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Abstract. The p-groups all of whose nonabelian maximal subgroups
are either absolutely regular or of maximal class, are classified (Theo-
rem 2.1). For the main result of [CP] and [ZAX] classifying the p-groups
all of whose proper nonabelian subgroups are metacyclic, we offer a proof
which is shorter and not so involved. In conclusion we study, in some
detail, the p-groups containing an abelian maximal subgroup.

1. Introduction

This note supplements papers [B5] and [BJ2].
Our notation is the same as in [B1-B3] and [BJ1, BJ2]. In what follows, p

is a prime and G a finite p-group. A group G is said to be an An-group, if all
its subgroups of index pn are abelian but it contains a nonabelian subgroup of
index pn−1 (so that A1-groups are minimal nonabelian). The A1-groups are
classified in [R] and A2-groups are classified by L. Kazarin and V. Sheriev,
independently (see [BJ1, Theorem 5.6]). Set Ω1(G) = 〈x ∈ G | xp = 1〉,
℧1(G) = 〈xp | x ∈ G〉. If H ≤ G, then HG = ∩x∈GHx is the core of H in
G. A group G is said to be absolutely regular if |G/℧1(G)| < pp; by Hall’s
regularity criterion, such G is regular. Let cl(G) denote the class of G. A
group G of order pm is of maximal class if cl(G) = m − 1 ≥ 2. A group G
is said to be an Ls-group [B3] (s is a positive integer) if Ω1(G) is of order
ps and exponent p and G/Ω1(G) is cyclic of order > p. By Epn we denote
the elementary abelian group of order pn. Let G′, Φ(G) and Z(G) denote the
derived subgroup, the Frattini subgroup and the center of G, respectively. We

2000 Mathematics Subject Classification. 20D15.
Key words and phrases. Metacyclic p-groups, p-groups of maximal class, minimal non-

abelian p-groups, absolutely regular p-groups, abelian maximal subgroups, maximal abelian
normal subgroups.

97



98 Y. BERKOVICH

write pd(G) = |G : Φ(G)|; then d(G) is the minimal number of generators of
G.

It is proved in [BJ2, Theorem 2.2] that if all nonabelian maximal sub-
groups of a nonabelian two-generator 2-group G are two-generator, then G is
either minimal nonabelian or metacyclic. The condition d(G) = 2 in that the-
orem, however, is very restrictive. Indeed, as [BJ1, §4] shows, classification of
nonabelian 2-groups G all of whose maximal subgroups are two-generator but
d(G) = 3, is one of outstanding open problems of p-group theory. (Note that,
for p > 2, Blackburn [Bla2] has proved that all such groups are A2-groups.)

In Theorem 2.1, the main result of this note, the p-groups all of whose
nonabelian maximal subgroups are either absolutely regular or of maximal
class, are classified. In conclusion of this section we classify (Theorem 1.1)
the p-groups all of whose nonabelian maximal subgroups are metacyclic (this
is the main result of [ZAX]; in [CP] the case p = 2 is considered only). We do
not use, in our proof, as in [ZAX], the classification of metacyclic and minimal
nonmetacyclic p-groups; note that the proof in [CP] is more elementary. In
§3 we treat nonabelian p-groups with abelian subgroup of index p.

The note is self contained modulo the following lemma.

Lemma J. Let G be a nonabelian p-group.

(a) [T]; see also [I, Lemma 12.12]. If A < G is abelian of index p, then
|G| = p|G′||Z(G)|.

(b) [B2, Lemma 3] The number of abelian maximal subgroups in G equals
0, 1 or p + 1.

(c) [B2, Proposition 19(a)] If B ≤ G is nonabelian of order p3 and
CG(B) < B, then G is of maximal class.

(d) [Bla1] Let G be of maximal class. If |G| > pp, then G is irregular. If
|G| > pp+1, then exactly one maximal subgroup of G is not of maximal
class (it is absolutely regular).

(e) [BJ1, Lemma 3.2(a)] If G′ ≤ Z(G), exp(G′) = p and d(G) = 2, then
G is an A1-group.

(f) [Bla2]; see also [B1, Theorem 7.6]. If G has no normal subgroup of
order pp and exponent p, it is either absolutely regular or of maximal
class. A group G of maximal class and order > pp+1 has no normal
subgroup of order pp and exponent p.

(g) [Bla2]; see also [B1, Theorem 7.5]. Suppose that G is not absolutely
regular. If G contains an absolutely regular maximal subgroup M , then
either G is of maximal class or G = MΩ1(G) with |Ω1(G)| = pp.

(h) [B1, Theorem 7.4] Suppose that G is not of maximal class. If G con-
tains a subgroup of maximal class and index p, then d(G) = 3 and the
number of subgroups of maximal class and index p in G equals p2. If,
in addition, |G| > pp+1, then |G/℧1(G)| = pp+1 so G has no absolutely
regular maximal subgroups.
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(i) [B1, Theorem 5.2] If p > 2, G is of maximal class and H < G is such
that d(H) > p − 1, then G is isomorphic to a Sylow p-subgroup of the
symmetric group of degree p2.

(j) [BJ2, Theorem 2.2] If all nonabelian maximal subgroups of a non-
abelian two-generator 2-group G are two-generator, then G is either
metacyclic or minimal nonabelian.

(k) Let G be an A1-group. Then G is nonmetacyclic if and only if Ω1(G) ∼=
Ep3 . Next, d(G) = 2, Z(G) = Φ(G) so, if N ⊳G and G/N is noncyclic,
then N ≤ Z(G).

(l) (Fitting) If A, B < G are normal, then cl(AB) ≤ cl(A) + cl(B).
(m) [Bla2, Lemma 4.3]; see also [BJ2, Theorem 7.4]. If p > 2 and G has

no normal subgroup ∼= Ep3 , then G is either metacyclic, or 3-group of
maximal class, or G = Ω1(G)C, where Ω1(G) is nonabelian of order
p3 and exponent p and C is cyclic of index p2 in G.

(n) If G has a cyclic subgroup of index p, then either G is a 2-group of
maximal class or G ∼= Mpn .

We use freely basic properties of regular p-groups.
In what follows we use freely the following fact. If G is a nonabelian two-

generator p-group, then Z(G) ≤ Φ(G). Assume that this is false. Then there is
in G a maximal subgroup H such that G = HZ(G); then H is nonabelian. In
that case, H/(H∩Z(G)) ∼= G/Z(G) is noncyclic so, setting D = H∩Z(G), we
get G/D = (H/D)× (Z(G)/D) so d(G) ≥ d(G/D) = d(H/D) + d(Z(G)/D) ≥
2 + 1 = 3, contrary to the hypothesis.

We offer a new proof of the following

Theorem 1.1 ([CP] (for p = 2), [ZAX]). Suppose that a nonabelian p-
group G is neither minimal nonabelian nor metacyclic nor minimal nonmeta-
cyclic. If all nonabelian maximal subgroups of G are metacyclic, then one and
only one of the following holds:

(a) G = M × C, where M 6∼= Q8 is a metacyclic A1-group and |C| = p.
(b) p > 2, d(G) = 2, G = Ω1(G)C, where Ω1(G) ∼= Ep3 , C is a cyclic

subgroup of index p2 in G, CG = ℧1(C) = Z(G) is of index p3 in G
(so that, if |G| > p4, then G is an Ls-group and A2-group).

Proof. Let us check that groups of (a) and (b) satisfy the hypothesis.
Indeed, let G = M × C be as in (a) and U < G maximal. If C < U , then,
by the modular law, U = C × (U ∩ M) so U is abelian since M is an A1-
subgroup. If C 6≤ U , then G = C × U so U ∼= G/C ∼= M is metacyclic. Now
let G be as in (b) and V < G maximal. If Ω1(G) ≤ V , then, by the modular
law, V = Ω1(G)℧1(C) so V is abelian since Ω1(G) is abelian and ℧1(C) =
Z(G). Now assume that Ω1(G) 6≤ V . Then Ω1(V ) = V ∩ Ω1(G) ∼= Ep2 so
|V/℧1(V )| = |Ω1(V )| = p2 so V is metacyclic (Lemma J(m)).

Now, assuming that G satisfies the hypothesis, we have to prove that G is
either as in (a) or in (b). By hypothesis, there are in G two maximal subgroups
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M and A such that M is nonabelian so metacyclic and A is nonmetacyclic
so abelian; then d(A) > 2 and d(G) ≤ d(M) + 1 = 2 + 1 = 3. Since M ∩ A
is a noncyclic metacyclic maximal subgroup of A, we get d(A) = 3. Set
E = Ω1(A); then Ep3

∼= E ⊳ G. By the product formula, G = ME so
M ∩ E ∼= Ep2. All maximal subgroups of G containing E, are nonmetacyclic
so abelian, hence d(G/E) = d(M/(M ∩ E)) ≤ 2 (Lemma J(b)). In what
follows, A, M and E denote the subgroups defined in this paragraph.

Let d(G/E) = 2. Then there is a maximal subgroup B/E < G/E with
B 6= A so E ≤ A ∩ B = Z(G) since B, being nonmetacyclic, is abelian. If
x ∈ E − M , then G = M × X , where X = 〈x〉. Let N < M be maximal.
Then N × X is abelian. Indeed, assume that this is false; then d(N) = 2
so d(X × N) = 3, and X × N is abelian, by hypothesis. Thus, all maximal
subgroups of M are abelian so M is an A1-group. We conclude that Ω1(G) =
E, unless M ∼= D8.

Now let G/E be cyclic; then G′ < E.
(i) Let |G/E| = p; then |M | = p3. If CG(M) < M , then G is of maximal

class (Lemma J(e)) and p > 2 since G is not metacyclic, and E = A is the
unique abelian maximal subgroup of G (Lemma J(l)) so exp(G) = p2 since
M < G is metacyclic. If E = Z(G) × L, then LG = {1} so G is isomorphic
to a subgroup of exponent p2 of a Sylow p-subgroup of the symmetric group
Sp2 ; then G has a nonabelian subgroup of order p3 and exponent p (Lemma
J(i)) which is nonmetacyclic, a contradiction. Thus, G = MZ(G). If Z(G)
is noncyclic, then G = M × L is as in (a) (in that case, M 6∼= Q8 since G is
not minimal nonmetacyclic). If Z(G) is cyclic, then, since |Z(G)| = p2, we get
G = EZ(G), by the product formula, so G is abelian, a contradiction.

(ii) Now let G/E be cyclic of order > p; then G′ < E so |G′| ≤ p2. We
have Ω1(G/Ω1(G)) < A/Ω1(G) so Ω1(G) = Ω1(A) = E. Since M/(M ∩E) =
M/Ω1(M) ∼= G/E is cyclic, we get M ∼= Mpn , n > 3, since M is nonabelian
and has a cyclic subgroup of index p (Lemma J(n)). Thus, all nonabelian
maximal subgroups of G are ∼= Mpn (it follows that G is an A2-group so one
can use the classification of A2-groups [BJ2, Theorem 5.6], however we prefer
to present independent, more elementary, proof).

Let d(G) = 2; then Z(G) ≤ Φ(G) and, since G is not an A1-group, we
get G′ 6≤ Z(G) so G′ ∼= Ep2 (Lemma J(e)); then cl(G) = 3 and A is the
unique abelian maximal subgroup of G and |G : Z(G)| = p|G′| = p3 (Lemma
J(a)). Since G′ < Φ(G) < M , we get G′ = Ω1(M) so M/G′ is a cyclic
subgroup of index p in the abelian group G/G′. Since Z(G) < M , then
Z(G) = Z(M) (compare indices!) so Z(G) is cyclic. Assume that there is a
cyclic U/Z(G) of index p in G/Z(G). Then U is abelian and metacyclic so
U 6= A, a contradiction. Thus, exp(G/Z(G)) = p so G/Z(G) is nonabelian
of order p3 and exponent p (recall that cl(G) = 3); then p > 2. We have
Z(G) < C < M , where C is cyclic of index p in M . Since |G : C| = p2, we
get G = EC, and C is not normal in G since G′ is noncyclic. Since a Sylow



MINIMAL NONABELIAN AND MAXIMAL SUBGROUPS OF A FINITE p-GROUP 101

p-subgroup of Aut(E) is of exponent p, we conclude that Z(G) = ℧1(C) so G
is as in (b).

Now we let d(G) = 3. Then G/G′ has no cyclic subgroup of index p
so |G′| = p, and we get |G : Z(G)| = p|G′| = p2 (Lemma J(a)). Since
|A : Z(G)| = p and d(A) = 3, the subgroup Z(G) is noncyclic. By what has
been proved already, M ∼= Mpn . In that case, Ω1(Z(G)) 6≤ M since Z(M) is
cyclic. We have G = MZ(G) so M ∩Z(G) = Z(M) (compare orders!) is cyclic
and |Z(G)| = p|Z(M). In that case, Z(M) is a cyclic subgroup of maximal
order in Z(G) so, by basic theorem on abelian p-groups, Z(G) = Z(M) × L,
where |L| = p and L 6≤ M . Then G = M × L so G is as in (a).

Supplement to Theorem 1.1. Let a nonabelian 2-group G be neither
metacyclic nor Ai-group (i = 1, 2) nor minimal nonmetacyclic. Suppose that
all proper nonabelian subgroups of G are two-generator. Then d(G) = 3
and nonabelian maximal subgroups of G are either metacyclic or minimal
nonabelian. Let, in addition, |G| > 25. Then, if H < G is a nonmetacyclic
A1-subgroup, then Ω1(G) = Ω1(H) = E ∼= E8. Next, G/E ∈ {Q8, M2n} and
G′ is contained in the center of every nonmetacyclic maximal subgroup of G
so, if G has two distinct nonmetacyclic maximal subgroups, then cl(G) = 2.

Proof. By Lemma J(j), nonabelian maximal subgroups of G are either
metacyclic or minimal nonabelian so d(G) = 3 [B1, Theorem 3.3].

There is a nonabelian maximal M < G which is not an A1-group so M
is metacyclic and, by Lemma J(e), |M ′| > 2. In view of Theorem 1.1, one
may assume that G has a maximal subgroup H which is neither abelian nor
metacyclic; then H is an A1-group with Ω1(H) ∼= E8 (Lemma J(k)). If K < G
is nonabelian maximal, then K ′ is cyclic, K ′ ≤ Φ(K) ≤ Φ(G) < H and H/K ′

is noncyclic since H is not metacyclic, so K ′ ≤ Φ(H) = Z(H). Let x, y ∈ G.
Then 〈x, y〉 ≤ K1, where K1 < G is maximal (recall that d(G) = 3); then
[x, y] ∈ K ′

1 ≤ Z(H), and we conclude that G′ ≤ Z(H). If H1 < G is another
nonmetacyclic maximal subgroup, then G′ ≤ Z(H1) so CG(G′) ≥ HH1 = G
and cl(G) = 2. In what follows, H and E are as defined in this paragraph.

Now we let |G| > 25. Assume that there is an involution x ∈ G − E and
set L = E〈x〉; then |L| = 24 since E ⊳ G. However, since M is metacyclic,
we get exp(M ∩ L) > 2 so L is nonabelian since Ω1(L) = L. Then L is not
an A1-subgroup (Lemma J(k)), contrary to the hypothesis. Thus Ω1(G) = E
and G = ME so G/E ∼= M/(M ∩ E). However, M ′ is cyclic of order > 2 so
G/E(∼= M/E) is nonabelian.

If E ≤ Z(G), then G = M ×C for some C < E of order 2. Since |M ′| > 2,
there is in M a nonabelian maximal subgroup M1. However, the nonabelian
maximal subgroup M1 × C of G is neither A1-subgroup nor metacyclic, a
contradiction. Thus, E 6≤ Z(G).

If a noncyclic subgroup T/E < G/E is maximal, then E ≤ Z(T ) (this is
obvious if T is abelian, and follows from Lemma J(k) if T is an A1-subgroup;
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note that T is nonmetacyclic). Since E 6≤ Z(G), the nonabelian group G/E
has at most one noncyclic maximal subgroup. If all maximal subgroups of
G/E are cyclic, then G/E ∼= Q8. If G/E has exactly one noncyclic maximal
subgroup, then, by Lemma J(n), G/E ∼= M2k .

2. p-groups, all of whose nonabelian maximal subgroups are

either absolutely regular or of maximal class

Let G be a nonabelian 2-group all of whose nonabelian maximal sub-
groups are of maximal class. Suppose that G is neither minimal nonabelian
nor a group of maximal class. Then G contains a subgroup of maximal class
and index 2 so, by Lemma J(h), d(G) = 3 and G contains exactly 4 subgroups
of maximal class and index 2. It follows that G contains exactly 3 abelian
maximal subgroups so cl(G) = 2, and we conclude that |G| = 24. By Lemma
J(c), G = MZ(G), where M is nonabelian of order 8. Therefore, since ab-
solutely regular 2-groups are cyclic, we confine, in the following theorem, to
case p > 2.

Theorem 2.1. Let a nonabelian p-group G be neither minimal nonabelian
nor absolutely regular, p > 2 and |G| > pp. If all nonabelian maximal sub-
groups of G are either absolutely regular or of maximal class, then one of the
following holds:

(i) G is of maximal class and order > pp+1,
(ii) G is of maximal class and order pp+1 with |Ω1(G)| = pp−1,
(iii) G is of maximal class and order pp+1 with abelian maximal subgroup,
(iv) G is of maximal class and order pp+1, Ω1(G) = G and all maximal

subgroups of G of exponent p are of maximal class,
(v) p = 3, |G| = 34, G = MZ(G), where |Z(G)| = 32, M is nonabelian of

order 33,
(vi) G = B × C where B is absolutely regular, |C| = p, |Ω1(G)| = pp,

Ω1(G) ≤ Z(G), d(G/Ω1(G)) = 2. All maximal subgroups of B con-
taining Ω1(B), are abelian,

(vii) G is regular of order pp+1, Ω1(G) of order pp is either abelian or of
maximal class,

(viii) G is an Lp-group, |G : CG(Ω1(G))| = p.

Groups (i)–(viii) satisfy the hypothesis.

Proof. The last assertion is checked easily as will be clear from the
proof. It remains to show that if G satisfies the hypothesis, it is one of groups
(i)–(viii).

(a) Suppose that G is of maximal class. If |G| > pp+1, then G satisfies the
hypothesis (Lemma J(d)). Now let |G| = pp+1. If G has an abelian subgroup
of index p, then all its nonabelian maximal subgroups are of maximal class
(Lemma J(l)) so G satisfies the hypothesis. Next assume that G has no abelian
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subgroup of index p. If all maximal subgroups of G are absolutely regular,
then |Ω1(G)| = pp−1 so G is as in (ii). If M < G is maximal and of exponent
p, it is of maximal class and G is as in (iv). In what follows we assume that
G is not of maximal class.

(b) Suppose that |G| = pp+1. Then G is regular, by assumption in (a).
Suppose that exp(G) = p. Then G has no absolutely regular maximal

subgroup. Since not all maximal subgroups of G are of maximal class, there
is in G a subgroup A ∼= Epp . By hypothesis, G has a nonabelian maximal
subgroup M ; then M is of maximal class. By Lemma J(h), there are in G
exactly p2 subgroups of maximal class and index p so it has exactly p + 1 > 1
abelian maximal subgroups; then |G : Z(G)| = p2, |G′| = 1

p
|G : Z(G)| = p

(Lemma J(a)). Then |M | = p3 so |G| = p4. Since |G| = pp+1, we get p = 3.
Since Z(G) 6≤ M , we get G = M × 〈x〉 for x ∈ Z(G) − M , and G is as in (v).

Now let exp(G) > p. Then |Ω1(G)| = pp since G is not absolutely regular
so Ω1(G) is either abelian or of maximal class; then G is as (vii). Next we
assume that |G| > pp+1. By Lemma J(f), there is in G a normal subgroup R
of order pp and exponent p.

(c) Suppose that |G| > pp+2. Then all maximal subgroups of G con-
taining R are neither absolutely regular nor of maximal class (Lemma J(f)).
Therefore, if R < A, where A is maximal in G, then A is abelian. Assume
that R < Ω1(G). Let x ∈ G − R be of order p; then L = 〈x, R〉 is elementary
abelian of order pp+1. Consideration of intersection of a maximal subgroup,
say H , with L shows that H is neither of maximal class (Lemma J(i) or
J(f) since |H | > pp+1) nor absolutely regular. Then all maximal subgroups
of G are abelian, a contradiction since G is not minimal nonabelian. Thus,
R = Ω1(G). Therefore, if G/R is cyclic, then G is an Lp-group so it is as in
(viii).

Suppose that G/R is noncyclic. Since all maximal subgroups of G, con-
taining R, are abelian, it follows that R ≤ Z(G) and |G : Z(G)| = p2 so
cl(G) = 2, and d(G/R) = 2 (Lemma J(b,k)). Since G is not minimal non-
abelian, it contains a nonabelian maximal subgroup B. Since |B ∩ R| > p, B
is not of maximal class so it is absolutely regular. Then R 6≤ B so G = B×C
for some C < R of order p, and G is as in (vi).

(d) Suppose that |G| = pp+2. If G/R is cyclic, then G is an Lp-group.
Indeed, let R < M < G. Then M is either abelian or of maximal class. If M is
abelian, then, as in (c), R = Ω1(G) so G is an Lp-group. Assume that M is of
maximal class. Let D < R be G-invariant of index p2. Then M ≤ CG(R/D)
so M/D is abelian of order p3 and M is not of maximal class, a contradiction.

Let G/R ∼= Ep2 .
(d1) Suppose that all M < G such that R < M , are abelian. Then

R = Z(G) and cl(G) = 2 so G has no subgroups of maximal class and index
p. By hypothesis, G has a nonabelian absolutely regular maximal subgroup
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B. Then R = Ω1(G) 6≤ B so G = B × C, where C < R is of order p so G is
as in (vi).

(d2) Now suppose that there is nonabelian M < G such that R < M .
Then M is of maximal class so the number of subgroups of maximal class
and index p in G is exactly p2 (Lemma J(h)). Since d(G) = 3 and G has no
absolutely regular maximal subgroup (Lemma J(h)), the number of abelian
subgroups of index p in G is exactly p + 1. In that case, as in (b), |G| = p4 <
pp+2, a final contradiction.

3. Nonabelian p-groups containing an abelian maximal subgroup

Let a nonabelian p-group contains an abelian maximal subgroup. Such
groups, playing important role in finite p-group theory, were classified in two
long papers [NR] and [NRSB], however, it is fairly difficult to extract from
these papers the results about their subgroup structure. A nonabelian two-
generator p-group G containing an abelian subgroup A of index p is considered
in [XZA, Lemma 3.1]. In Proposition 3.1 we consider more general situation.

To facilitate future considerations, we prove using induction on |G| that,
if a nonabelian p-group G contains an abelian maximal subgroup A and
|G : G′| = p2, then G is of maximal class. If |G| = p3, the assertion is obvious
so we let |G| > p3. By Lemma J(a), |Z(G)| = 1

p
|G : G′| = p so Z(G) < G′. In

that case, |(G/Z(G)) : (G/Z(G))′| = |G : G′| = p2 so, by induction, G/Z(G)
is of maximal class, and we are done since |Z(G)| = p.

Proposition 3.1. Let A be a maximal subgroup of a nonabelian two-
generator p-group G. Suppose that R = 〈xp | x ∈ G − A〉 ≤ Z(G) and A/R
is abelian. Then Ω1(G/R) = G/R and G/R is of maximal class, unless G is
minimal nonabelian.

Proof. Write Ḡ = G/R; then Ḡ is noncyclic since R ≤ Z(G). Since all
elements of the set Ḡ − Ā have the same order p, it follows that Ω1(Ḡ) ≥
〈Ḡ − Ā〉 = Ḡ so Ḡ′ = Φ(Ḡ), and hence Ḡ/Ḡ′ ∼= Ep2 since d(Ḡ) = d(G) = 2
in view of R ≤ ℧1(G) ≤ Φ(G). If Ḡ′ = {1̄}, then Z(G) = R = Φ(G) so G is
minimal nonabelian. If Ḡ′ > {1̄}, then Ḡ is nonabelian so it is of maximal
class, by the paragraph preceding the proposition.

Suppose that A is an abelian maximal subgroup of a nonabelian p-group
G; then Z(G) < A. Write Ḡ = G/Z(G). Then all elements of the set Ḡ − Ā
have the same order p so Ω1(Ḡ) = Ḡ and Ḡ′ = Φ(Ḡ). Indeed, if x ∈ G − A,
then CG(xp) ≥ 〈x, A〉 = G so xp ∈ Z(G), and all claims in the previous
sentence follow. If, in addition, d(G) = 2, then either G/R is of maximal
class or G is minimal nonabelian (here R is as in Proposition 3.6). Thus,

Corollary 3.2. Let G be a nonabelian two-generator p-group and A < G
abelian of index p. Then R = 〈xp | x ∈ G−A〉 ≤ Z(G), Ω1(G/R) = G/R and
either G/R is of maximal class or G is minimal nonabelian.
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Proposition 3.3. Let A be an abelian maximal subgroup of a nonabelian
p-group G and let x ∈ G − A be fixed. Then the following conditions are
equivalent:

(a) cl(G) = 2.
(b) For every a ∈ A − Z(G), the subgroup Ha = 〈x, a〉 is minimal non-

abelian.

Proof. (a) ⇒ (b): Since G = A〈x〉, we get CA(x) = Z(G). Therefore,
if a ∈ A − Z(G), then xa 6= ax so cl(Ha) = 2, where Ha = 〈a, x〉. Then
Ha/Z(Ha) is abelian and its exponent equals p (Corollary 3.2) since A ∩ Ha

is maximal abelian in Ha. Since d(Ha) = 2, we get Ha/Z(Ha) ∼= Ep2 so Ha is
minimal nonabelian, and (b) is proved.

(b) ⇒ (a): As in (a), CA(x) = Z(G), and Ha 6≤ A so |Ha : (Ha ∩ A)| = p
hence Ha ∩ A is a maximal abelian subgroup of Ha. Therefore, Z(Ha) =
Φ(Ha) < Ha ∩A since Ha is an A1-subgroup. Since CG(Z(Ha)) ≥ AHa = G,
we get Z(Ha) ≤ Z(G). Set R = 〈Z(Hb) | b ∈ A − Z(G)〉; then R ≤ Z(G) and
Ha ∩ R = Z(Ha) for all a ∈ A − Z(G). Write Ḡ = G/R. Assume that Ḡ is
not abelian. Then there is b̄ ∈ Ā − Z(Ḡ) such that K̄ = 〈x̄, b̄〉 is nonabelian.
In that case, Hb = 〈x, b〉 is an A1-group since b ∈ A − Z(G). However,
K̄ = H̄b

∼= Hb/(Hb∩R) ∼= Hb/Z(Hb) ∼= Ep2 , a contradiction. Thus, Ḡ = G/R
is abelian so cl(G) = 2 since R ≤ Z(G), and (a) is proved.

Remark 3.4. Let A be a normal abelian subgroup of a nonabelian p-
group G, A 6≤ Z(G) and x ∈ G − CG(A); then A〈x〉 is nonabelian. To prove
that there exists a ∈ A−CA(x) such that the subgroup Ha = 〈x, a〉 is minimal
nonabelian, we suppose that G is a counterexample of minimal order; then
G = A〈x〉. Write C = CG(x); then C = 〈x〉Z(G) is a maximal abelian
subgroup of G = CA. Let C < B ≤ G be such that |B : C| = p. Then B
is nonabelian, B = C(A ∩ B) and A ∩ B is an abelian normal subgroup of
B. It follows from G = CA = BA that B/(A ∩ B) ∼= G/A is cyclic, and so
A ∩ B 6≤ Z(B); therefore, G = B so |G : C| = p. Write Ḡ = G/Z(G); then
C̄ ∼= 〈x〉/(〈x〉 ∩ Z(G)) is cyclic of index p in Ḡ. Since G = CA, where C
and A are G-invariant abelian subgroups, we get cl(G) = 2 (Lemma J(l)) so
Ḡ is noncyclic abelian, and so it has a cyclic subgroup C̄1 of index p which
is 6= C̄. Then C and C1 are different abelian subgroups of G of index p so
C ∩ C1 = Z(G) and |G′| = 1

p
|G : Z(G)| = p (Lemma J(a)). If a ∈ A − CG(x),

then Ha = 〈x, a〉 is minimal nonabelian (Lemma J(e)) since H ′

a = G′ is
of order p. In particular (Janko), if A < G is a maximal abelian normal
subgroup, then for every x ∈ G − A there exists a ∈ A such that 〈x, a〉 is
minimal nonabelian [BJ2, Lemma 4.1].

It is trivial that a p-group G is not covered by p proper subgroups. I am
indebted to Moshe Roitman (University of Haifa) for the following, probably,
known
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Remark 3.5. Let P1, . . . , Pp+1 be pairwise distinct subgroups of a p-
group G of order pn. First assume that these subgroups are maximal. We
prove by induction on k, 1 < k ≤ p + 1, that

|

k⋃

i=1

Pi| ≤ pn−2 + k(pn−1 − pn−2),

and that we have equality just if |
⋂k

i=1 Pi| = pn−2. This is clear for k = 2.
Since the intersection of two distinct maximal subgroups of G has order pn−2,
we get, by induction on k, that

|

k⋃

i=1

Pi| = |

k−1⋃

i=1

Pi| + |Pk| − |(

k−1⋃

i=1

Pi) ∩ Pk|

≤ pn−2 + (k − 1)(pn−1 − pn−2) + pn−1 − pn−2

= pn−2 + k(pn−1 − pn−2).

Moreover, we have equality if and only if

|(

k−1⋃

i=1

Pi)| = pn−2 + (k − 1)(pn−1 − pn−2) and |(

k−1⋃

i=1

Pi) ∩ Pk| = pn−2;

this is equivalent to the condition |
⋂k

i=1 Pi| = pn−2. Now let k = p + 1 and
maximal subgroups P1, . . . , Pp+1 cover G. Then, since

|(

p+1⋃

i=1

Pi)| = pn = pn−2 + (p + 1)(pn−1 − pn−2),

we obtain that |
⋂p+1

i=1 Pi| = pn−2. In the general case, we have to show that all
the subgroups Pi are maximal in G if they cover G. Assume, for example, that
P1 is not maximal in G. For each i, let Qi be a maximal subgroup containing

Pi, and let H =
⋂p+1

i=1 Qi. There exists an element x ∈ Q1 − (P1 ∪ H). Since
H is equal to the intersection of any two distinct subgroups among the Qi’s
by what has been proved above, we see that x belongs to a unique subgroup

Qi, namely to Q1. Hence x 6∈
⋃p+1

i=1 Pi, a contradiction.

Let α1(G) denote the number of A1-subgroups in p-group G. Recall that
a nonabelian p-group G is generated by A1-subgroups (see [B7] and [B4]).

Remark 3.6. The result of Remark 3.4 allows us to produce in a p-group
G, which is neither abelian nor minimal nonabelian, a lot of A1-subgroups.
Indeed, let A < G be a maximal abelian normal subgroup; then CG(A) = A.
By Remark 3.4, the set-theoretic union U of all A1-subgroups of G contains
the set G − A so G = U ∪ A (this coincides with [BJ2, Lemma 4.1]). Thus,
G is the set-theoretic union of α1(G) + 1 proper subgroups, one of which is
A and other α1(G) are A1-subgroups, so, by Remark 3.5, α1(G) ≥ p. Thus,
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if α1(G) = p, then all A1-subgroups and A are maximal in G (Remark 3.5)
so G is an A2-group. Next we prove that if α1(G) = p + 1, then G is an
A2-group again. Let A be as above and M ≤ G be an A2-subgroup; then
d(M) ≤ 3. Assume that M < G. Then there is an A1-subgroup L < G such
that L 6≤ M so p+1 = α1(G) ≥ α1(M)+1. It follows that α1(M) = p, by the
above, and G = A∪M ∪L is the set-theoretic union of three proper subgroups
(Remark 3.4) which is impossible for p > 2 (Remark 3.5). Now we let p = 2.
By Remark 3.5, A, M and L are maximal in G and their intersection has
index 4 in G. Next, L ∩ A is maximal abelian in L so Z(L) = Φ(L) < L ∩ A,
and we get CG(Z(L)) ≥ AL = G. Thus, Z(L) ≤ Z(G), |G : Z(L)| = 8. We
have Z(L) = Φ(L) ≤ Φ(G) < M so |M : Z(L)| = 4. It follows that d(M) = 3
(otherwise, M is minimal nonabelian) so M has exactly 7 maximal subgroups.
Then, by Lemma J(b), α1(M) ≥ 7 − 3 = 4 > 3 = α1(G), a contradiction.
Thus, G = M so G is an A2-group.1

4. Problems

Below we formulate some related problems.
1. Classify the irregular p-groups, p < 5, all of whose nonabelian maximal

subgroups are either minimal nonabelian or of maximal class. (If p ≥ 5, then
our group has no minimal nonabelian subgroup of index p, by Lemma J(k,f,g),
so Theorem 2.1 solves the problem.)

2. Classify the p-groups all of whose nonabelian maximal subgroups are
either minimal nonabelian or metacyclic.

3. Let M < G be maximal and Z(G) < M . Study the structure of M
if, whenever x ∈ G − M and a ∈ M , then either xa = ax or 〈x, a〉 is (i) an
A1-group, (ii) a group of maximal class, (iii) a metacyclic group, (iv) a group
of class 2 (four different problems).

4. Classify the p-groups all of whose maximal subgroups are of the form
M × E, where M is metacyclic and E is abelian.

5. Classify the p-groups G such that |M ′| ≤ p for all maximal subgroups
of G.

6. Classify the 2-groups all of whose two-generator subgroups are meta-
cyclic.

7. Study the p-groups all of whose A1-subgroups are metacyclic.
8. Classify the p-groups allowing irredundant covering by p+2 subgroups.
9. (i) Classify the p-groups all of whose maximal subgroups (nonabelian

maximal subgroups) are special. (ii) Does there exist a special p-group all of
whose maximal subgroups are special? If it exists, classify such groups.

1The remark yields a new proof of [B4, Lemma 6]. Moreover, it is proved in [B4,
Theorem 9] that, if α1(G) < p2, then G is also an A2-group.
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10. Study the p-groups all of whose nonabelian maximal subgroups have
cyclic centers.

11. Classify the p-groups all of whose nonabelian maximal subgroups, but
one, are minimal nonabelian.
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