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Abstract. In this paper we show that a finite p-group which possesses
non-normal subgroups and such that any two non-normal subgroups of the

same order are conjugate must be isomorphic to Mpn = 〈a, b | apn−1

=

bp = 1, n ≥ 3, ab = a1+pn−2

〉, where in case p = 2 we must have n ≥ 4.
This solves Problem Nr. 1261 stated by Y. Berkovich in [1]. In a similar way
we solve Problem Nr. 1582 from [1] by showing that Mpn is the only finite
p-group with exactly one conjugate class of non-normal cyclic subgroups.

Then we determine up to isomorphism all finite p-groups which possess
non-normal subgroups and such that the normal closure HG of each non-
normal subgroup H of G is the largest possible, i.e., |G : HG| = p. It turns
out that G is either the nonabelian group of order p3, p > 2, and exponent
p or G is metacyclic. This solves the Problem Nr. 1164 stated by Berkovich
[1].

We classify also finite 2-groups with exactly two conjugate classes of
four-subgroups. As a result, we get three classes of such 2-groups. This
solves Problem Nr. 1260 stated by Y.Berkovich in [1].

1. Introduction and known results

We consider here only finite p-groups and our notation is standard. Con-
jugate subgroups have the same order and so it is of interest to consider the
converse of this fact. This is done in Theorems 2.1 and 2.2.

If H is a non-normal subgroup of a p-group G, then the normal closure
HG of H in G is always a proper subgroup of G. Therefore, the largest
possibility for HG is that HG is a maximal subgroup of G. We determine
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in Theorem 2.3 all such p-groups G with |G : HG| = p for each non-normal
subgroup H of G .

If a 2-group G has only one conjugate class of four-subgroups, then G is
either semidihedral or G has exactly three involutions and such groups are
classified in [6]. Here we consider the next case, where a 2-group has exactly
two conjugate classes of four-subgroups and prove Theorem 2.4.

In the proof of our theorems we shall use the following known results.

Proposition 1.1 (O. Taussky, see [3, Lemma 1.1(s)]). If G is a non-
abelian 2-group with |G : G′| = 4, then G is of maximal class and so G is
dihedral, semidihedral or generalized quaternion.

Proposition 1.2 (N.Blackburn, see [2, Theorem 2]). The following con-
ditions for a nonabelian p-group G are equivalent:

(a) G is metacyclic.
(b) The quotient group G/R is metacyclic for some G-invariant subgroup

R of index p in G′.

Proposition 1.3 (L.Redei, see [3, Lemma 3.1]). Let G be a minimal non-
abelian p-group. Then G = 〈a, b〉, |G′| = p, Φ(G) = Z(G) and one of the
following holds:

(a) apm

= bpn

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1, m ≥ n ≥ 1, where
|G| = pm+n+1 and in case p = 2 we have m > 1. In this case G is
non-metacyclic, |Ω1(G)| = p3 and G′ is a maximal cyclic subgroup of
G.

(b) apm

= bpn

= 1, ab = a1+pm−1

, m ≥ 2, n ≥ 1, where |G| = pm+n and
G is metacyclic.

(c) G ∼= Q8 is quaternion.

Proposition 1.4 (B. Huppert [9, Satz 7.12]). Let G be a p-group all of
whose subgroups are normal in G. Then G is either abelian or p = 2 and G
is Hamiltonian, i.e., G = Q × V with Q ∼= Q8 and V is elementary abelian.

Proposition 1.5. Let G be a p-group with |G′| = p. If H is a minimal
nonabelian subgroup of G, then G = HCG(H).

Proof. Set H = 〈x1, x2〉 and Ci = CG(xi), i = 1, 2, so that |G : Ci| = p.
Considering C = C1 ∩C2, we have C = CG(H), H ∩C = Z(H) and |G : C| ≤
p2. Therefore, |HC| = (|H ||C|) : |H ∩C| = p2|C| ≥ |G| which gives G = HC.

Proposition 1.6 ([8, Corollary 2.4]). Let G be a nonabelian 2-group all
of whose minimal nonabelian subgroups are isomorphic to Q8. Then G =
Q × V , where Q ∼= Q2n is a generalized quaternion group of order 2n, n ≥ 3,
and V is elementary abelian.
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Lemma 1.7. Let G be a minimal nonabelian p-group which possesses non-
normal subgroups (i.e., G is distinct from Q8) and such that any two non-
normal subgroups of the same order are conjugate in G. Then G is isomorphic
to Mpn.

Proof. (Y.Berkovich) Note that every non-normal subgroup of G has
exactly p conjugates. Therefore, G cannot contain > p non-normal subgroups
of the same order. If |G| = p3, then G ∼= Mp3 , p > 2, and so we may assume
that |G| > p3.

Suppose that Ω1(G) ∼= Ep3 . If Ω1(G) 6≤ Z(G), then Ω1(G) has exactly p2

noncentral subgroups of order p, a contradiction. Suppose that Ω1(G) ≤ Z(G)
so that G is a group given in Proposition 1.3(a) with n > 1. The subgroup
H = 〈a, Ω1(G)〉 is abelian of type (pm, p, p) and no cyclic subgroup Y of order
pm, (m ≥ 2) in H is normal in G (otherwise, the fact that Y is not central in
G would imply that G′ = 〈c〉 < Y , contrary to the fact that G′ is a maximal
cyclic subgroup of G). There are exactly p2 cyclic subgroups of order pm in
H , a contradiction.

Thus, Ω1(G) ∼= Ep2 so that G is a group given in Proposition 1.3(b). If
n = 1, then G ∼= Mps . Next we assume that n ≥ 2. If n ≥ m, then 〈b〉 and
〈ba〉 are of order pn and they are not 〈a〉-invariant. Since 〈b〉G = 〈b〉×G′ and
〈ba〉 6≤ 〈b〉 × G′ , 〈b〉 and 〈ba〉 are not conjugate in G, a contradiction. Thus,
n < m. Let y ∈ 〈a〉 be of order o(b) = pn. Then 〈b〉 and 〈by〉 are of order pn,
they are not 〈a〉-invariant and they are not G-conjugate, a contradiction.

Lemma 1.8. Let G be a minimal nonabelian p-group which possesses non-
normal cyclic subgroups and such that any two non-normal cyclic subgroups
are conjugate in G. Then G is isomorphic to Mpn.

Proof. Note that the conjugate class of non-normal cyclic subgroups is
of size p. If |G| = p3, then G ∼= Mp3 , p > 2, and so we may assume that
|G| > p3.

Suppose that Ω1(G) ∼= Ep3 . If Ω1(G) 6≤ Z(G), then Ω1(G) has exactly p2

noncentral subgroups of order p, a contradiction. Suppose that Ω1(G) ≤ Z(G)
so that G is a group given in Proposition 1.3(a) with n > 1. The subgroup
H = 〈a, Ω1(G)〉 is abelian of type (pm, p, p) and no cyclic subgroup Y of order
pm, (m ≥ 2) in H is normal in G (otherwise, the fact that Y is not central in
G would imply that G′ = 〈c〉 < Y , contrary to the fact that G′ is a maximal
cyclic subgroup of G). There are exactly p2 cyclic subgroups of order pm in
H , a contradiction.

Thus, Ω1(G) ∼= Ep2 so that G is a group given in Proposition 1.3(b). If
n = 1, then G ∼= Mps . Next we assume that n ≥ 2. If n ≥ m, then 〈b〉 and
〈ba〉 are of order pn and they are not 〈a〉-invariant. Since 〈b〉G = 〈b〉×G′ and
〈ba〉 6≤ 〈b〉 × G′ , 〈b〉 and 〈ba〉 are not conjugate in G, a contradiction. Thus,
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n < m. Let y ∈ 〈a〉 be of order o(b) = pn. Then 〈b〉 and 〈by〉 are of order pn,
they are not 〈a〉-invariant and they are not G-conjugate, a contradiction.

Proposition 1.9 (Janko [7]). Let G be a finite p-group which possesses
non-normal subgroups and we assume that each non-normal subgroup of G is
contained in exactly one maximal subgroup. Then one of the following holds:

(a) G is minimal nonabelian;
(b) G is a 2-group of maximal class;
(c) G = 〈a, b〉 is a non-metacyclic 2-group, where a2

n

= 1, n ≥ 3, o(b) =
2 or 4, ab = ak, k2 = a−4, [k, a] = 1, kb = k−1 and we have either:

(c1) b2 ∈ 〈a2
n−1

, a2k〉 ∼= E4, in which case |G| = 2n+2, Φ(G) =

〈a2〉 × 〈a2k〉 ∼= C2n−1 × C2, Z(G) = 〈a2
n−1

〉 × 〈a2k〉 ∼= E4, or

(c2) b2 6∈ 〈a2
n−1

, a2k〉 ∼= E4, in which case o(b) = 4, |G| = 2n+3,

Φ(G) = 〈a2〉×〈a2k〉×〈b2〉 ∼= C2n−1 ×C2×C2, Z(G) = 〈a2
n−1

〉×
〈a2k〉 × 〈b2〉 ∼= E8.

(d) G = 〈a, b〉 is a splitting metacyclic 2-group, where a2
n

= b4 = 1,

n ≥ 3, ab = a−1zǫ, ǫ = 0, 1, z = a2
n−1

. Here |G| = 2n+2, Φ(G) =
〈a2〉× 〈b2〉 ∼= C2n−1 ×C2, Z(G) = 〈z〉× 〈b2〉 ∼= E4, G′ = 〈a2〉 ∼= C2n−1 .
Since a centralizes Φ(G) and b inverts each element of Φ(G), it follows
that each subgroup of Φ(G) is normal in G.

Proposition 1.10 ([2, Lemma 3.1]). Let G be a minimal nonabelian p-
group. Then d(G) = 2, |G′| = p, and Z(G) = Φ(G). If |G| > p3, then G is
non-metacyclic if and only if Ω1(G) ∼= Ep3 is elementary abelian of order p3.

Proposition 1.11 ([4, Theorem 1.1]). Let G be a nonabelian 2-group
containing an involution t such that CG(t) = 〈t〉×C, where C ∼= C2m , m ≥ 2.
Assume in addition that G has no elementary abelian subgroup of order 8 and
t 6∈ Φ(G). Then either G ∼= M2s , s ≥ 4, (a 2-group of order 2s and class
2 which has a cyclic subgroup of index 2) or G has a subgroup S of index

≤ 2, S = AL, where A ∼= C2m , m ≥ 2, L = 〈b, t | b2
n−1

= t2 = 1, bt =
b−1, n ≥ 3〉 ∼= D2n is normal in G, A∩L = Z(L), [A, t] = 1, CG(t) = 〈t〉×A,
Ω1(G) = Ω1(S) = Ω2(A) ∗ L (a central product). If |G : S| = 2, then there is
an element x ∈ G − S such that tx = tb.

Proposition 1.12 ([5, Theorem 3.1]). Let G be a 2-group containing an
involution t such that CG(t) = 〈t〉 × Q, where Q is a generalized quaternion
group of order 2m, m ≥ 3. We assume in addition that G possesses a normal
four-subgroup U such that t 6∈ U . Then G has a normal subgroup S containing
UCG(t) such that |G/S| ≤ 4. If G acts transitively on the set of involutions
in S − U , then |G/S| = 4 and S ∼= Q2m ∗ D2m with Q2m ∩ D2m = Z(D2m).



SOME PECULIAR MINIMAL SITUATIONS BY FINITE p-GROUPS 115

2. New results

Theorem 2.1. Let G be a finite p-group which possesses non-normal
subgroups and such that any two non-normal subgroups of the same order are
conjugate in G. Then G is isomorphic to Mpn.

Proof. Let G be a p-group of the smallest possible order which possesses
non-normal subgroups and such that any two non-normal subgroups of the
same order are conjugate in G but G is not isomorphic to any group Mpn .
Let R be a subgroup of order p in G′ ∩ Z(G). Then either G/R ∼= Mpn or
G/R is Dedekindian in which case G/R is either abelian or p = 2 and G/R is
Hamiltonian (Proposition 1.4).

(i) Suppose that G/R ∼= Mpn . Let H/R be a cyclic subgroup of index
p in G/R so that R < G′ < H and G′/R ∼= Cp. Since G/R is metacyclic,
Proposition 1.2 gives that G is also metacyclic. In that case G′ ∼= Cp2 is cyclic
of order p2 which implies that H is cyclic. Hence G has a cyclic subgroup of
index p, but such groups cannot have a factor-group isomorphic to Mpn .

(ii) Suppose that G/R is abelian so that G′ = R is of order p. If G is
minimal nonabelian, then Lemma 1.7 implies that G ∼= Mpn , a contradiction.
If each minimal nonabelian subgroup of G is quaternion, then Proposition 1.6
implies that G is Hamiltonian, a contradiction. It follows that G possesses a
minimal nonabelian subgroup H 6= G such that H 6∼= Q8. By Proposition 1.5,
G = HCG(H) and so H satisfies the assumptions of Lemma 1.7 which gives
that

H = 〈a, b | apn−1

= bp = 1, n ≥ 3, ab = ar, r = apn−2

〉 ∼= Mpn ,

where in case p = 2, we have n ≥ 4. Set ap = s so that H ′ = 〈r〉 ≤ 〈s〉 =
Z(H) = Φ(H) ≤ Z(G). Let Y be a subgroup of CG(H) which contains
〈s〉 as a subgroup of index p so that Y is abelian. Note that p non-central
subgroups 〈bri〉, i = 0, 1, ..., p − 1 of order p in H form a complete conjugate
class in G. It follows that each element of order p in G − H must be central
in G. Suppose that there is an element y ∈ Y − 〈s〉 of order p. Then y is
central in G. Since o(by) = p and by 6∈ H , by must be central in G. But
then b would be also central in G, a contradiction. We have proved that Y is
cyclic. Choose an element l ∈ Y − 〈s〉 such that lp = s−1. But then al 6∈ H ,
(al)p = aplp = ss−1 = 1 and so al must be central in G. On the other hand,
(al)b = (ar)l = (al)r and so al 6∈ Z(G), a contradiction.

(iii) We have proved that p = 2 and G/R must be Hamiltonian for any
subgroup R of order 2 which is contained in G′∩Z(G). It follows (Proposition
1.4) that G = QF with normal subgroups Q and F , where Q∩F = R, Q/R ∼=
Q8, R < G′ = Φ(G) < Q, |G′| = 4, Q′ covers G′/R and F/R is elementary
abelian. If Q′ = G′, then Proposition 1.1 implies that Q is of maximal class
and therefore Q/R ∼= D8, a contradiction. Thus, G′ = Q′ × R ∼= E4 and
G′ ≤ Z(G) and G/X is Hamiltonian for each subgroup X of order 2 in
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G′ = Φ(G). Suppose that G possesses a minimal nonabelian subgroup M
which is not isomorphic to Q8. By the previous sentence, M > G′ and since
G′ ≤ Z(M) = Φ(M), we have Φ(M) = Φ(G) = G′ and |M | = 16. Let X0

be a subgroup of order 2 in G′ with X0 6= M ′. Then M/X0
∼= Q8 (noting

that G/X0 is Hamiltonian) and so Ω1(M) = G′ ∼= E4 and exp(M) = 4. By
Proposition 1.3, M = 〈a, b | a4 = b4 = 1, ab = a−1〉 with Z(M) = Φ(M) =
〈a2, b2〉 = G′. But then M/〈b2〉 ∼= D8, contrary to the fact that G/〈b2〉 is
Hamiltonian. We have proved that each minimal nonabelian subgroup of G is
quaternion. But then, by Proposition 1.6, G′ is cyclic, a contradiction. Our
theorem is proved.

By using Lemma 1.8, we prove in exactly the same way (with minor
changes):

Theorem 2.2. Let G be a finite p-group which possesses non-normal
cyclic subgroups and such that any two non-normal cyclic subgroups are con-
jugate in G. Then G is isomorphic to Mpn .

Proof. Let G be a p-group of the smallest possible order which possesses
exactly one conjugate class of cyclic non-normal subgroups but G is not iso-
morphic to any group Mpn . Let R be a subgroup of order p in G′ ∩ Z(G).
Note that our hypothesis is inherited by factor-groups. Indeed, let F/R and
H/R be two non-normal cyclic subgroups in G/R. Let F1 and H1 be cyclic
subgroups in F and H which cover F/R and H/R, respectively. Since F1

and H1 are non-normal, they are conjugate in G and so F/R and H/R are
conjugate in G/R. Then either G/R ∼= Mpn or G/R is Dedekindian in which
case G/R is either abelian or p = 2 and G/R is Hamiltonian (Proposition
1.4).

(i) Suppose that G/R ∼= Mpn . Let H/R be a cyclic subgroup of index
p in G/R so that R < G′ < H and G′/R ∼= Cp. Since G/R is metacyclic,
Proposition 1.2 gives that G is also metacyclic. In that case G′ ∼= Cp2 is cyclic
of order p2 which implies that H is cyclic. Hence G has a cyclic subgroup of
index p, but such groups cannot have a factor-group isomorphic to Mpn .

(ii) Suppose that G/R is abelian so that G′ = R is of order p. If G is
minimal nonabelian, then Lemma 1.8 implies that G ∼= Mpn , a contradiction.
If each minimal nonabelian subgroup of G is quaternion, then Proposition 1.6
implies that G is Hamiltonian, a contradiction. It follows that G possesses a
minimal nonabelian subgroup H 6= G such that H 6∼= Q8. By Proposition 1.5,
G = HCG(H) and so H satisfies the assumptions of Lemma 1.8 which gives
that

H = 〈a, b | apn−1

= bp = 1, n ≥ 3, ab = ar, r = apn−2

〉 ∼= Mpn ,

where in case p = 2, we have n ≥ 4. Set ap = s so that H ′ = 〈r〉 ≤ 〈s〉 =
Z(H) = Φ(H) ≤ Z(G). Let Y be a subgroup of CG(H) which contains
〈s〉 as a subgroup of index p so that Y is abelian. Note that p non-central
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subgroups 〈bri〉, i = 0, 1, ..., p − 1 of order p in H form a complete conjugate
class in G. It follows that each element of order p in G − H must be central
in G. Suppose that there is an element y ∈ Y − 〈s〉 of order p. Then y is
central in G. Since o(by) = p and by 6∈ H , by must be central in G. But
then b would be also central in G, a contradiction. We have proved that Y is
cyclic. Choose an element l ∈ Y − 〈s〉 such that lp = s−1. But then al 6∈ H ,
(al)p = aplp = ss−1 = 1 and so al must be central in G. On the other hand,
(al)b = (ar)l = (al)r and so al 6∈ Z(G), a contradiction.

(iii) We have proved that p = 2 and G/R must be Hamiltonian for any
subgroup R of order 2 which is contained in G′∩Z(G). It follows (Proposition
1.4) that G = QF with normal subgroups Q and F , where Q∩F = R, Q/R ∼=
Q8, R < G′ = Φ(G) < Q, |G′| = 4, Q′ covers G′/R and F/R is elementary
abelian. If Q′ = G′, then Proposition 1.1 implies that Q is of maximal class
and therefore Q/R ∼= D8, a contradiction. Thus, G′ = Q′ × R ∼= E4 and
G′ ≤ Z(G) and G/X is Hamiltonian for each subgroup X of order 2 in
G′ = Φ(G). Suppose that G possesses a minimal nonabelian subgroup M
which is not isomorphic to Q8. By the previous sentence, M > G′ and since
G′ ≤ Z(M) = Φ(M), we have Φ(M) = Φ(G) = G′ and |M | = 16. Let X0

be a subgroup of order 2 in G′ with X0 6= M ′. Then M/X0
∼= Q8 (noting

that G/X0 is Hamiltonian) and so Ω1(M) = G′ ∼= E4 and exp(M) = 4. By
Proposition 1.3, M = 〈a, b | a4 = b4 = 1, ab = a−1〉 with Z(M) = Φ(M) =
〈a2, b2〉 = G′. But then M/〈b2〉 ∼= D8, contrary to the fact that G/〈b2〉 is
Hamiltonian. We have proved that each minimal nonabelian subgroup of G is
quaternion. But then, by Proposition 1.6, G′ is cyclic, a contradiction. Our
theorem is proved.

Theorem 2.3. Let G be a finite p-group which possesses non-normal
subgroups and such that |G : HG| = p for each non-normal subgroup H of G.
Then G is either the nonabelian group of order p3, p > 2, and exponent p or
G is one of the following metacyclic p-groups:

(i) G = 〈a, b | ap2

= bpn

= 1, n = 1, 2, ab = a1+p〉, where G is minimal
nonabelian of order pn+2.

(ii) G is a 2-group of maximal class distinct from the quaternion group Q8.

(iii) G = 〈a, b | a2
n

= b4 = 1, n ≥ 3, ab = a−1zǫ, ǫ = 0, 1, z = a2
n−1

〉, where
G is a splitting metacyclic group of order 2n+2, n ≥ 3, Φ(G) = 〈a2〉 ×
〈b2〉 ∼= C2n−1 × C2, Z(G) = 〈z〉 × 〈b2〉 ∼= E4 and G′ = 〈a2〉 ∼= C2n−1 .

Conversely, all the above groups satisfy the assumptions of our theorem.

Proof. Let H be a non-normal subgroup of a p-group G satisfying the
assumptions of Theorem 2.3. Then H is contained in exactly one maximal
subgroup of G. It follows that G satisfies the assumptions of Proposition 1.9
and so G must be isomorphic to some of the groups stated in that proposition.
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(a) Let G be a minimal nonabelian group distinct from Q8 (since Q8 has
no non-normal subgroups). We use Proposition 1.10 and see that Z(G) =
Φ(G) with |G : Φ(G)| = p2 and |G′| = p. Let s be an element of order p
in G − Φ(G). Then 〈s〉 is not normal in G and 〈s〉G = 〈s, G′〉 ∼= Ep2 which
implies that G is nonabelian of order p3.

In what follows we assume that there are no elements of order p in G −
Φ(G). Let b ∈ G − Φ(G) be such that 〈b〉 is not normal in G which implies
that G′ 6≤ 〈b〉. Since 〈b〉G = 〈b, G′〉, it follows that Φ(G) = 〈bp〉×G′, |G| > p3,
and Ω1(G) = Ω1(Φ(G)) ∼= Ep2 . By Proposition 1.10, G is metacyclic and so

there is a ∈ G− 〈b, Φ(G)〉 such that 〈ap〉 = G′ and we may set ab = a1+p and
o(b) = pn, n ≥ 2. Assume that n > 2 and let x be an element of order p2

in 〈b〉 so that H = 〈ax〉 is not normal in G since (ax)b = (ax)ap 6∈ H . But
HG = H × G′ and |G : HG| ≥ p2, a contradiction. We have obtained the
groups stated in part (i) of our theorem.

(b) Suppose that G is a 2-group of maximal class distinct from Q8. Let
〈a〉 be the unique cyclic subgroup of index 2 in G and set o(a) = 2n, n ≥ 2,
so that |G| = 2n+1. Let X be a proper normal subgroup of G with X 6≤ 〈a〉.

Set z = a2
n−1

so that X ≥ 〈z〉 = Z(G) and let y be an element in X − 〈a〉.
We have y2 ∈ 〈z〉 and CG(y) = 〈y, z〉. It follows that all 2n−1 conjugates of y
in G are contained in X −〈a〉 and so |X | > 2n−1 which implies that |X | = 2n

and so X is a maximal subgroup of G. We see that each 2-group of maximal
class distinct from Q8 satisfies the assumptions of our theorem.

(c) Suppose that G is a non-metacyclic 2-group which is isomorphic to
one of the groups in part (c) of Proposition 1.9. We have ab = ak and so
the abelian subgroup 〈a, k〉 of order 2n+1 (containing 〈k〉 = G′ ) is normal
in G which implies that 〈a〉G = 〈a, k〉. Since in case (c2) of Proposition 1.9
we have |G : 〈a, k〉| = 4, it follows that we must be in case (c1) of that

proposition, where b2 ∈ 〈a2
n−1

, a2k〉 ∼= E4. From ab = ak follows ba = kb and
so 〈b〉G = 〈b, k〉, where kb = k−1. By our assumption, |G : 〈b〉G| = 2 and

so b2 6∈ 〈a〉 which forces that either b2 = a2k or b2 = a2k · a2
n−1

. We have
(ab)a = (ab)k−1 and so 〈ab〉G = 〈ab, k〉, where kab = k−1 and

(ab)2 = abab = ab2ab = ab2ak = b2(a2k).

By our assumption, |G : 〈ab, k〉| = 2 and so we must have (ab)2 6∈ 〈k〉. If b2 =

a2k, then (ab)2 = 1, a contradiction. If b2 = (a2k)a2
n−1

, then (ab)2 = a2
n−1

which gives (ab)2 ∈ 〈k〉 since k2 = a−4 and a2
n−1

∈ 〈a−4〉. Hence G cannot
be isomorphic to any group in part (c) of Proposition 1.9.

(d) Suppose that G is a metacyclic 2-group given in part (d) of Proposi-
tion 1.9. Then we see easily that these groups satisfy the assumptions of our
theorem which gives the groups stated in part (iii) of our theorem.

Theorem 2.4. Let G be a finite 2-group which possesses exactly two con-
jugate classes of four-subgroups. Then G must be one of the following groups:
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(i) G ∼= D2n , a dihedral group of order 2n, n ≥ 3.
(ii) G has a subgroup S of index 2, S = AL, where A ∼= C2m , m ≥ 2, is

cyclic of order 2m, L = 〈b, t | b2
n−1

= t2 = 1, bt = b−1, n ≥ 3〉 ∼= D2n

is dihedral of order 2n, L is normal in G, A ∩ L = Z(L), [A, t] = 1,
CG(t) = 〈t〉 ×A, Ω1(G) = Ω1(S) = Ω2(A) ∗L (a central product), and
there is an element x ∈ G − S such that tx = tb.

(iii) G has a normal subgroup S of index 4, where S ∼= Q2m ∗D2m , m ≥ 3,
is a central product of a generalized quaternion group of order 2m with
a dihedral group of order 2m , Q2m ∩ D2m = Z(D2m), Ω1(G) = S and
if t is a non-central involution in D2m , then CG(t) = 〈t〉 × Q2m .

Proof. Let G be a 2-group which possesses exactly two conjugate classes
of four-subgroups. If G has no normal four-subgroup, then G is either cyclic
or a 2-group of maximal class distinct from D8. It follows that G ∼= D2n ,
n ≥ 4. In what follows we assume that G has a normal four-subgroup U and
also we may assume that G is not isomorphic to D8.

Suppose that U ≤ Z(G) and set U = 〈u1, u2〉. Let t be an involution in
G−U so that V = 〈t, u1〉 is a four-subgroup which is not conjugate to U . Also,
the four-subgroup W = 〈t, u2〉 is not conjugate to U . We have V ∩ U = 〈u1〉
and W ∩ U = 〈u2〉. Since V must be conjugate in G to W , it follows that u1

and u2 must be conjugate in G, a contradiction.
We have proved that U 6≤ Z(G) and we set M = CG(U) so that

|G : M | = 2. We set also U = 〈u, z〉, where 〈z〉 = U ∩ Z(G). It is easy to
see that Ω1(M) = U so that G has no elementary abelian subgroups of order
8. Indeed, let t′ be an involution in M − U and consider the four-subgroups
〈t′, u〉 and 〈t′, z〉. Since they must be conjugate in G, it follows that also u
and z must be conjugate in G, a contradiction.

Let t be a fixed involution in G − M . Then CG(t) = 〈t〉 × CM (t), where
Ω1(CM (t)) = 〈z〉 so that CM (t) is either cyclic of order ≥ 4 or generalized
quaternion. Indeed, if CM (t) = 〈z〉, then, by a well known result of M. Suzuki,
G would be of maximal class, which was excluded. Since tu = tz and G has
exactly one conjugate class of four-subgroups distinct from U , it follows that
there is exactly one conjugate class of involutions in G−M . Hence, also G−U
contains exactly one conjugate class of involutions.

Assume that C = CG(t) is cyclic of order ≥ 4. We are in a position to
use Proposition 1.11. If G ∼= M2s , s ≥ 4, then Ω1(G) ∼= E4, a contradiction.
Hence we must have the second possibility of that proposition. Here |G : S| =
2 since all involutions in L− 〈b〉 must lie in a single conjugate class in G. We
have obtained the groups stated in part (ii) of our theorem.

Assume that Q = CG(t) ∼= Q2m , m ≥ 3, is a generalized quaternion group
of order 2m. Since t 6∈ U , we are in a position to use Proposition 1.12. Note
that G must fuse all involutions in G−U which gives us the groups stated in
part (iii) of our theorem.
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