft G$, one may assume that that $B^{\prime} \leq A^{\prime}$ (Lemma $\mathrm{J}(\mathrm{d}))$. Then G / A^{\prime} is of maximal class and order $\geq p^{4}$ containing two distinct abelian maximal subgroups B / A^{\prime} and A / A^{\prime}; in that case, however, $\operatorname{cl}\left(G / A^{\prime}\right) \leq 2$ (Fitting's Lemma), a contradiction (clearly, $A=G_{1}$).
(b) Such B exists since $\mathrm{C}_{G}\left(\mathrm{Z}_{2}(G)\right) \in \Gamma_{1}$. Assume that $C \in \Gamma_{1}-\{B\}$ is such that $|\mathrm{Z}(C)|>p$. Since $\mathrm{Z}(B), \mathrm{Z}(C) \triangleleft G$, one may assume that $\mathrm{Z}(C) \leq$ $\mathrm{Z}(B)$. Then $\mathrm{C}_{G}(\mathrm{Z}(C)) \geq B C=G$, a contradiction since $|\mathrm{Z}(G)|=p<|\mathrm{Z}(C)|$. (If $|G|>p^{p+1}$, then $B=G_{1}(\operatorname{Lemma} \mathrm{~J}(\mathrm{~h}))$).

Remark 5.2. (i) Let G be a p-group of order p^{4}. If $|\mathrm{Z}(G)|=p$, then $\operatorname{cl}(G)=3$. If, in addition, $\mathrm{d}(G)=3$ and G is nonabelian, then $\mu_{3}(G)=p^{2}$ (see [Ber5, §16]). (ii) If G is a p-group of maximal class and order p^{5}, then $\mu_{4}(G)=p$. Indeed, by Proposition $5.1(\mathrm{a})$, the set Γ_{1} has exactly p members with centers of order p so the claim follows from (i). (iii) If $|G|=p^{5}$ and G is not of maximal class, then $\mu_{4}(G) \equiv 0\left(\bmod p^{2}\right)$, by Lemma $\mathrm{J}(\mathrm{h})$.

We offer a new proof of the following nice counting theorem due to Mann [Man]. In his shorter proof of Theorem 5.3, Mann uses so called Eulerian function $\varphi_{2}(*)$.

Theorem 5.3 ([Man]). Let G be a p-group of order p^{m}, $m>3$. Then $\mu_{3}(G) \equiv 0\left(\bmod p^{2}\right)$, unless $m=4$ and $\operatorname{cl}(G)=3$.

Proof. One may assume that $\mu_{3}(G)>0$; then G is nonabelian. By Hall's enumeration principle,

$$
\begin{equation*}
\mu_{3}(G) \equiv \sum_{H \in \Gamma_{1}} \mu_{3}(H)-p \sum_{H \in \Gamma_{2}} \mu_{3}(H) \quad\left(\bmod p^{2}\right) \tag{5.1}
\end{equation*}
$$

(i) Let $m=4$. If $\operatorname{cl}(G)=3$, the result follows from Fitting's Lemma. If $\mathrm{d}(G)=3$, the result follows from Remark 5.2.
(ii) Suppose that $m=5$.

If $H \in \Gamma_{1}$ is not of maximal class, we have $\mu_{3}(H) \equiv 0\left(\bmod p^{2}\right)$, by (i). If $H \in \Gamma_{1}$ is of maximal class, then $\mu_{3}(H)=p$, by (i). Next, $\mu_{4}(G) \equiv 0$ $(\bmod p)$, by Remark 5.2(ii,iii). Therefore,

$$
\begin{equation*}
\sum_{H \in \Gamma_{1}} \mu_{3}(H) \equiv 0 \quad\left(\bmod p^{2}\right) \tag{5.2}
\end{equation*}
$$

If $\mathrm{d}(G)=2$, then $\Phi(G)$ is abelian and $\Gamma_{2}=\{\Phi(G)\}$ so, by (5.1) and (5.2), $\mu_{3}(G) \equiv 0\left(\bmod p^{2}\right)$. It remains to consider the case $\mathrm{d}(G)>2$. By (5.1) and (5.2), we get $\mu_{3}(G) \equiv 0(\bmod p)$. Therefore, if $|\Phi(G)|=p$, all nonabelian subgroups of G contain $\Phi(G)$ so are members of the set Γ_{2}, and now the result follows from (5.1). Now we let $|\Phi(G)|=p^{2}$. We are done provided $\Phi(G) \leq \mathrm{Z}(G)$ since then all members of the set Γ_{2} are abelian; therefore assume that $\Phi(G) \not \leq \mathrm{Z}(G)$. In that case, $\left|G: \mathrm{C}_{\mathrm{G}}(\Phi(\mathrm{G}))\right|=\mathrm{p}$ so $\mathrm{C}_{G}(\Phi(G))$ contains exactly $p+1$ (abelian) members of the set Γ_{2}. Thus, the set Γ_{2} has exactly $\left|\Gamma_{2}\right|-(p+1)=p^{2}$ members of the set $\mathcal{M}_{3}(G)$, and we get, by (5.1), $\mu_{3}(G) \equiv 0\left(\bmod p^{2}\right)$,
(iii) If $m>5$, we use induction on m. If $H \in \Gamma_{1}$, then $\mu_{3}(H) \equiv 0$ $\left(\bmod p^{2}\right)$, by induction since $|H| \geq p^{5}$. If $H \in \Gamma_{2}$, then $\mu_{3}(H) \equiv 0(\bmod p)$, by (i). Substituting this in (5.1), we complete the proof.

Proposition 5.4. Suppose that a p-group G of order $>p^{p+2}$ is neither absolutely regular nor of maximal class. If $R \triangleleft G$ is of order p, then one of the following holds:
(a) The number of abelian subgroups of type (p, p) in G, containing R, is $\equiv 1+p+\cdots+p^{p-2}\left(\bmod p^{p-1}\right)$.
(b) The number of cyclic subgroups of order p^{2} in G, containing R, is a multiple of p^{p-1}.

Proof. (a) By Lemma $\mathrm{J}(\mathrm{b}), \mathrm{c}_{1}(G)=1+p+\cdots+p^{p-1}+a p^{p}$ for some integer $a \geq 0$. If $L \neq R$ is a subgroup of order p in G, then $R L=R \times L$ contains exactly p subgroups of order p different of R. We see that exactly p subgroups of order p, different of R, produce the same abelian subgroup of type (p, p) containing R. If $L_{1} \notin R L$ is of order p, then $R L \cap R L_{1}=R$. Suppose that the required number equals s. Then $p s+1=\mathrm{c}_{1}(G)$ so $s=$ $\frac{1}{p}\left[\mathrm{c}_{1}(G)-1\right]=1+p+\cdots+p^{p-2}+a p^{p-1}$.
(b) If s is as in (a), then $s=1+p+\cdots+p^{p-2}+a p^{p-1}$ for some integer $a \geq 0$.
(i) Suppose that G / R is absolutely regular. Since G has a normal subgroup of order p^{p} and exponent p, we get $\left|\Omega_{1}(G / R)\right|=p^{p-1}$ so $\mathrm{c}_{1}(G / R)=$ $1+p+\cdots+p^{p-2}$. Thus, there are $1+p+\cdots+p^{p-2}$ subgroups of order p^{2} lying between R and G, and exactly $1+p+\cdots+p^{p-2}+a p^{p-1}$ among them are noncyclic, by (a). It follows that $a=0$ so in our case the desired number equals 0 .
(ii) Let G / R be irregular of maximal class. Then $\mathrm{c}_{1}(G / R)=1+p+$ $\cdots+p^{p-2}+b p^{p}$ for some integer $b \geq 0$ (Lemma $\left.J(\mathrm{j})\right)$. Thus, there are $1+$ $p+\cdots+p^{p-2}+b p^{p}$ subgroups of order p^{2} between R and G, and exactly $1+p+\cdots+p^{p-2}+a p^{p-1}$ among them are noncyclic, by (a). In that case, the desired number is $\left(1+p+\cdots+p^{p-2}+b p^{p}\right)-\left(1+p+\cdots+p^{p-2}+a p^{p-1}\right)=$ $(b p-a) p^{p-1}$.
(iii) If G / R is neither absolutely regular nor of maximal class, then $\mathrm{c}_{1}(G / R)=1+p+\cdots+p^{p-1}+d p^{p}$ for some integer $d \geq 0($ Lemma $\mathrm{J}(\mathrm{b}))$, and so, by (a), the desired number is $\left(1+p+\cdots+p^{p-1}+d p^{p}\right)-(1+p+\cdots+$ $\left.p^{p-2}+a p^{p-1}\right)=(1+d p-a) p^{p-1}$.

Proposition 5.5. Let $n>1$ and suppose that a p-group G is not $a b$ solutely regular and $\mathrm{c}_{n}(G)=p^{p-2}$. Then one and only one of the following holds:
(a) $p=2, n=2, G$ is dihedral.
(b) $p=2, n>2, G$ is an arbitrary 2 -group of maximal class.
(c) $p>2, n=2, G$ is of maximal class and order p^{p+1} with exactly one absolutely regular subgroup of index p.
Proof. Groups (a)-(c) satisfy the hypothesis.
If $p=2$, then G has exactly one cyclic subgroup of order 2^{n}. In that case, if $n=2$, then G is dihedral, and if $n>2$, then G is an arbitrary 2 -group of maximal class (Lemma $\mathrm{J}(\mathrm{b})$).

Now let $p>2$; then, by Lemma $\mathrm{J}(\mathrm{k}), G$ is irregular (otherwise, $\mathrm{c}_{n}(G)$ is a multiple of p^{p-1} by Lemma $\mathrm{J}(\mathrm{b})$), and so, by Lemma $\mathrm{J}(\mathrm{j}), G$ is of maximal class. Assume that $|G|>p^{p+1}$. Let G_{1} be the fundamental subgroup of G; then G_{1} is absolutely regular with $\left|\Omega_{n-1}\left(G_{1}\right)\right|=p^{(n-1)(p-1)}$. If $n>2$, then

$$
\begin{aligned}
\mathrm{c}_{n}\left(G_{1}\right) & =\frac{\left|\Omega_{n}\left(G_{1}\right)\right|-\left|\Omega_{n-1}\left(G_{1}\right)\right|}{\varphi\left(p^{n}\right)} \geq \frac{p^{(n-1)(p-1)+1}-p^{(n-1)(p-1)}}{(p-1) p^{n-1}} \\
& =p^{(n-1)(p-2)}>p^{p-2}
\end{aligned}
$$

a contradiction. Now let $n=2$ and $|G|>p^{p+1}$. Then $\left|\Omega_{2}\left(G_{1}\right)\right| \geq p^{p-1+2}=$ p^{p+1} so $c_{2}\left(G_{1}\right) \geq \frac{p^{p+1}-p^{p-1}}{p(p-1)}=p^{p-2}(p+1)>p^{p-2}$, again a contradiction. Thus, $|G|=p^{p+1}$. Then, clearly, G has exactly one absolutely regular subgroup of index p.

It follows from Proposition 5.5 the following result, essentially due to G.A. Miller in the case $p>3$. Suppose that a p-group $G, p>2$, has exactly p cyclic subgroups of order p^{n} (by Kulakoff's Theorem, we have $n>1$). Then one of the following holds: (a) G is either abelian of type $\left(p^{m}, p\right)$ or $\cong \mathrm{M}_{p^{m+1}}$, $m \geq n$. (b) $p=3, n=2, G$ is a 3 -group of maximal class and order 3^{4} with $\mathrm{c}_{1}(G)=1+3+3^{3}$.

Proposition 5.6. Suppose that an irregular p-group G is neither minimal nonabelian nor absolutely regular nor of maximal class, $|G|=p^{m}>p^{p+1}$. Let all nonabelian members of the set Γ_{1} be either absolutely regular or of maximal class. Then one of the following holds:
(a) $p=2, G=D Z(G)$ is of order $16,|D|=8$.
(b) $E=\Omega_{1}(G)$ is elementary abelian of order $p^{p}, G / E$ is cyclic and $C_{G}(E)$ is maximal in G.

Proof. Assume that the set Γ_{1} has no abelian member. Let $R \triangleleft G$ be abelian of type (p, p); then any maximal subgroup H of G such that $R<H \leq$ $\mathrm{C}_{G}(R)$, must be absolutely regular (in that case, $p>2$), and so, by Lemma $\mathrm{J}(\mathrm{n})$, we get $\left|\Omega_{1}(G)\right|=p^{p}$. It follows that all members of the set Γ_{1} containing $\Omega_{1}(G)$, are of maximal class so $|G|=p^{p+2}$ whence G, by Remark 3.2, is of maximal class, contrary to the hypothesis.

Suppose that there are distinct abelian $A, B \in \Gamma_{1}$. Then $A \cap B=\mathrm{Z}(G)$ so $\operatorname{cl}(G)=2$ whence $p=2$ since G is irregular. Since G is not minimal nonabelian, there is $D \in \Gamma_{1}$ of maximal class. Then $|D|=2^{3}$ so $|G|=2^{4}$. By Lemma $\mathrm{J}((\mathrm{c}), G=D \mathrm{Z}(G)$.

Now let A be the unique abelian member of the set Γ_{1}. If $m=4$, then $p=2$ (by hypothesis, $m>p+1$). Since G is not of maximal class, we get a contradiction. Next assume that $m>4$.

Assume, in addition, that there is absolutely regular $H \in \Gamma_{1}$. By Lemma $\mathrm{J}(\mathrm{n}), G=E H$, where $E=\Omega_{1}(G)$ is of order p^{p} and exponent p. By Lemma $J(1)$, the set Γ_{1} has no member of maximal class. Then all members of the set Γ_{1}, containing $\Omega_{1}(G)$, are abelian. If $G / \Omega_{1}(G)$ is cyclic, then $\mathrm{C}_{G}\left(\Omega_{1}(G)\right) \in$ Γ_{1}, and we get case (b). Now assume that $G / \Omega_{1}(G)$ is noncyclic. Then $\operatorname{cl}(G)=2$ so $p=2$ since G is irregular. Since G has a cyclic subgroup of index 2 , we conclude that $G \cong \mathrm{M}_{2^{n}}$ is minimal nonabelian, contrary to the hypothesis.

Now let all nonabelian members of the set Γ_{1} are of maximal class. Then $\mu_{m-1}(G) \equiv 0\left(\bmod p^{2}\right)($ Lemma $J(i))$ and, since the set Γ_{1} has exactly one abelian member, we get $\left|\Gamma_{1}\right| \equiv 1\left(\bmod p^{2}\right)$, a contradiction.

6. Nonabelian 2-Groups of order 2^{n} and exponent >2 with MAXIMAL NUMBER OF INVOLUTIONS

In this section we find all G of order 2^{n} and exponent >2 with maximal possible number of involutions $\left(=c_{1}(G)\right)$. We use the following fact. If G is of order 2^{4} and exponent >2, then $\mathrm{c}_{1}(G) \leq 11$ with equality if and only if $G \cong \mathrm{D}_{8} \times \mathrm{C}_{2}[\operatorname{Ber} 5, \S 16]$.

To clear up our path, we consider the following
Example 6.1. Let G be a group of order 2^{5} and exponent >2. We claim that then $\mathrm{c}_{1}(G) \leq 23$ with equality if and only if $G \cong \mathrm{D}_{8} \times \mathrm{E}_{4}$. Indeed, assume that $\mathrm{c}_{1}(G)>23$. Then $\mathrm{c}_{1}(G)=27$ (Lemma $\left.\mathrm{J}(\mathrm{b})\right)$. In that case, G has exactly 4 elements of composite orders. It follows that $\exp (G)=4$ and $\mathrm{c}_{2}(G)=2$ (indeed, if G has a cyclic subgroup of order 8 , it is unique so G is of maximal class, and then $\mathrm{c}_{1}(G) \leq 17$). We get a contradiction with [Ber4, Theorem 2.4]. Now assume that $\mathrm{c}_{1}(G)=23$. Using Frobenius-Schur formula for $\mathrm{c}_{1}(G)$, we get $\left|G^{\prime}\right|=2$ and $\operatorname{cd}(G)=\{\chi(1) \mid \chi \in \operatorname{Irr}(G)\}=\{1,2\}$ so G is not extraspecial (if G is extraspecial, then $\mathrm{c}_{1}(G) \in\{11,19\}$). If $G / G^{\prime} \not \equiv \mathrm{E}_{2^{4}}$ and $H / G^{\prime}=\Omega_{1}\left(G / G^{\prime}\right)$, then all involutions of G lie in H so $\mathrm{c}_{1}(G) \leq|H|-1 \leq 15$.

Thus, $G / G^{\prime} \cong \mathrm{E}_{2^{4}}$. Since $|G / \mathrm{Z}(G)|=2^{2 k}$ for positive integer k, we get $k=1$ or 2 . Since G is not extraspecial, $k \neq 2$. Thus, $G / \mathrm{Z}(G) \cong \mathrm{E}_{4}$. Let $H_{i} / \mathrm{Z}(G), i=1,2,3$, be all subgroups of order 2 in $G / \mathrm{Z}(G)$. We have $23=\mathrm{c}_{1}(G)=\sum_{i=1}^{3} \mathrm{c}_{1}\left(H_{i}\right)-2 \mathrm{c}_{1}(\mathrm{Z}(G))$. Since $\mathrm{d}(G)=4, \mathrm{Z}(G)$ is noncyclic. If $\mathrm{Z}(G)$ is abelian of type $(4,2)$, then $\mathrm{c}_{1}\left(H_{i}\right) \leq 7, i=1,2,3$, and, by the formula for $\mathrm{c}_{1}(G)$, we get $\mathrm{c}_{1}(G) \leq 7 \cdot 3-2 \cdot 3=15<23$. Now let $\mathrm{Z}(G) \cong \mathrm{E}_{2^{3}}$. Let $A<G$ be minimal nonabelian. Since $G^{\prime}=A^{\prime}, G / G^{\prime} \cong \mathrm{E}_{2^{4}}$ and $\mathrm{d}(A)=2$, we get $|A|=2^{3}$. We have $\mathrm{Z}(G)=(A \cap \mathrm{Z}(G)) \times E$, where $E \cong \mathrm{E}_{4}$. Then $G=A \times E$. It follows from $24=1+\mathrm{c}_{1}(G)=\left(1+\mathrm{c}_{1}(A)\right)\left(1+\mathrm{c}_{1}(E)\right)$ that $\mathrm{c}_{1}(A)=5$ so $A \cong \mathrm{D}_{8}$.

THEOREM 6.2. If G is a group of order 2^{m}, $m>2$ and $G \not \approx \mathrm{E}_{2^{m}}$, then $\mathrm{c}_{1}(G) \leq 3 \cdot 2^{m-2}-1$ with equality if and only if $G \cong \mathrm{D}_{8} \times \mathrm{E}_{2^{m-3}}$.

Proof. As we have noticed, the theorem is true for $m=4,5$. By Frobenius-Schur formula [BZ, Lemmas 4.11, 4.18],

$$
\begin{aligned}
1+ & \mathrm{c}_{1}(G) \leq \sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \leq\left|G: G^{\prime}\right|+\frac{|G|-\left|G: G^{\prime}\right|}{2^{2}} \cdot 2 \\
& =\frac{1}{2}|G|+\frac{1}{2}\left|G: G^{\prime}\right| \leq 2^{m-1}+2^{m-2}=3 \cdot 2^{m-2}
\end{aligned}
$$

Indeed, the contribution of one irreducible character χ of degree $2^{k}>2$ in the sum $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)$ equals 2^{k}, on the other hand, the contribution of $2^{2 k-2}$ irreducible characters of degree 2 equals $2^{2 k-1}>2^{k}$ (the sum of squares of degrees of those characters is $\left.2^{2} \cdot 2^{2 k-2}=\left(2^{k}\right)^{2}=\chi(1)^{2}\right)$.

Now suppose that $\mathrm{c}_{1}(G)=3 \cdot 2^{m-2}-1$. The same argument as in Example 6.1, shows that then $\operatorname{cd}(G)=\{1,2\},\left|G^{\prime}\right|=2$ and every irreducible character of G is afforded by a real representation. It follows that $\exp \left(G / G^{\prime}\right)=2$. We have $|\operatorname{Irr}(G)|=2^{m-1}+\frac{2^{m}-2^{m-1}}{2^{2}}=2^{m-1}+2^{m-3}=5 \cdot 2^{m-3}$. Let $|\mathrm{Z}(G)|=2^{s}$. Then the class number $\mathrm{k}(G)=2^{s}+\frac{2^{m}-2^{s}}{2}=2^{m-1}+2^{s-1}$. Since $|\operatorname{Irr}(G)|=\mathrm{k}(G)$, we get $5 \cdot 2^{m-3}=|\operatorname{Irr}(G)|=\mathrm{k}(G)=2^{m-1}+2^{s-1}$, or $2^{m-3}=2^{s-1}$ so $s=m-2$. Thus, $|G: \mathrm{Z}(G)|=4$. If A is a minimal nonabelian subgroup of G, then, as in Example 6.1, $|A|=8$ and $G=A \mathrm{Z}(G)$ so $G / A \cong \mathrm{E}_{2^{m-3}}$. Assume that $\exp (\mathrm{Z}(G))=4$. Then $\mathrm{c}_{1}(A C)=7$, where C is a cyclic subgroup of order 4 in $\mathrm{Z}(G)$ [BJ1, Appendix 16]. In that case, $G=(A C) \times E$, where $\mathrm{E}_{2^{m-4}} \cong E<\mathrm{Z}(G)$. Then, however, $\mathrm{c}_{1}(G)=8 \cdot 2^{m-4}-1=2 \cdot 2^{m-2}-1<3 \cdot 2^{m-2}-1$, a contradiction. Thus, $\exp (\mathrm{Z}(G))=2$ and $G=A \times E$, where $E \cong \mathrm{E}_{2^{m-3}}$. If $A \cong \mathrm{Q}_{8}$, then $\mathrm{c}_{1}(G)=2^{m-2}-1<3 \cdot 2^{m-2}-1$, a contradiction. Thus, $A \cong \mathrm{D}_{8}$; then $\mathrm{c}_{1}(G)=3 \cdot 2^{m-2}-1$.

7. p-Groups close to Dedekindian

Here we prove the following

THEOREM 7.1. Let G be a nonabelian p-group of order $>p^{3}$ and exponent $>p>2$, all of whose nonnormal abelian subgroups are cyclic of the same order p^{ξ}. Then $\left|G^{\prime}\right|=p$ and one and only one of the following holds:
(a) $\xi=1$. In that case, one of the following assertions is true:
(1a) $G=Z * G_{0}$, where Z is cyclic and G_{0} is nonabelian of order p^{3} and exponent $p, Z \cap G_{0}=\mathrm{Z}\left(G_{0}\right)$.
(2a) $G \cong \mathrm{M}_{p^{n}}$.
(b) $G=\left\langle a, b \mid a^{p^{m}}=b^{p^{\xi}}=1, a^{b}=a^{p^{m-1}}\right\rangle$ is a metacyclic minimal nonabelian group, $1<\xi \leq m$.

Proof. Let $A<G$ be nonnormal cyclic; then $|A|=p^{\xi}$ and A is a maximal cyclic subgroup of G.

Let $U=\Omega_{1}(\mathrm{Z}(G))$ and assume that $|U|>p^{2}$. Then $A U$ is abelian and noncyclic so $A U \triangleleft G$. Let B / A and C / A be distinct subgroups of order p in $A U / A$. Then B and C are normal in G since they are abelian and noncyclic so $A=B \cap C \triangleleft G$, contrary to the choice of A. Thus, $|U| \leq p^{2}$.
(a) Let $\xi=1$. Then all cyclic subgroups of composite orders are normal in G. By [Ber1, Proposition 11.1 and Supplement to Proposition 11.1 and Theorem 11.3], $\left|G^{\prime}\right|=p$ and $\Phi(G)$ is cyclic. In that case, $\operatorname{cl}(G)=2$ so G is regular. Let $M<G$ be nonabelian; then $M^{\prime}=G^{\prime}$ so $M \triangleleft G$. Thus, all subgroups of composite orders are normal in G so G is as stated in (a), by Passman's Theorem [Pas, Theorem 2.4]. It is easy to check that groups of (a) satisfy the hypothesis.
(b) Now let $\xi>1$. Then $U=\Omega_{1}(G) \leq \mathrm{Z}(G)$ and $|U|=p^{2}$, by the above, so G has no subgroup $\cong \mathrm{E}_{p^{3}}$. Since G is regular, we get $\left|G / \mho_{1}(G)\right|=$ $\left|\Omega_{1}(G)\right|=p^{2}$ so, by Lemma $\mathrm{J}(\mathrm{r}), G$ is metacyclic. If $L / U<G / U$ is cyclic, then L is noncyclic abelian so $L \triangleleft G$. Thus, G / U is abelian since $p>2$ so $G^{\prime} \leq U \cong \mathrm{E}_{p^{2}}$ hence $\left|G^{\prime}\right|=p$ since G^{\prime} is cyclic. Then $G=\langle a, b| a^{p^{m}}=$ $\left.b^{p^{\xi}}=1, a^{b}=a^{1+p^{m-1}}\right\rangle$ is minimal nonabelian [BJ2, Lemma 3.2(a)]; note that $o(b)=p^{\xi}$ since $\langle b\rangle$ is not normal in G. We have to show that G satisfies the hypothesis if and only if $\xi \leq m$.

Let $H<G$ be nonnormal cyclic. Then $H \cap G^{\prime}=\{1\}$ so $H \cap\langle a\rangle=\{1\}$. It follows that H is isomorphic to a subgroup of the group $G /\langle a\rangle$ so H is cyclic of order $\leq p^{\xi}$. Assume that $\xi>m$. Then the cyclic subgroup $\left\langle a b^{p^{\xi-m}}\right\rangle$ is nonnormal and has order $p^{m}<p^{\xi}$, a contradiction. Thus, $\xi \leq m$. Since $\Omega_{\xi-1}(G) \leq \mathrm{Z}(G)$, all subgroups of G of order $<p^{\xi}$ lie in $\mathrm{Z}(G)$ so \bar{G}-invariant, and G satisfies the hypothesis.
8. On The number of CYCLIC SUBGROUPS OF ORDER $p^{k}>p^{2}$ IN A p-GROUP

If a p-group G is neither absolutely regular nor of maximal class and $k>1$, then $\mathrm{c}_{k}(G) \equiv 0\left(\bmod p^{p-1}\right)$. Below we prove that if $k>2$, then, as a rule, $\mathrm{c}_{k}(G) \equiv 0\left(\bmod p^{p}\right)[\operatorname{Ber} 6]$.

Definition 8.1. Let s be a positive integer. A p-group G is said to be an L_{s}-group if $\Omega_{1}(G)$ is of order p^{s} and exponent p and $G / \Omega_{1}(G)$ is cyclic of order $>p$.

Definition 8.2. A 2-group G is said to be $a \mathrm{U}_{2}$-group if it contains a normal subgroup $R \cong \mathrm{E}_{4}$ (a kernel of G) such that G / R is of maximal class and, if T / R is a cyclic subgroup of index 2 in G / R, then $\Omega_{1}(T)=R$.

It is easy to show that a U_{2}-group has only one kernel.
Remark 8.3. Let G be a U_{2}-group of order 2^{m} with kernel $R \cong \mathrm{E}_{4}$. Let T / R be a cyclic subgroup of index 2 in G / R. Then, if $k>3$, we have $\mathrm{c}_{k}(G)=\mathrm{c}_{k}(T)=2$. Now let $k=3$. Set $|G / R|=2^{n+1}$, where $n+1=m-2$. If G / R is dihedral, then all elements in $G-T$ have order $\leq 4 \operatorname{soc}_{3}(G)=\mathrm{c}_{3}(T)=$ 2. Let $G / R \cong \mathrm{Q}_{2^{n+1}}, n \geq 2$. Then all elements in $G-T$ have order 8 so $\mathrm{c}_{3}(G)=\mathrm{c}_{3}(T)+\frac{|G-T|}{\varphi(8)}=2+2^{n} \equiv 2(\bmod 4)$. Now let $G / R \cong \mathrm{SD}_{2^{n+1}}, n \geq 3$. Let $M / R \cong \mathrm{Q}_{2^{n}}$ be maximal in G / R. Then $\mathrm{c}_{3}(G)=\mathrm{c}_{3}(M)=2+2^{n-1} \equiv 2$ $(\bmod 4)$ since $n \geq 3$.

Remark 8.4. Let G be a 2 -group and let $H \in \Gamma_{1}$ be of maximal class. Then H has a G-invariant cyclic subgroup T of index 2 . We claim that T is contained in exactly two subgroups of maximal class and order $2|T|$. One may assume that G has no cyclic subgroup of index 2 (otherwise, G is of maximal class, by Lemma $\mathrm{J}(\mathrm{m}), T=\Phi(G)$, and we are done). Now assume that G is not of maximal class. Let $U<T$ be of index 4. Since H / U is nonabelian, G / U is not metacyclic. Indeed, otherwise $\exp (G / U)=8$ [Ber1, Remark 1.3] so G / U has a cyclic subgroup F / U of index 2. Since $U<\Phi(T) \leq \Phi(F)$, it follows that F is cyclic, a contradiction. In particular, $G / T \cong \mathrm{E}_{4}$. Let $H / T=H_{1} / T, H_{2} / T, H_{3} / T$ be three distinct subgroups of G / T of order 2 . Since G / U has an abelian subgroup of index 2 , one may assume that H_{3} / U is abelian. It remains to show that H_{2} is of maximal class. Since $T / U \not \leq \mathrm{Z}(G / U)$, it follows that H_{2} / T is nonabelian. Since H_{2} has a cyclic subgroup T of index 2, it follows that H_{2} is of maximal class (Lemma $J(m))$.

I am indebted to Zvonimir Janko drawing my attention to an inaccuracy in the first proof of part (iv) of the following

Theorem 8.5. If an irregular p-group G is not of maximal class, $k>2$, then $\mathrm{c}_{k}(G) \equiv 0\left(\bmod p^{p}\right)$, unless G is an $\mathrm{L}_{p^{-}}$or U_{2}-group.

Proof. Suppose that G is neither an $\mathrm{L}_{p^{-}}$or U_{2}-group (for these G we have $\mathrm{c}_{k}(G) \equiv p^{p-1}\left(\bmod p^{p}\right)$; for L_{p}-groups this is trivial, for U_{2}-groups this is proved in Remark 8.3). We proceed by induction on $|G|$. By Lemma $\mathrm{J}(\mathrm{a}), G$ has a normal subgroup R of order p^{p} and exponent p. If G / R is cyclic and G is not an L_{p}-group, then $\Omega_{1}(G)$ is of order p^{p+1} and exponent p (Remark 1.1) and $c_{k}(G)=p^{p}$. In what follows we assume that G / R is not cyclic. Then G / R contains a normal subgroup T / R such that G / T is abelian of type (p, p). Let $H_{1} / T, \ldots, H_{p+1} / T$ be all maximal subgroups of G / T. Then we have

$$
\begin{equation*}
\mathrm{c}_{k}(G)=\sum_{i=1}^{p+1} \mathrm{c}_{k}\left(H_{i}\right)-p \mathrm{c}_{k}(T) \tag{8.1}
\end{equation*}
$$

One may assume that $\exp (G) \geq p^{k}$. We claim that $c_{k}(T) \equiv 0\left(\bmod p^{p-1}\right)$. Assume that this is false; then $\exp (T) \geq p^{k}>p^{2}$. In that case, T is irregular of maximal class (Lemma $\mathrm{J}(\mathrm{b})$) and, since $R<T$ (Lemma $\mathrm{J}(\mathrm{b})$), we get $|T|=p^{p+1}(\operatorname{Lemma} \mathrm{~J}(\mathrm{f}))$; then $\exp (T)=p^{2}<p^{k}$, a contradiction. It follows that $p c_{k}(T) \equiv 0\left(\bmod p^{p}\right)$. Therefore, it remains to prove that

$$
\begin{equation*}
\sum_{i=1}^{p+1} \mathrm{c}_{k}\left(H_{i}\right) \equiv 0 \quad\left(\bmod p^{p}\right) \tag{8.2}
\end{equation*}
$$

Assume that (8.2) is not true. Then p^{p} does not divide some $c_{k}\left(H_{i}\right)$. We may assume that $i=1$. By induction, H_{1} is one of the following groups: (i) an absolutely regular p-group; (ii) a p-group of maximal class, (iii) an L_{p}-group, (iv) a U_{2}-group. We must consider these four possibilities separately. Since $R<H_{1}$ and $k>2$, possibilities (i) and (ii) do not hold (Lemma J(f)). It remains to consider possibilities (iii) and (iv).
(iii) Suppose that H_{1} is an L_{p}-group; then $\Omega_{1}\left(H_{1}\right)=R$. It follows from Lemma $\mathrm{J}(\mathrm{m})$ that exactly p groups among $H_{1} / R, \ldots, H_{p+1} / R$ are cyclic, unless $\mathrm{p}=2$ and G / R is of maximal class. First suppose that $H_{1} / R, \ldots, H_{p} / R$ are cyclic and H_{p+1} / R is noncyclic; then H_{p+1} / R is abelian of type (p^{n}, p). Since $k>2, K / R:=\Omega_{1}\left(H_{1} / R\right) \leq \Phi(G / R)<H_{i} / R$ so $R=\Omega_{1}\left(H_{1}\right)=$ $\Omega_{1}(K)=\Omega_{1}\left(H_{i}\right)$, and we conclude, that H_{i} is an L_{p}-group for all $i=2, \ldots, p$. It follows, for the same i, that $c_{k}\left(H_{i}\right)=p^{p-1}$. Since a U_{2}-group has only one kernel, H_{p+1} is not a U_{2}-group. Therefore, by induction, $\mathrm{c}_{k}\left(H_{p+1}\right) \equiv 0$ $\left(\bmod p^{p}\right)$ so (8.2) is true. Now suppose that $p=2$ and G / R is of maximal class. Since $\Omega_{1}\left(H_{1}\right)=R$ and H_{1} / R is a cyclic subgroup of index 2 in G / R, we conclude that G / R is a U_{2}-group, contrary to the assumption.
(iv) Now suppose that H_{1} is a U_{2}-group; then $p=2$. Since G is not a U_{2}-group, we conclude that G / R is not of maximal class (otherwise, G / R has a cyclic subgroup, say Z / R, of index 2 ; then, as in (iii), $\Omega_{1}(Z)=R$ so G is a U_{2}-group). Let T / R be a G-invariant cyclic subgroup of index 2 in H_{1} / R and $H_{1} / T, H_{2} / T, H_{3} / T$ be all subgroups of order 2 in G / T (note that G / T is noncyclic, by Theorem 3.1, since G / R is not of maximal class). By

Remark 8.4, one may assume that H_{2} / R is of maximal class and H_{3} / R is not of maximal class. It follows from $\Omega_{1}(T)=R$ (indeed, $T<H_{1}$) that H_{2} is a U_{2}-subgroup. Clearly, H_{3} is neither an L_{2}-subgroup since G / R has no cyclic subgroup of index 2 nor U_{2}-group. We have, by induction, $\mathrm{c}_{k}\left(H_{3}\right) \equiv 0$ $(\bmod 4)$. Since $c_{k}\left(H_{i}\right) \equiv 2(\bmod 4)(i=1,2)$, by Remark 8.3 , we get $c_{k}(G) \equiv$ $\mathrm{c}_{k}\left(H_{1}\right)+\mathrm{c}_{k}\left(H_{2}\right)+\mathrm{c}_{k}\left(H_{3}\right) \equiv 2+2+0 \equiv 0(\bmod 4)$, so (8.2) is true.

Janko [Jan2] has classified the 2-groups G with $\mathrm{c}_{k}(G)=4, k>2$. The proof of this boundary result, which is fairly involved, shows that the assertion of Theorem 8.5 is very strong.

If G be a group of exponent p^{e}, then

$$
\begin{equation*}
|G|=1+\sum_{i=1}^{e} \varphi\left(p^{i}\right) \mathrm{c}_{i}(G) \tag{8.3}
\end{equation*}
$$

Theorem 8.5 and (8.3) imply the following
Corollary 8.6. Suppose that an irregular p-group G is not of maximal class and $|G|>p^{p+1}$. Then $1+(p-1) \mathrm{c}_{1}(G)+p(p-1) \mathrm{c}_{2}(G) \equiv 0\left(\bmod p^{p+2}\right)$, unless G is an L_{p} or U_{2}-group.

Indeed, if $i>2$, then $\varphi\left(p^{i}\right) \mathrm{c}_{i}(G)$ is divisible by $p^{i-1} \cdot p^{p} \geq p^{p+2}$ (Theorem 8.5).

Proposition 8.7. For a p-group G of order $p^{n+2}, n>1$, the following conditions are equivalent:
(a) $\operatorname{cl}(G)=n$ and $\mathrm{d}(G)=3$.
(b) G is not of maximal class but contains a subgroup of maximal class and index p.

Proof. (a) $\Rightarrow(\mathrm{b})$: By hypothesis, indices of the lower central series of G are p^{3}, p, \ldots, p. Therefore, $K=\mathrm{K}_{3}(G)=[G, G, G]$ has index p in G^{\prime}. Since G / K is of class 2 and order $p^{4}=p^{1+3}$, it is not extraspecial so that $|\mathrm{Z}(G / K)|=p^{2}$. Set $\eta(G) / K=\mathrm{Z}(G / K)$; then $|\eta(G) / K|=p^{2}$. Let H / K be a minimal nonabelian subgroup of G / K (recall that $\mathrm{d}(G / K)=3$ and the rank of minimal nonabelian p-groups equals 2). Then $G=H \eta(G)$ so, by Blackburn's Theorem [Ber2, Theorem 1.40], $\operatorname{cl}(H)=\operatorname{cl}(G)=n$ and, since $|H|=p^{n+1}$, we conclude that H is of maximal class.
(b) \Rightarrow (a): By Lemma $\mathrm{J}(\mathrm{h}), G$ contains exactly p^{2} subgroups of maximal class and index p so $\mathrm{d}(G)=3$. Set $|G|=p^{n+2}$. Since $n=\operatorname{cl}(H) \leq \operatorname{cl}(G) \leq n$, we get $\operatorname{cl}(G)=n$, completing the proof of (a).

Using Proposition 8.7 , it is easy to classify the 2 -groups G of order 2^{n+2} such that $\operatorname{cl}(G)=n$ and $\mathrm{d}(G)=3$ (see also [Jam]).

9. Problems

Here we formulate some related problems. In what follows G is a p-group.

1. Classify the p-groups, $p>2$, containing exactly one noncyclic abelian subgroup of order $\left(p^{2}, p\right)$.
2. Let $\mathrm{d}(G)>3$ and $2<i<\mathrm{d}(G)$. Is it true that the number of irregular members of maximal class in the set Γ_{i} is a multiple of p (see Theorem 3.12)?
3. Let $H<G$ be irregular and $\Omega_{1}(G) \not \approx H$. Suppose that for each element $x \in G-H$ of order p, the subgroup $\langle x, H\rangle$ is of maximal class. Study the structure of G. (See Remark 3.2.)
4. It follows from Blackburn's theory of p-groups of maximal class [Bla1] that if a p-group G has no nonabelian subgroup of order p^{3}, then the coclass of G is >1. Estimate the coclass of such groups.
5. Study the p-groups without normal cyclic subgroup of order $p^{2} .^{1}$

6 . Classify the p-groups of exponent p, whose 2 -generator subgroups have orders $\leq p^{3}$.
7. Let R be a subgroup of order p^{2} of a p-group G. Suppose that there is only one maximal chain connecting R with G. Describe the structure of G.
8. Study the p-groups G with $e_{p}(G)=2 p+1$.
9. Let G be a group of Theorem 1.5(b). Study the structure of $G / \Omega_{1}(G)$.
10. Let G be a \mathcal{D}_{p}-group. Describe the members of the set Γ_{1} (see Theorem 3.24).

References

[Ber1] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
[Ber2] Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.
[Ber3] Y. Berkovich, On subgroups of finite p-groups, J. Algebra 240 (2000), 198-240.
[Ber4] Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
[Ber5] Y. Berkovich, Alternate proofs of some basic theorems of finite group theory, Glas. Mat. 40 (2005), 207-233.
[[Ber5] Y. Berkovich, On the number of elements of given order in a finite p-group, Israel J. Math. 73 (1991), 107-112.
[BJ1] Y. Berkovich and Z. Janko, Groups of Prime Power Order, Part II, in preparation.
[BJ2] Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemporary Mathematics 402 (2006), 13-93.

[^1][Bla1] N. Blackburn, On a special class of p-groups, Acta Math. 1 (1958), 45-92.
[Bla2] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. 11 (1961), 1-22.
[Hal1] P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1933), 29-95.
[Hal2] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 40 (1936), 468-501.
[HS] M. Hall, Jr. and J.K. Senior, The groups of order $2^{n}(n \leq 6)$, Macmillan, NY, 1964.
[Jam] R. James, 2-groups of almost maximal class, J. Austral. Math. Soc. (Ser A) 19 (1975), 343-357; corrigendum, ibid. 35 (1983), 307.
[Jan1] Z. Janko, A classification of finite 2-groups with exactly three involutions, J. Algebra 291 (2005), 505-533.
[Jan2] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2^{n}, J. reine angew. Math. 566 (2004), 135-181.
[Jan3] Z. Janko, Finite 2-groups G with $\left|\Omega_{2}(G)\right|=16$, Glas. Mat. 40, 1 (2005), 71-86.
[Man] A. Mann, Conjugacy classes in finite groups, Israel J. Math. 31 (1978), 78-84.
[Pas] D.S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15, 3 (1970), 352-370.
Y. Berkovich

Department of Mathematics
University of Haifa
Mount Carmel
Haifa 31905
Israel
E-mail: berkov@math.haifa.ac.il
Received: 16.7.2006.
Revised: 30.8.2007.

[^0]: 2000 Mathematics Subject Classification. 20D15.
 Key words and phrases. p-groups of maximal class, regular and absolutely regular p-groups.

[^1]: ${ }^{1}$ The group $\Sigma_{p^{n}} \in \operatorname{Syl}_{p}\left(\mathrm{~S}_{p^{n}}\right), n>1$, has no normal cyclic subgroup of order p^{2}, unless $p^{n}=4$. Indeed, assume that $p^{n}>4$ and let L be a normal cyclic subgroup of order p^{2} in $G_{n}=\Sigma_{p^{n}}$. Since G_{2} is of maximal class, it has a normal abelian subgroup of type (p, p) so it has no normal cyclic subgroup of order p^{2}, by Lemma $\mathrm{J}(\mathrm{d})(\mathrm{ii})$, hence $n>2$. Let $B=H_{1} \times \cdots \times H_{p}$, where $H_{i} \cong \Sigma_{p^{n-1}}$ is the i th coordinate subgroup of the base B of the wreath product $G_{n}=G_{n-1} \mathrm{wr}_{p}$. Then $\Omega_{1}(L)=\mathrm{Z}(G)$ and so $L \cap H_{i}=\{1\}$ for all i. Assume that $L<B$; then $\mathrm{C}_{G}(L) \geq H_{1} \times \cdots \times H_{p}=B$, a contradiction, since $\mathrm{Z}(B)$ is elementary abelian. Thus, $L \not 又 B$. Since $Z\left(H_{i}\right)$ centralizes L (consider the semidirect product $\left.L \cdot H_{i}\right)$ so $\mathrm{C}_{G}\left(\mathrm{Z}\left(H_{i}\right)\right) \geq B L=G$, we get $\mathrm{Z}\left(H_{i}\right) \leq \mathrm{Z}(G)$ for all i, a contradiction since $|\mathrm{Z}(G)|=p$.

