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Abstract. In this work we investigate the approximation problems in
the Smirnov-Orlicz spaces in terms of the fractional modulus of smoothness.
We prove the direct and inverse theorems in these spaces and obtain a
constructive descriptions of the Lipschitz classes of functions defined by
the fractional order modulus of smoothness, in particular.

1. Preliminaries and introduction

A function M (u) : R → R+ is called an N -function if it admits of the
representation

M (u) =

|u|∫

0

p (t) dt,

where the function p (t) is right continuous and nondecreasing for t ≥ 0 and
positive for t > 0, which satisfies the conditions

p (0) = 0, p (∞) := lim
t→∞

p (t) = ∞.

The function

N (v) :=

|v|∫

0

q (s) ds,

where
q (s) := sup t

p(t)≤s

, (s ≥ 0)
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is defined as complementary function of M .
Let Γ be a rectifiable Jordan curve and let G := intΓ, G− := extΓ,

D := {w ∈ C : |w| < 1}, T := ∂D, D− := extT. Without loss of generality
we may assume 0 ∈ G. We denote by Lp (Γ), 1 ≤ p < ∞, the set of all
measurable complex valued functions f on Γ such that |f |

p
is Lebesgue inte-

grable with respect to arclength. By Ep (G) and Ep (G−), 0 < p < ∞, we
denote the Smirnov classes of analytic functions in G and G−, respectively.
It is well-known that every function f ∈ E1 (G) or f ∈ E1 (G−) has a non-
tangential boundary values a.e. on Γ and if we use the same notation for the
nontangential boundary value of f , then f ∈ L1 (Γ).

Let M be an N -function and N be its complementary function. By
LM (Γ) we denote the linear space of Lebesgue measurable functions f : Γ → C

satisfying the condition
∫

Γ

M [α |f (z)|] |dz| <∞

for some α > 0.
The space LM (Γ) becomes a Banach space with the norm

‖f‖LM (Γ) := sup





∫

Γ

|f (z) g (z)| |dz| : g ∈ LN (Γ) , ρ (g;N) ≤ 1



 ,

where

ρ (g ;N) :=

∫

Γ

N [|g (z)|] |dz| .

The norm ‖·‖LM(Γ) is called Orlicz norm and the Banach space LM (Γ) is

called Orlicz space. Every function in LM (Γ) is integrable on Γ [18, p. 50],
i.e.

LM (Γ) ⊂ L1 (Γ) .

An N -function M satisfies the ∆2-condition if

lim sup
x→∞

M (2x)

M (x)
<∞.

The Orlicz space LM (Γ) is reflexive if and only if the N -function M and its
complementary function N both satisfy the ∆2-condition [18, p. 113].

Let Γr be the image of the circle γr := {w ∈ C : |w| = r, 0 < r < 1} under
some conformal mapping of D onto G and let M be an N -function.

The class of functions f analytic in G and satisfying

sup
0<r<1

∫

Γr

M [|f (z)|] |dz| ≤ c <∞
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with c independent of r, will be called Smirnov-Orlicz class and denoted by
EM (G). In the similar way EM (G−) can be defined. Let

ẼM

(
G−
)

:=
{
f ∈ EM

(
G−
)

: f (∞) = 0
}

.

If M (x) = M (x, p) := xp, 1 < p < ∞, then the Smirnov-Orlicz class
EM (G) coincides with the usual Smirnov class Ep (G) .

Every function in the class EM (G) has [13] the non-tangential boundary
values a.e. on Γ and the boundary function belongs to LM (Γ).

Let

S [f ] :=

∞∑

k=−∞

cke
ikx

be Fourier series of a function f ∈ L1 (T) where T := [−π, π],
∫
T
f (x) dx = 0,

so that c0 = 0.
For α > 0, the α-th integral of f is defined by

Iα (x, f) :=
∑

k∈Z∗

ck (ik)
−α

eikx,

where

(ik)
−α

:= |k|
−α

e(−1/2)πiα sign k and Z
∗ := {±1,±2,±3, . . .} .

It is known [24, V. 2, p. 134] that

fα (x) := Iα (x, f)

exist a.e. on T, fα ∈ L1 (T) and S [fα] = fα (x).
For α ∈ (0, 1) let

f (α) (x) :=
d

dx
I1−α (x, f)

if the right hand side exist.
We set

f (α+r) (x) :=
(
f (α) (x)

)(r)

=
dr+1

dxr+1
I1−α (x, f) ,

where r ∈ Z+ := {1, 2, 3, . . .}.
Throughout this work by c, c1, c2,. . ., we denote the constants which are

different in different places.

1.1. Moduli of smoothness of fractional order. Suppose that x, h ∈ R :=
(−∞,∞) and α > 0. Then, by [16, Theorem 11, p. 135] the series

∆α
hf (x) :=

∞∑

k=0

(−1)
k
Cα

k f (x+ (α− k)h) , f ∈ LM (T) ,

converges absolutely a.e. on T [16, p. 135]. Hence ∆α
hf (x) measurable and

by [16, Theorem 10, p. 134]

‖∆α
hf‖LM(T) ≤ C (α) ‖f‖LM(T) ,
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with

C (α) :=

∞∑

k=0

|Cα
k | <∞.

The quantity ∆α
hf (x) will be called the α-th difference of f at x, with in-

crement h. If α ∈ Z+ the above cited α-th difference is coincides with usual
forward difference. Namely,

∆α
hf (x) :=

α∑

k=0

(−1)
k
Cα

k f (x+ (α− k)h) =

α∑

k=0

(−1)
α−k

Cα
k f (x+ kh) ,

for α ∈ Z+. For α > 0 we define the α-th modulus of smoothness of a function
f ∈ LM (T) as

ωα (f, δ)M := sup
|h|≤δ

‖∆α
hf‖LM (T) , ω0 (f, δ)M := ‖f‖LM(T) .

Remark 1.1. The modulus of smoothness ωα (f, δ)M has the following
properties.

(i) ωα (f, δ)M is non-negative and non-decreasing function of δ ≥ 0,
(ii) lim

δ→0+
ωα (f, δ)M = 0,

(iii) ωα (f1 + f2, ·)M ≤ ωα (f1, ·)M + ωα (f2, ·)M .

Let

En (f)M := inf
T∈Tn

‖f − T ‖LM(T) , f ∈ LM (T) ,

where Tn is the class of trigonometric polynomials of degree not greater than
n ≥ 1.

The proofs of following direct and inverse theorems are similar to the
appropriate theorems from [21], where the approximation problems are inves-
tigated in Lebesgue spaces Lp (T), 1 ≤ p <∞.

Theorem 1.2. Let LM (T) be a reflexive Orlicz space and let M be an
N -function. Then

En (f)M ≤ C1 (α)ωα (f, 1/n)M , n = 1, 2, . . .

Theorem 1.3. Let LM (T) be a reflexive Orlicz space and let M be an
N -function. Then

ωα (f, 1/n)M ≤
C2 (α)

nα

n∑

ν=0

(ν + 1)
α−1

Eν (f)M , n = 1, 2, . . .

1.2. Modulus of smoothness of fractional order in Smirnov-Orlicz classes. Let
w = ϕ (z) and w = ϕ1 (z) be the conformal mappings of G− and G onto D−

normalized by the conditions

ϕ (∞) = ∞, lim
z→∞

ϕ (z) /z > 0,
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and

ϕ1 (0) = ∞, lim
z→0

zϕ1 (z) > 0,

respectively. We denote by ψ and ψ, the inverse of ϕ and ϕ1, respectively.
Since Γ is rectifiable, we have ϕ′ ∈ E1 (G−) and ψ′ ∈ E1 (D−), and hence

the functions ϕ′ and ψ′ admit nontangential limits almost everywhere (a.e.)
on Γ and on T respectively, and these functions respectively belong to L1 (Γ)
and L1 (T) (see, for example [7, p. 419]).

Let f ∈ L1 (Γ). Then, the functions f+ and f− defined by

f+ (z) =
1

2πi

∫

Γ

f (ς)

ς − z
dς , z ∈ G,

f− (z) =
1

2πi

∫

Γ

f (ς)

ς − z
dς , z ∈ G−,

are analytic in G and G−, respectively and f− (∞) = 0.
Let h be a function continuous on T. Its modulus of continuity is defined

by

ω (t, h) := sup{|h (t1) − h (t2)| : t1, t2 ∈ T, |t1 − t2| ≤ t}, t ≥ 0.

The function h is called Dini-continuous if
c∫

0

ω (t, h)

t
dt <∞, c > 0.

A curve Γ is called Dini-smooth [17, p. 48] if it has a parametrization

Γ : ϕ0 (τ) , τ ∈ T

such that ϕ′
0 (τ) is Dini-continuous and ϕ′

0 (τ) 6= 0.
If Γ is Dini-smooth, then [23]

(1.1) 0 < c3 < |ψ′ (w)| < c4 <∞, 0 < c5 < |ϕ′ (z)| < c6 <∞,

where the constants c3, c4 and c5, c6 are independent of |w| ≥ 1 and z ∈ G−,
respectively.

Let Γ be a Dini-smooth curve and let f0 := f ◦ ψ, f1 := f ◦ ψ1 for
f ∈ LM (Γ). Then from (1.1), we have f0 ∈ LM (T) and f1 ∈ LM (T) for
f ∈ LM (Γ). Using the nontangential boundary values of f+

0 and f+
1 on T we

define

ωα,Γ (f, δ)M := ωα

(
f+
0 , δ

)
M

, δ > 0

ω̃α,Γ (f, δ)M := ωα

(
f+
1 , δ

)
M

, δ > 0

for α > 0.
We set

En (f,G)M := inf
P∈Pn

‖f − P‖LM(Γ) , Ẽn

(
g,G−

)
M

:= inf
R∈Rn

‖g −R‖LM (Γ) ,
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where f ∈ EM (G), g ∈ EM (G−), Pn is the set of algebraic polynomials of
degree not greater than n and Rn is the set of rational functions of the form

n∑

k=0

ak

zk
.

Let Γ be a rectifiable Jordan curve, f ∈ L1 (Γ) and let

(SΓf) (t) := lim
ε→0

1

2πi

∫

Γ\Γ(t,ǫ)

f (ς)

ς − t
dς , t ∈ Γ

be Cauchy’s singular integral of f at the point t. The linear operator SΓ,
f 7→ SΓf is called the Cauchy singular operator.

If one of the functions f+ or f− has the non-tangential limits a. e. on
Γ, then SΓf (z) exists a.e. on Γ and also the other one has the nontangential
limits a. e. on Γ. Conversely, if SΓf (z) exists a.e. on Γ, then both functions
f+ and f− have the nontangential limits a.e. on Γ. In both cases, the formulae

(1.2) f+ (z) = (SΓf) (z) + f (z) /2, f− (z) = (SΓf) (z) − f (z) /2,

and hence

(1.3) f = f+ − f−

holds a.e. on Γ (see, e.g., [7, p. 431]).
In this work we investigate the approximation problems in the Smirnov-

Orlicz spaces in terms of the fractional modulus of smoothness. We prove
the direct and inverse theorems in these spaces and obtain a constructive
descriptions of the Lipschitz classes of functions defined by the fractional
order modulus of smoothness, in particular.

In the spaces Lp (T), 1 ≤ p < ∞, these problems were studied in the
works [21] and [3].

In terms of the usual modulus of smoothness, these problems in the
Lebesgue and Smirnov spaces defined on the complex domains with the var-
ious boundary conditions were investigated by Walsh-Russel [22], Al’per [1],
Kokilashvili [14, 15], Andersson [2], Israfilov [9, 10, 11], Cavus-Israfilov [4] and
other mathematicians.

2. Main results

The following direct theorem holds.

Theorem 2.1. Let Γ be a Dini-smooth curve and LM (Γ) be a reflexive
Orlicz space on Γ. If α > 0 and f ∈ LM (Γ) then for any n = 1, 2, 3, . . . there
is a constant c7 > 0 such that

‖f −Rn (·, f)‖LM (Γ) ≤ c7 {ωα,Γ (f, 1/n)M + ω̃α,Γ (f, 1/n)M} ,

where Rn (·, f) is the nth partial sum of the Faber-Laurent series of f .
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From this theorem we have the following corollaries.

Corollary 2.2. Let G be a finite, simply connected domain with a Dini-
smooth boundary Γ and let LM (Γ) be a reflexive Orlicz space on Γ. If α > 0
and Sn (f, ·) :=

∑n
k=0 akΦk is the nth partial sum of the Faber expansion of

f ∈ EM (G), then for every n = 1, 2, 3, . . .

‖ f − Sn ( f, ·)‖LM (Γ) ≤ c8 ωα,Γ (f, 1/n)M ,

with some constant c8 > 0 independent of n.

Corollary 2.3. Let Γ be a Dini-smooth curve. If α > 0 and f ∈
ẼM (G−), then for every n = 1, 2, 3, . . . there is a constant c9 > 0 such that

‖f −Rn (·, f)‖LM (Γ) ≤ c9 ω̃α,Γ (f, 1/n)M ,

where Rn (·, f) as in Theorem 2.1.

The following inverse theorem holds.

Theorem 2.4. Let G be a finite, simply connected domain with a Dini-
smooth boundary Γ and let LM (Γ) be a reflexive Orlicz space on Γ. If α > 0,
then

ωα,Γ (f, 1/n)M ≤
c10
nα

n∑

k=0

(k + 1)
α−1

Ek (f,G)M , n = 1, 2, . . .

with a constant c10 > 0 depending only on M and α.

Corollary 2.5. Under the conditions of Theorem 2.4, if

En (f,G)M = O
(
n−σ

)
, σ > 0, n = 1, 2, 3, . . . ,

then for f ∈ EM (G) and α > 0

ωα,Γ (f, δ)M =





O (δσ) , α > σ;
O
(
δσ
∣∣log 1

δ

∣∣) , α = σ;
O (δα) , α < σ.

Definition 2.6. For 0 < σ < α we set
∗

Lipσ (α,M) := {f ∈ EM (G) : ωα,Γ (f, δ)M = O (δσ) , δ > 0} ,

L̃ipσ (α,M) :=
{
f ∈ ẼM

(
G−
)

: ω̃α,Γ (f, δ)M = O (δσ) , δ > 0
}

.

Corollary 2.7. Under the conditions of Theorem 2.4, if 0 < σ < α and

En (f,G)M = O
(
n−α

)
, n = 1, 2, 3, . . . ,

then f ∈ Lip∗ σ (α,M).

Corollary 2.8. Let 0 < σ < α and let the conditions of Theorem 2.4 be
fulfilled. Then the following conditions are equivalent.

(a) f ∈ Lip∗ σ (α,M)
(b) En (f,G)M = O (n−σ), n = 1, 2, 3, . . ..
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Similar results hold also in the class ẼM (G−).

Theorem 2.9. Let Γ be a Dini-smooth curve and LM (T) be a reflexive

Orlicz space. If α > 0 and f ∈ ẼM (G−), then

ω̃α,Γ (f, 1/n)M ≤
c11
nα

n∑

k=0

(k + 1)
α−1

Ẽk

(
f,G−

)
M

, n = 1, 2, 3, . . . .,

with a constant c11 > 0.

Corollary 2.10. Under the conditions of Theorem 2.9, if

Ẽn

(
f,G−

)
M

= O
(
n−σ

)
, σ > 0, n = 1, 2, 3, . . . ,

then for f ∈ ẼM (G−) and α > 0

ω̃α,Γ (f, δ)M =





O (δσ) , α > σ;
O
(
δσ
∣∣log 1

δ

∣∣) , α = σ;
O (δα) , α < σ.

Corollary 2.11. Under the conditions of Theorem 2.9, if 0 < σ < α
and

Ẽn

(
f,G−

)
M

= O
(
n−σ

)
, n = 1, 2, 3, . . . ,

then f ∈ L̃ipσ (α,M).

Corollary 2.12. Let 0 < σ < α and the conditions of Theorem 2.9 be
fulfilled. Then the following conditions are equivalent.

(a) f ∈ L̃ip σ (α,M),

(b) Ẽn (f,G−)M = O (n−σ), n = 1, 2, 3, . . ..

2.1. Some auxiliary results.

Lemma 2.13. Let LM (T) be a reflexive Orlicz space. Then f+ ∈ EM (D)
and f− ∈ EM (D−) for every f ∈ LM (T).

Proof. We claim that for every f ∈ LM (T) there exists a p ∈ (1,∞)
such that f ∈ Lp (T). Indeed, by Corollaries 4 and 5 of [18, p. 26] there exist
some x0, c12 > 0 and p > 1 such that

(2.1) cp13 |f |
p
≤

1

c12
M (c13 |f |)

holds for |f | ≥ x0 and some c13 > 0.
Hence, using

∫

T

|f (z)|p |dz| =

∫

Γ0

|f (z)|p |dz| +

∫

T\Γ0

|f (z)|p |dz|
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with Γ0 := {z ∈ T : |f | ≥ x0}, from (2.1) we get that
∫

T

|f (z)|p |dz| ≤
1

c12c
p
13

∫

Γ0

M (c13 |f (z)|) |dz| +

∫

T\Γ0

|f (z)|p |dz|

≤ c14

∫

T

M (c13 |f (z)|) |dz| + xp
0mes (T\Γ0) <∞

and therefore f ∈ Lp (T). Since 1 < p <∞, this implies [8] that f+ ∈ Ep (D),
f− ∈ Ep (D−) and hence f+ ∈ E1 (D), f− ∈ E1 (D−).

Since f+ ∈ E1 (D) it can be represented by the Poisson integral of its
boundary function. Hence, taking z := reix, (0 < r < 1) we have

M
[∣∣f+ (z)

∣∣] = M


 1

2π

∣∣∣∣∣∣

2π∫

0

f+
(
eiy
)
Pr (x− y)dy

∣∣∣∣∣∣


 .

Now, using Jensen integral inequality [24, V:1, p.24] we get

M
[∣∣f+ (z)

∣∣] ≤ M




2π∫
0

∣∣f+
(
eiy
)∣∣Pr (x− y) dy

2π∫
0

Pr (x− y) dy




≤
1

2π

2π∫

0

M
[∣∣f+

(
eiy
)∣∣]Pr (x− y) dy,

and therefore
∫

γr

M
[∣∣f+ (z)

∣∣] |dz| ≤

∫

γr

1

2π

∫ 2π

0

M
[∣∣f+

(
eiy
)∣∣]Pr (x− y) dy |dz|

=

2π∫

0

1

2π

∫ 2π

0

M
[∣∣f+

(
eiy
)∣∣]Pr (x− y) dyrdx

=

2π∫

0

M
[∣∣f+

(
eiy
)∣∣]




1

2π

2π∫

0

Pr (x− y) dx



 rdy

=

2π∫

0

M
[∣∣f+

(
eiy
)∣∣] rdy <

2π∫

0

M
[∣∣f+

(
eix
)∣∣] dx.

Taking into account the relations

f+
(
eix
)

= (1/2) f
(
eix
)

+ (STf)
(
eix
)

= (1/2)
{
f
(
eix
)

+ 2 (STf)
(
eix
)}

,
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we have

M
[∣∣f+

(
eix
)∣∣] = M

[
1

2

∣∣f
(
eix
)

+ 2 (STf)
(
eix
)∣∣
]

≤ M

[
1

2

{∣∣f
(
eix
)∣∣+ 2

∣∣(STf)
(
eix
)∣∣}
]

≤
1

2

{
M
[∣∣f
(
eix
)∣∣]+M

[
2
∣∣(STf)

(
eix
)∣∣]}

≤
1

2

{
M
[∣∣f
(
eix
)∣∣]+M [2x0] + c15M

[∣∣(STf)
(
eix
)∣∣]}

for some x0 > 0 and hence
∫

γr

M
[∣∣f+ (z)

∣∣] |dz|

<
1

2

2π∫

0

{
M
[∣∣f
(
eix
)∣∣]+M [2x0] + c16M

[∣∣(STf)
(
eix
)∣∣]} dx

=
1

2

2π∫

0

M
[∣∣f
(
eix
)∣∣] dx+ c17

2π∫

0

M
[∣∣(STf)

(
eix
)∣∣] dx+M [2x0]π.

On the other hand [19]

‖STf‖LM(T) ≤ c18 ‖f‖LM(T)

which implies that

2π∫

0

M
[∣∣(STf)

(
eix
)∣∣] dx ≤ c19 <∞

and then

∫

γr

M
[∣∣f+ (z)

∣∣] |dz| <
1

2

2π∫

0

M
[∣∣f
(
eix
)∣∣] dx+ c20

= c21 (1/2)

∫

T

M [|f (w)|] |dw| + c20 <∞.

Finally, we have f+ ∈ EM (D). Similar result also holds for f−.

Using Theorem 1.2 and the method, applied for the proof of the similar
result in [4], we have
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Lemma 2.14. Let an N -function M and its complementary function both
satisfy the ∆2 condition. Then there exists a constant c22 > 0 such that for
every n = 1, 2, 3, . . .

∥∥∥∥∥g (w) −

n∑

k=0

αkw
k

∥∥∥∥∥
LM (T)

≤ c22 ωα (g, 1/n)M , α > 0

where αk, (k = 0, 1, 2, 3, . . .) are the kth Taylor coefficients of g ∈ EM (D) at
the origin.

We know [20, pp. 52, 255] that

ψ′ (w)

ψ (w) − z
=

∞∑

k=0

Φk (z)

wk+1
, z ∈ G, w ∈ D

−

and

ψ′
1 (w)

ψ1 (w) − z
=

∞∑

k=1

Fk (1/z)

wk+1
, z ∈ G−, w ∈ D

−,

where Φk (z) and Fk (1/z) are the Faber polynomials of degree k with respect
to z and 1/z for the continuums G and C\G, with the integral representations
[20, pp. 35, 255]

Φk (z) =
1

2πi

∫

|w|=R

wkψ′ (w)

ψ (w) − z
dw, z ∈ G, R > 1

Fk (1/z) =
1

2πi

∫

|w|=1

wkψ′
1 (w)

ψ1 (w) − z
dw, z ∈ G−,

and

(2.2) Φk (z) = ϕk (z) +
1

2πi

∫

Γ

ϕk (ς)

ς − z
dς , z ∈ G−, k = 0, 1, 2, ...,

(2.3) Fk (1/z) = ϕk
1 (z) −

1

2πi

∫

Γ

ϕk
1 (ς)

ς − z
dς , z ∈ G \ {0} .

We put

ak := ak (f) :=
1

2πi

∫

T

f0 (w)

wk+1
dw, k = 0, 1, 2, ...,

ãk := ãk (f) :=
1

2πi

∫

T

f1 (w)

wk+1
dw, k = 1, 2, ...
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and correspond the series
∞∑

k=0

akΦk (z) +

∞∑

k=1

ãkFk (1/z)

with the function f ∈ L1 (Γ), i.e.,

f (z) ∼

∞∑

k=0

akΦk (z) +

∞∑

k=1

ãkFk (1/z) .

This series is called the Faber-Laurent series of the function f and the coeffi-
cients ak and ãk are said to be the Faber-Laurent coefficients of f .

Let P be the set of all polynomials (with no restrictions on the degree),
and let P (D) be the set of traces of members of P on D.

We define two operators T : P (D) → EM (G) and T̃ : P (D) → ẼM (G−)
as

T (P ) (z) :=
1

2πi

∫

T

P (w)ψ′ (w)

ψ (w) − z
dw, z ∈ G

T̃ (P ) (z) :=
1

2πi

∫

T

P (w)ψ′
1 (w)

ψ1 (w) − z
dw, z ∈ G−.

It is readily seen that

T

(
n∑

k=0

bkw
k

)
=

n∑

k=0

bkΦk (z) and T̃

(
n∑

k=0

dkw
k

)
=

n∑

k=0

dkFk (1/z) .

If z′ ∈ G, then

T (P ) (z′) =
1

2πi

∫

T

P (w)ψ′ (w)

ψ (w) − z′
dw =

1

2πi

∫

Γ

(P ◦ ϕ) (ς)

ς − z′
dς = (P ◦ ϕ)

+
(z′) ,

which, by (1.2) implies that

T (P ) (z) = SΓ (P ◦ ϕ) (z) + (1/2) (P ◦ ϕ) (z)

a. e. on Γ.
Similarly taking the limit z′′ → z ∈ Γ over all nontangential paths outside

Γ in the relation

T̃ (P ) (z′′) =
1

2πi

∫

Γ

P (ϕ1 (ς))

ς − z′′
dς = [(P ◦ ϕ1)]

−
(z′′) , z′′ ∈ G−

we get

T̃ (P ) (z) = − (1/2) (P ◦ ϕ1) (z) + SΓ (P ◦ ϕ1) (z)

a.e. on Γ.
By virtue of the Hahn-Banach theorem, we can extend the operators T

and T̃ from P (D) to the spaces EM (D) as a linear and bounded operator.
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Then for these extensions T : EM (D) → EM (G) and T̃ : EM (D) → ẼM (G−)
we have the representations

T (g) (z) =
1

2πi

∫

T

g (w)ψ′ (w)

ψ (w) − z
dw, z ∈ G, g ∈ EM (D) ,

T̃ (g) (z) =
1

2πi

∫

T

g (w)ψ′
1 (w)

ψ1 (w) − z
dw, z ∈ G−, g ∈ EM (D) .

The following lemma is a special case of Theorem 2.4 of [12].

Lemma 2.15. If Γ is a Dini-smooth curve and EM (G) is a reflexive
Smirnov-Orlicz class, then the operators

T : EM (D) → EM (G) and T̃ : EM (D) → ẼM

(
G−
)

are one-to-one and onto.

3. Proofs of the results

Proof of Theorem 2.1. Since f (z) = f+ (z) − f− (z) a.e. on Γ, con-
sidering the rational function

Rn (z, f) :=

n∑

k=0

akΦk (z) +

n∑

k=1

ãkFk (1/z) ,

it is enough to prove inequalities

(3.1)

∥∥∥∥∥f
− (z) +

n∑

k=1

ãkFk (1/z)

∥∥∥∥∥
LM (Γ)

≤ c23 ω̃α,Γ (f, 1/n)M

and

(3.2)

∥∥∥∥∥f
+ (z) −

n∑

k=0

akΦk (z)

∥∥∥∥∥
LM (Γ)

≤ c24 ωα,Γ (f, 1/n)M .

Let f ∈ LM (Γ). Then f1, f0 ∈ LM (T). We take z′ ∈ G\{0}. Using (2.3)
and

(3.3) f (ς) = f+
1 (ϕ1 (ς)) − f−

1 (ϕ1 (ς)) a.e. on Γ

we obtain that
n∑

k=1

ãkFk (1/z′) =
n∑

k=1

ãkϕ
k
1 (z′) −

1

2πi

∫

Γ

(∑n
k=1 ãkϕ

k
1 (ς) − f+

1 (ϕ1 (ς))
)

ς − z′
dς

−f−
1 (ϕ1 (z′)) − f− (z′) .
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Taking the limit as z′ → z along all non-tangential paths inside of Γ, we
obtain

n∑

k=1

ãkFk (1/z) =

n∑

k=1

ãkϕ
k
1 (z) −

1

2

(
n∑

k=1

ãkϕ
k
1 (z) − f+

1 (ϕ1 (z))

)

−SΓ

[
n∑

k=1

ãkϕ
k
1 −

(
f+
1 ◦ ϕ1

)
]
− f−

1 (ϕ1 (z)) − f+ (z)

a.e. on Γ.
Using (1.3), (3.3), Minkowski’s inequality and the boundedness of SΓ we

get
∥∥∥∥∥f

− (z) +

n∑

k=1

ãkFk (1/z′)

∥∥∥∥∥
LM (Γ)

=

∥∥∥∥∥
1

2

(
n∑

k=1

ãkϕ
k
1 (z) − f+

1 (ϕ1 (z))

)

−SΓ

[
n∑

k=1

ãkϕ
k
1 −

(
f+
1 ◦ ϕ1

)
]

(z)

∥∥∥∥∥
LM (Γ)

≤ c25

∥∥∥∥∥

n∑

k=1

ãkϕ
k
1 (z) − f+

1 (ϕ1 (z))

∥∥∥∥∥
LM (Γ)

≤ c26

∥∥∥∥∥f
+
1 (w) −

n∑

k=1

ãkw
k

∥∥∥∥∥
LM(Γ)

.

On the other hand, the Faber-Laurent coefficients ãk of the function f and
the Taylor coefficients of the function f+

1 at the origin are coincide. Then
taking Lemma 2.14 into account, we conclude that

∥∥∥∥∥f
− +

n∑

k=1

ãkFk (1/z′)

∥∥∥∥∥
LM (Γ)

≤ c27 ω̃α,Γ (f, 1/n)M ,

and (3.1) is proved.
The proof of relation (3.2) goes similarly; we use the relations (2.2) and

f (ς) = f+
0 (ϕ (ς)) − f−

0 (ϕ (ς)) a.e. on Γ

instead of (2.3) and (3.3), respectively.

Proof of Theorem 2.4. Let f ∈ EM (G). Then we have T
(
f+
0

)
= f .

Since the operator T : EM (D) → EM (G) is linear, bounded, one-to-one and
onto, the operator T−1 : EM (G) → EM (D) is linear and bounded. We take
a p∗n ∈ Pn as the best approximating algebraic polynomial to f in EM (G).
Then T−1 (p∗n) ∈ Pn (D) and therefore

En

(
f+
0

)
M

≤
∥∥f+

0 − T−1 (p∗n)
∥∥

LM(T)
=
∥∥T−1 (f) − T−1 (p∗n)

∥∥
LM (T)

(3.4)
=
∥∥T−1 (f − p∗n)

∥∥
LM (T)

≤
∥∥T−1

∥∥ ‖f − p∗n‖LM (Γ) =
∥∥T−1

∥∥En (f,G)M ,
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because the operator T−1 is bounded. From (3.4) we have

ωα,Γ (f, 1/n)M = ωα

(
f+
0 , 1/n

)
M

≤
c28
nα

n∑

k=0

(k + 1)
α−1

Ek

(
f+
0

)
M

≤
c28
∥∥T−1

∥∥
nα

n∑

k=0

(k + 1)
α−1

Ek (f,G)M , α > 0, n = 1, 2, . . .

and the proof is completed.

Proof of Theorem 2.9. Let f ∈ ẼM (G−). Then T̃
(
f+
1

)
= f . By

Lemma 2.15 the operator T̃−1 : ẼM (G−) → EM (D) is linear and bounded.

Let r∗n ∈ Rn be a function such that Ẽn (f,G−)M = ‖f − r∗n‖LM(Γ). Then

T̃−1 (r∗n) ∈ Pn (D) and therefore

En

(
f+
1

)
M

≤
∥∥∥f+

1 − T̃−1 (r∗n)
∥∥∥

LM(T)
=
∥∥∥T̃−1 (f) − T̃−1 (r∗n)

∥∥∥
LM(T)

(3.5)

=
∥∥∥T̃−1 (f − r∗n)

∥∥∥
LM (T)

≤
∥∥∥T̃−1

∥∥∥ ‖f − r∗n‖LM (Γ) =
∥∥∥T̃−1

∥∥∥ Ẽn

(
f,G−

)
M

.

From (3.5) we conclude

ω̃α,Γ (f, 1/n)M = ωα

(
f+
1 , 1/n

)
M

≤
c29
nα

n∑

k=0

(k + 1)
α−1

Ek

(
f+
1

)
M

≤
c29

∥∥∥T̃−1
∥∥∥

nα

n∑

k=0

(k + 1)α−1 Ẽk

(
f,G−

)
M

, α > 0, n = 1, 2, . . .

the required result.
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