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ABSTRACT. In this paper we show that a finite p-group which possesses
non-normal subgroups and such that any two non-normal subgroups of the

. . . n—1
same order are conjugate must be isomorphic to Mpn = (a,b|aP =

W =1,n>3,al = a1+p"72), where in case p = 2 we must have n > 4.
This solves Problem Nr. 1261 stated by Y. Berkovich in [1]. In a similar way
we solve Problem Nr. 1582 from [1] by showing that Mp» is the only finite
p-group with exactly one conjugate class of non-normal cyclic subgroups.

Then we determine up to isomorphism all finite p-groups which possess
non-normal subgroups and such that the normal closure HS of each non-
normal subgroup H of G is the largest possible, i.e., |G : HE| = p. It turns
out that G is either the nonabelian group of order p3, p > 2, and exponent
por G is metacyclic. This solves the Problem Nr. 1164 stated by Berkovich
[1].

We classify also finite 2-groups with exactly two conjugate classes of
four-subgroups. As a result, we get three classes of such 2-groups. This
solves Problem Nr. 1260 stated by Y.Berkovich in [1].

1. INTRODUCTION AND KNOWN RESULTS

We consider here only finite p-groups and our notation is standard. Con-
jugate subgroups have the same order and so it is of interest to consider the
converse of this fact. This is done in Theorems 2.1 and 2.2.

If H is a non-normal subgroup of a p-group G, then the normal closure
H% of H in G is always a proper subgroup of G. Therefore, the largest
possibility for H¢ is that HY is a maximal subgroup of G. We determine
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in Theorem 2.3 all such p-groups G with |G : H%| = p for each non-normal
subgroup H of G .

If a 2-group G has only one conjugate class of four-subgroups, then G is
either semidihedral or G has exactly three involutions and such groups are
classified in [6]. Here we consider the next case, where a 2-group has exactly
two conjugate classes of four-subgroups and prove Theorem 2.4.

In the proof of our theorems we shall use the following known results.

PROPOSITION 1.1 (O. Taussky, see [3, Lemma 1.1(s)]). If G is a non-
abelian 2-group with |G : G'| = 4, then G is of mazximal class and so G is
dihedral, semidihedral or generalized quaternion.

PRrROPOSITION 1.2 (N.Blackburn, see [2, Theorem 2]). The following con-
ditions for a nonabelian p-group G are equivalent:

(a) G is metacyclic.
(b) The quotient group G/R is metacyclic for some G-invariant subgroup
R of index p in G'.

PROPOSITION 1.3 (L.Redei, see [3, Lemma 3.1]). Let G be a minimal non-
abelian p-group. Then G = {(a,b), |G'| = p, ®(G) = Z(G) and one of the
following holds:

(a) a?" =" =P =1, [a,b] = ¢, [a,¢] = [b,c] =1, m > n > 1, where
|G| = p™™ ! and in case p = 2 we have m > 1. In this case G is
non-metacyclic, |21 (G)| = p* and G’ is a mazimal cyclic subgroup of
G.

(b) a?" =b" =1, ab =" m > 2, n > 1, where |G| = p™ " and
G is metacyclic.

(¢) G = Qs is quaternion.

ProposITION 1.4 (B. Huppert [9, Satz 7.12]). Let G be a p-group all of
whose subgroups are normal in G. Then G is either abelian or p = 2 and G
is Hamiltonian, i.e., G = Q x V with Q@ = Qg and V is elementary abelian.

PROPOSITION 1.5. Let G be a p-group with |G'| = p. If H is a minimal
nonabelian subgroup of G, then G = HCq(H).

PROOF. Set H = (x1,22) and C; = Cg(x;), i = 1,2, so that |G : C;| = p.
Considering C = C1NCy, we have C = Cg(H), HNC = Z(H) and |G : C| <
p?. Therefore, |[HC| = (|H||C|) : [HNC| = p*|C| > |G| which gives G = HC.

O

PROPOSITION 1.6 ([8, Corollary 2.4]). Let G be a nonabelian 2-group all
of whose minimal nonabelian subgroups are isomorphic to Qs. Then G =
Q x V, where Q = Qan is a generalized quaternion group of order 2™, n > 3,
and V is elementary abelian.
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LEMMA 1.7. Let G be a minimal nonabelian p-group which possesses non-
normal subgroups (i.e., G is distinct from Qg) and such that any two non-
normal subgroups of the same order are conjugate in G. Then G is isomorphic
to Mpn.

Proor. (Y.Berkovich) Note that every non-normal subgroup of G has
exactly p conjugates. Therefore, G cannot contain > p non-normal subgroups
of the same order. If |G| = p3, then G = Mys, p > 2, and so we may assume
that |G| > p?.

Suppose that Q1 (G) = Eps. If Q1(G) £ Z(G), then Q4 (G) has exactly p?
noncentral subgroups of order p, a contradiction. Suppose that Q1 (G) < Z(G)
so that G is a group given in Proposition 1.3(a) with n > 1. The subgroup
H = (a,Q1(G)) is abelian of type (p™, p, p) and no cyclic subgroup Y of order
p™, (m > 2) in H is normal in G (otherwise, the fact that Y is not central in
G would imply that G’ = (¢) <Y, contrary to the fact that G’ is a maximal
cyclic subgroup of G). There are exactly p? cyclic subgroups of order p™ in
H, a contradiction.

Thus, Q1(G) = E,2 so that G is a group given in Proposition 1.3(b). If
n =1, then G = Mps. Next we assume that n > 2. If n > m, then (b) and
(ba) are of order p" and they are not (a)-invariant. Since (b)“ = (b) x G’ and
(ba) £ (by x G" , (b) and (ba) are not conjugate in G, a contradiction. Thus,
n < m. Let y € (a) be of order o(b) = p™. Then (b) and (by) are of order p,
they are not {(a)-invariant and they are not G-conjugate, a contradiction.

O

LEMMA 1.8. Let G be a minimal nonabelian p-group which possesses non-
normal cyclic subgroups and such that any two non-normal cyclic subgroups
are conjugate in G. Then G is isomorphic to Mpn.

PRrROOF. Note that the conjugate class of non-normal cyclic subgroups is
of size p. If |G| = p3, then G = M3, p > 2, and so we may assume that
|G| > p.

Suppose that Q1 (G) = Eps. If Q4(G) £ Z(G), then Q4 (G) has exactly p?
noncentral subgroups of order p, a contradiction. Suppose that Q1 (G) < Z(G)
so that G is a group given in Proposition 1.3(a) with n > 1. The subgroup
H = (a,1(Q)) is abelian of type (p"™, p, p) and no cyclic subgroup Y of order
p™, (m > 2) in H is normal in G (otherwise, the fact that Y is not central in
G would imply that G’ = (¢) <Y, contrary to the fact that G’ is a maximal
cyclic subgroup of G). There are exactly p? cyclic subgroups of order p™ in
H, a contradiction.

Thus, Q:1(G) = E,» so that G is a group given in Proposition 1.3(b). If
n =1, then G = Mp:. Next we assume that n > 2. If n > m, then (b) and
(ba) are of order p™ and they are not (a)-invariant. Since (b)¢ = (b) x G’ and
(ba) £ (by x G" , (b) and (ba) are not conjugate in G, a contradiction. Thus,
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n < m. Let y € (a) be of order o(b) = p™. Then (b) and (by) are of order p,
they are not (a)-invariant and they are not G-conjugate, a contradiction.
O

ProPOSITION 1.9 (Janko [7]). Let G be a finite p-group which possesses
non-normal subgroups and we assume that each non-normal subgroup of G is
contained in exactly one maximal subgroup. Then one of the following holds:

(a) G is minimal nonabelian;
(b) G is a 2-group of maximal class;
(¢) G = {a, b> is a non-metacyclic 2-group, where a®> =1, n >3, o(b) =
2 or 4, a® = ak, k:2 =a"%, [k,al =1, k* = k! and we have either:
(c1) v* € <a2n ,a?k) = Ey, in which case |G| = 2"*2, ®(G) =

(a2) x (a2k) = Con—1 x Cy, Z(G) = (a2 ") x (a2k) = Ey, or
(c2) b2 & (a2"",a%k) = E, in which case o(b) = 4, |G| = 273,
(@) = (a > < 2k} x (b2) 2 Cagn-1 x Cy x Ca, Z(G) = (a2" ') x
(a%k) x (b%) =
(d) G = {a,b) is a splzttmg metacyclic 2-group, where a®" = b* = 1
n>3,a"=a"'2 e=0,1,z=a . Here |G| = 22, &(G) =
(a%) x (b%) = Con-1 x Cy, Z(G) = (z) x (b?) = Ey, G' = (a?) = Cyn-a.

Since a centralizes ®(G) and b inverts each element of ®(Q), it follows
that each subgroup of ®(G) is normal in G.

PROPOSITION 1.10 ([2, Lemma 3.1]). Let G be a minimal nonabelian p-
group. Then d(G) =2, |G'| = p, and Z(G) = ®(G). If |G| > p?, then G is
non-metacyclic if and only if Q1(G) = E,s is elementary abelian of order p>.

PROPOSITION 1.11 ([4, Theorem 1.1)). Let G be a nonabelian 2-group
containing an involution t such that Cq(t) = (t) x C, where C = Com, m > 2.
Assume in addition that G has no elementary abelian subgroup of order 8 and
t & ®(G). Then either G = Mys, s > 4, (a 2-group of order 2° and class
2 which has a cyclic subgroup of index 2) or G has a subgroup S of index
<2, 8 = AL, where A = Com, m > 2, L = (b,t|b?" =2 = 1, b =
b=t n > 3) = Dan is normal in G, ANL = Z(L), [A,t] =1, Ca(t) = (t) x A,
D1(GQ) = Q1(S) = Q2(A) « L (a central product). If |G : S| = 2, then there is
an element x € G — S such that t* = tb.

PROPOSITION 1.12 ([5, Theorem 3.1]). Let G be a 2-group containing an
involution t such that Cq(t) = (t) x Q, where Q is a generalized quaternion
group of order 2™, m > 3. We assume in addition that G possesses a normal
four-subgroup U such thatt & U. Then G has a normal subgroup S containing
UCq(t) such that |G/S| < 4. If G acts transitively on the set of involutions
in S —U, then |G/S| =4 and S = Qam * Dam with Qam N Dam = Z(Dam).
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2. NEW RESULTS

THEOREM 2.1. Let G be a finite p-group which possesses mon-normal
subgroups and such that any two non-normal subgroups of the same order are
conjugate in G. Then G is isomorphic to Mpyn.

PROOF. Let G be a p-group of the smallest possible order which possesses
non-normal subgroups and such that any two non-normal subgroups of the
same order are conjugate in G but G is not isomorphic to any group Mpn.
Let R be a subgroup of order p in G’ N Z(G). Then either G/R = My or
G/R is Dedekindian in which case G/R is either abelian or p = 2 and G/R is
Hamiltonian (Proposition 1.4).

(i) Suppose that G/R = M,». Let H/R be a cyclic subgroup of index
p in G/R so that R < G’ < H and G'/R = C,,. Since G/R is metacyclic,
Proposition 1.2 gives that G is also metacyclic. In that case G’ = C) is cyclic
of order p? which implies that H is cyclic. Hence G has a cyclic subgroup of
index p, but such groups cannot have a factor-group isomorphic to Mpn.

(ii) Suppose that G/R is abelian so that G’ = R is of order p. If G is
minimal nonabelian, then Lemma 1.7 implies that G = M, a contradiction.
If each minimal nonabelian subgroup of GG is quaternion, then Proposition 1.6
implies that G is Hamiltonian, a contradiction. It follows that G possesses a
minimal nonabelian subgroup H # G such that H % @Qs. By Proposition 1.5,
G = HCg(H) and so H satisfies the assumptions of Lemma 1.7 which gives
that

n—1 n—2
H={(a,bla? =W=1,n>3a"=ar,r=0a" )= My,

where in case p = 2, we have n > 4. Set a? = s so that H' = (r) < (s) =
Z(H) = ®(H) < Z(G). Let Y be a subgroup of C¢(H) which contains
(s) as a subgroup of index p so that Y is abelian. Note that p non-central
subgroups (br?), i = 0,1,...,p — 1 of order p in H form a complete conjugate
class in G. It follows that each element of order p in G — H must be central
in G. Suppose that there is an element y € Y — (s) of order p. Then y is
central in G. Since o(by) = p and by ¢ H, by must be central in G. But
then b would be also central in G, a contradiction. We have proved that Y is
cyclic. Choose an element [ € Y — (s) such that [P = s~1. But then al ¢ H,
(al)P = aPI? = ss~1 =1 and so al must be central in G. On the other hand,
(al)® = (ar)l = (al)r and so al ¢ Z(G), a contradiction.

(iii) We have proved that p = 2 and G/R must be Hamiltonian for any
subgroup R of order 2 which is contained in G'NZ(G). It follows (Proposition
1.4) that G = QF with normal subgroups @ and F, where QNF = R, Q/R =
Qs, R< G =9(G) < Q, |G'| =4, Q covers G'/R and F/R is elementary
abelian. If Q' = G’, then Proposition 1.1 implies that @ is of maximal class
and therefore QQ/R = Dg, a contradiction. Thus, G' = Q' x R = E4 and
G' < Z(G) and G/X is Hamiltonian for each subgroup X of order 2 in
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G’ = ®(G). Suppose that G possesses a minimal nonabelian subgroup M
which is not isomorphic to Qg. By the previous sentence, M > G’ and since
G' < Z(M) = ®(M), we have ®(M) = ®(G) = G’ and |M| = 16. Let X,
be a subgroup of order 2 in G’ with X¢ # M’. Then M/X, & Qs (noting
that G/ X, is Hamiltonian) and so (M) = G' = E4 and exp(M) = 4. By
Proposition 1.3, M = (a,b|a* = b* = 1, a® = a™1) with Z(M) = ®(M) =
(a%,b%) = G'. But then M/(b*) = Dg, contrary to the fact that G/(b?) is
Hamiltonian. We have proved that each minimal nonabelian subgroup of G is
quaternion. But then, by Proposition 1.6, G’ is cyclic, a contradiction. Our
theorem is proved. O

By using Lemma 1.8, we prove in exactly the same way (with minor
changes):

THEOREM 2.2. Let G be a finite p-group which possesses mon-normal
cyclic subgroups and such that any two non-normal cyclic subgroups are con-
Jugate in G. Then G is isomorphic to Mpn.

PROOF. Let G be a p-group of the smallest possible order which possesses
exactly one conjugate class of cyclic non-normal subgroups but G is not iso-
morphic to any group M,~. Let R be a subgroup of order p in G' N Z(G).
Note that our hypothesis is inherited by factor-groups. Indeed, let F//R and
H/R be two non-normal cyclic subgroups in G/R. Let F; and H; be cyclic
subgroups in F' and H which cover F/R and H/R, respectively. Since Fy
and H; are non-normal, they are conjugate in G and so F//R and H/R are
conjugate in G/R. Then either G/R = My~ or G/R is Dedekindian in which
case G/R is either abelian or p = 2 and G/R is Hamiltonian (Proposition
1.4).

(i) Suppose that G/R = M,~». Let H/R be a cyclic subgroup of index
pin G/R so that R < G’ < H and G'/R = C),. Since G/R is metacyclic,
Proposition 1.2 gives that G is also metacyclic. In that case G’ = C)2 is cyclic
of order p? which implies that H is cyclic. Hence G has a cyclic subgroup of
index p, but such groups cannot have a factor-group isomorphic to Mpn.

(ii) Suppose that G/R is abelian so that G’ = R is of order p. If G is
minimal nonabelian, then Lemma 1.8 implies that G = Mp», a contradiction.
If each minimal nonabelian subgroup of G is quaternion, then Proposition 1.6
implies that G is Hamiltonian, a contradiction. It follows that G possesses a
minimal nonabelian subgroup H # G such that H 2 @Qs. By Proposition 1.5,
G = HCg(H) and so H satisfies the assumptions of Lemma 1.8 which gives
that

n—1 n—2
H={(a,bla? =W =1,n>3a" =ar,r=a? ) = Mpn,

where in case p = 2, we have n > 4. Set a? = s so that H = (r) < (s) =
Z(H) = ®(H) < Z(G). Let Y be a subgroup of Cg(H) which contains
(s) as a subgroup of index p so that Y is abelian. Note that p non-central
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subgroups (br?), i = 0,1,...,p — 1 of order p in H form a complete conjugate
class in G. It follows that each element of order p in G — H must be central
in G. Suppose that there is an element y € Y — (s) of order p. Then y is
central in G. Since o(by) = p and by ¢ H, by must be central in G. But
then b would be also central in G, a contradiction. We have proved that Y is
cyclic. Choose an element [ € Y — (s) such that [P = s~1. But then al ¢ H,
(al)P = aPl? = ss~1 =1 and so al must be central in G. On the other hand,
(al)® = (ar)l = (al)r and so al ¢ Z(G), a contradiction.

(iii) We have proved that p = 2 and G/R must be Hamiltonian for any
subgroup R of order 2 which is contained in G'NZ(G). It follows (Proposition
1.4) that G = QF with normal subgroups @ and F', where QNF = R, Q/R =
Qs, R< G =9(G) < Q, |G'| =4, Q covers G'/R and F/R is elementary
abelian. If @' = G’, then Proposition 1.1 implies that @ is of maximal class
and therefore QQ/R = Dg, a contradiction. Thus, G’ = Q' x R = E4 and
G' < Z(G) and G/X is Hamiltonian for each subgroup X of order 2 in
G’ = ®(G). Suppose that G possesses a minimal nonabelian subgroup M
which is not isomorphic to Qg. By the previous sentence, M > G’ and since
G' < Z(M) = (M), we have ®(M) = ®(G) = G’ and |M| = 16. Let X,
be a subgroup of order 2 in G’ with Xo # M’. Then M/X, & Qs (noting
that G/Xo is Hamiltonian) and so Q;(M) = G' = E4 and exp(M) = 4. By
Proposition 1.3, M = (a,b|a* = b* = 1, a® = a™1) with Z(M) = ®(M) =
(a?,b?) = G'. But then M/(b*) = Dg, contrary to the fact that G/(b?) is
Hamiltonian. We have proved that each minimal nonabelian subgroup of G is
quaternion. But then, by Proposition 1.6, G’ is cyclic, a contradiction. Our
theorem is proved. O

THEOREM 2.3. Let G be a finite p-group which possesses mon-normal
subgroups and such that |G : HE| = p for each non-normal subgroup H of G.
Then G is either the nonabelian group of order p®, p > 2, and exponent p or
G is one of the following metacyclic p-groups:

(i) G = <a,b|a]”2 =" =1,n=1,2, a® = a'*P), where G is minimal
nonabelian of order p™+2.
(il) G is a 2-group of mazimal class distinct from the quaternion group Qs.
(iiil) G = (a,b|a®" =b*=1,n>3,a® =a"'25€e=0,1, 2 = a2"71>, where
G is a splitting metacyclic group of order 22, n > 3, ®(G) = (a?) x
(b)) =2 COgn-1 x Ca, Z(G) = () x (b?) =2 Ey and G’ = {(a?) =2 Cyn-1.

Conversely, all the above groups satisfy the assumptions of our theorem.

PRrROOF. Let H be a non-normal subgroup of a p-group G satisfying the
assumptions of Theorem 2.3. Then H is contained in exactly one maximal
subgroup of G. It follows that GG satisfies the assumptions of Proposition 1.9
and so G must be isomorphic to some of the groups stated in that proposition.
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(a) Let G be a minimal nonabelian group distinct from Qg (since Qg has
no non-normal subgroups). We use Proposition 1.10 and see that Z(G) =
®(G) with |G : ®(G)| = p? and |G'| = p. Let s be an element of order p
in G — ®(G). Then (s) is not normal in G and (s)¢ = (s,G’) = E,» which
implies that G is nonabelian of order p3.

In what follows we assume that there are no elements of order p in G —
®(G). Let b € G — ®(G) be such that (b) is not normal in G which implies
that G’ £ (b). Since ()¢ = (b, ("), it follows that ®(G) = (b?) x G, |G| > p?,
and Q1 (G) = Q1(®(G)) = E,2. By Proposition 1.10, G is metacyclic and so
there is a € G — (b, ®(G)) such that (a?) = G’ and we may set a® = a'*? and
o(b) = p", n > 2. Assume that n > 2 and let z be an element of order p?
in (b) so that H = (az) is not normal in G since (az)® = (az)a? ¢ H. But
HY = H x G" and |G : HY| > p?, a contradiction. We have obtained the
groups stated in part (i) of our theorem.

(b) Suppose that G is a 2-group of maximal class distinct from Qs. Let
(a) be the unique cyclic subgroup of index 2 in G and set o(a) = 2™, n > 2,
so that |G| = 2"*!. Let X be a proper normal subgroup of G with X £ (a).
Set z = a?" ' so that X > () = Z(G) and let y be an element in X — (a).
We have y? € (z) and Cg(y) = (y, 2). It follows that all 2"~! conjugates of y
in G are contained in X — (a) and so | X| > 2"~! which implies that | X| = 2"
and so X is a maximal subgroup of G. We see that each 2-group of maximal
class distinct from Qg satisfies the assumptions of our theorem.

(c) Suppose that G is a non-metacyclic 2-group which is isomorphic to
one of the groups in part (c) of Proposition 1.9. We have a® = ak and so
the abelian subgroup (a, k) of order 2"*! (containing (k) = G’ ) is normal
in G which implies that (a)® = (a,k). Since in case (c2) of Proposition 1.9
we have |G : {(a,k)| = 4, it follows that we must be in case (cl) of that
proposition, where b2 € (agﬂfl ,a?k) = E4. From a® = ak follows b* = kb and
so (b))% = (b, k), where k* = k=1. By our assumption, |G : (b)¢| = 2 and
s0 b2 ¢ (a) which forces that either b* = a2k or b% = a2k - a®" . We have
(ab)® = (ab)k™' and so (ab)® = (ab, k), where k** = k~! and

(ab)? = abab = ab’a® = ab*ak = b*(a’k).
By our assumption, |G : (ab, k)| = 2 and so we must have (ab)? & (k). If b* =
a2k, then (ab)? = 1, a contradiction. If b2 = (a2k)a2" ', then (ab)? = a2"
which gives (ab)? € (k) since k2 = a=* and a2" ' € (a4). Hence G cannot
be isomorphic to any group in part (c) of Proposition 1.9.
(d) Suppose that G is a metacyclic 2-group given in part (d) of Proposi-

tion 1.9. Then we see easily that these groups satisfy the assumptions of our
theorem which gives the groups stated in part (iii) of our theorem. 0

THEOREM 2.4. Let G be a finite 2-group which possesses exactly two con-
jugate classes of four-subgroups. Then G must be one of the following groups:
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(i) G = Dan, a dihedral group of order 2™, n > 3.

(ii) G has a subgroup S of index 2, S = AL, where A = Com, m > 2, is
cyclic of order 2™, L = (b,t|b?" =12 =1,b' =b~! n > 3) = Dyn
is dihedral of order 2™, L is normal in G, ANL = Z(L), [A,t] = 1,
Ca(t) = (t) x A, Q91 (G) = Q1(5) = Q2(A) *x L (a central product), and
there is an element x € G — S such that t* = tb.

(iil) G has a normal subgroup S of index 4, where S = Qom * Dam, m > 3,
is a central product of a generalized quaternion group of order 2™ with
a dihedral group of order 2™ | Qam N Dam = Z(Dam), Q1(G) = S and
if t is a non-central involution in Dam, then Cg(t) = (t) X Qam.

PROOF. Let G be a 2-group which possesses exactly two conjugate classes
of four-subgroups. If G has no normal four-subgroup, then G is either cyclic
or a 2-group of maximal class distinct from Dg. It follows that G & Dan,
n > 4. In what follows we assume that G has a normal four-subgroup U and
also we may assume that GG is not isomorphic to Ds.

Suppose that U < Z(G) and set U = (u1,u2). Let ¢ be an involution in
G—U so that V = (t,uq) is a four-subgroup which is not conjugate to U. Also,
the four-subgroup W = (¢, u2) is not conjugate to U. We have VNU = (uy)
and W NU = (ug). Since V must be conjugate in G to W, it follows that u;
and ug must be conjugate in GG, a contradiction.

We have proved that U £ Z(G) and we set M = Cg(U) so that
|G : M| =2. We set also U = (u, z), where (z) = UN Z(G). It is easy to
see that Q1 (M) = U so that G has no elementary abelian subgroups of order
8. Indeed, let ¢’ be an involution in M — U and consider the four-subgroups
(t',u) and (t’,z). Since they must be conjugate in G, it follows that also u
and z must be conjugate in G, a contradiction.

Let ¢ be a fixed involution in G — M. Then Cq(t) = (t) x Car(t), where
D1 (Cr(t)) = (z) so that Cps(t) is either cyclic of order > 4 or generalized
quaternion. Indeed, if Cps(t) = (), then, by a well known result of M. Suzuki,
G would be of maximal class, which was excluded. Since t* = tz and G has
exactly one conjugate class of four-subgroups distinct from U, it follows that
there is exactly one conjugate class of involutions in G— M. Hence, also G—-U
contains exactly one conjugate class of involutions.

Assume that C = Cg(t) is cyclic of order > 4. We are in a position to
use Proposition 1.11. If G & M., s > 4, then Q;(G) = E4, a contradiction.
Hence we must have the second possibility of that proposition. Here |G : S| =
2 since all involutions in L — (b) must lie in a single conjugate class in G. We
have obtained the groups stated in part (ii) of our theorem.

Assume that @ = Cg(t) = Qam, m > 3, is a generalized quaternion group
of order 2. Since t € U, we are in a position to use Proposition 1.12. Note
that G must fuse all involutions in G — U which gives us the groups stated in
part (iii) of our theorem. O



120

Z. JANKO

ACKNOWLEDGEMENTS.
The author thanks Prof. Y. Berkovich for correcting an error in my proof

of Theorem 2.3, part (i).

(1]

(9]

REFERENCES

Y. Berkovich, Groups of prime power order, I and II (with Z. Janko), Walter de
Gruyter, Berlin, 2008, to appear.

Y. Berkovich, Short proofs of some basic characterization theorems of finite p-group
theory, Glas. Mat. Ser. III 41(61) (2006), 239-258.

Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Con-
temporary Math. 402 (2006), 13-93.

Z. Janko, Finite 2-groups with small centralizer of an involution, J. of Algebra 241
(2001), 818-826.

Z. Janko, Finite 2-groups with small centralizer of an involution 2, J. of Algebra 245
(2001), 413-429.

Z. Janko, A classification of finite 2-groups with exactly three involutions, J. of Alge-
bra 291 (2005), 505-533.

Z. Janko, Finite p-groups with a uniqueness condition for non-normal subgroups,
Glas. Mat. Ser. III 40 (2007), 235-240.

Z. Janko, On finite nonabelian 2-groups all of whose minimal nonabelian subgroups
are of exponent 4, J. Algebra 315 (2007), 801-808.

B. Huppert, Endliche Gruppen 1, Springer, Berlin, (1967).

Z. Janko

Mathematical Institute

University of Heidelberg

69120 Heidelberg

Germany

E-mail: janko@mathi.uni-heidelberg.de

Received: 19.9.2007.
Revised: 4.10.2007.



