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Abstract. The dynamic evolution with frictional contact of a elec-
troelastic body is considered. In modelling the contact, the Tresca model
is used. We derive a variational formulation for the model in a form of a
coupled system involving the displacement and the electric potential fields.
We provide existence and uniqueness result. The proof is based on a reg-
ularization method, Galerkin method, compactness and lower semiconti-
nuity arguments. Such a result extend the result obtained in [3] where
the analysis of friction in dynamic elasticity materials was provided. The
novelty of this paper consists in the fact that here we take into account the
piezoelectric properties of the materials.

1. Introduction

Piezoelectricity is the ability of a material to develop an electrical field
when it is subjected to a mechanical strain (direct piezoelectric effect) and
conversely, develop mechanical strain in response to an applied electric field
(converse piezoelectric effect). The coupled mechanical and electrical propri-
eties of piezoelectric materials make them well suited for use as sensors (which
use the direct piezoelectric effect) and actuators (which use the converse piezo-
electric effect). A deformable material which presents such a behavior is
called a piezoelectric material. Piezoelectric materials are used extensively
as switches and actuators in many engineering systems, in radioelectronics,
electroacoustics and measuring equipments.
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General models for elastic materials with piezoelectric effects can be found
in [16, 17, 18, 21, 22] and, more recently in [1, 10, 20]. Dynamical contact
problems involving elastic or viscoelastic materials without piezoelectric ef-
fect have received considerable attention in the mathematical literature, see
for instance [3, 12, 4, 13, 14] and the references therein. Currently, there is
a considerable interest in frictional contact problems involving piezo-electric
materials, see for instance [2, 15] and the references therein. Indeed, contact
is an essential feature of any process in which parts and components of ma-
chinery or equipment are in relative motion and friction often accompanies
contact, causing wear and tear of contact surfaces and, thereby, reducing the
overall performance and reliability of the equipment. However, there exists
virtually no mathematical results about contact problems for such materials
and there is a need to expand the emerging Mathematical Theory of Con-
tact Mechanics to include the coupling between the mechanical and electrical
properties. More recently, some static, quasi-static and dynamical contact
problems for piezoelectric body were considered in [6, 7, 5].

The aim of present paper is to study the process of dynamical frictional
contact between a piezoelectric body which is acted upon by volume force and
surface tractions, and an obstacle, the so-called foundation, which is electri-
cally nonconducting. So, we assume that the process is dynamic and use the
Tresca model for the frictional contact problem. We present weak formula-
tion of the model which consists of a system coupling a variational inequality
for the displacement field and a time-dependent variational equation for the
electric field and show the existence and uniqueness of the weak solution to
model. Such result extend the result obtained in [3] where the analysis of
friction in dynamic elasticity materials was provided. Indeed, with respect to
the model in [3], the novelty of this paper consists in the fact that here we
take into account the piezoelectric properties of the material, which leads to
a new and more sophisticate mathematical model.

The rest of the paper is structured as follows. The model of the contact
dynamic process of the linear piezoelectric body is presented in Section 2. In
Section 3 we list the assumptions on the problem data, derive the variational
formulation of the problem and state our main result, Theorem 3.1. The proof
of the Theorem 3.1 is presented in Sections 4. It is based on a regularization
method, Galerkin method, compactness and lower semicontinuity arguments.
In Section 5, we consider a piezo-viscoelastic law with a small viscosity param-
eter η > 0, and prove that the unique solution of piezo-viscoelastic problem
converge when η → 0 to the unique solution of piezo-elastic problem.

2. Problem statement

We consider a body made of a piezoelectric material which occupies in
the reference configuration the domain Ω ⊂ Rd, d = 1, 2, 3, which will be
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supposed bounded with a smooth boundary ∂Ω = Γ. Let ν denote the unit
outer normal to Γ and let [0, T ] be time interval of interest, where T > 0.
We denote by x ∈ Ω ∪ Γ and t ∈ [0, T ] the spatial and the time variable,
respectively, and, to simplify the notation, we do not indicate in what follows
the dependence of various functions on x and t. Everywhere in this paper
i, j, k, l run from 1 to d, summation over repeated indices is implied and the
index that follows a comma represents the partial derivative with respect to
the corresponding component of the spatial variable. Moreover, the dot above
represents the derivative with respect to the time variable.

Everywhere below we use Sd to denote the space of second order symmet-
ric tensors on Rd while “ · ” and | · | will represent the inner product and the
Euclidean norm on Sd and Rd, that is

u · v = uivi, |v| = (v · v)1/2, ∀u,v ∈ R
d,

σ · τ = σijτij , |τ | = (τ · τ )1/2, ∀σ, τ ∈ S
d.

We use also the notations uν and uτ for the normal and tangential displace-
ment, that is uν = u ·ν and uτ = u−uνν. We also denote by σν and στ the
normal and tangential stress given by σν = σν · ν, στ = σν − σνν.

In addition, we shall use the following notations:

• u = (ui) – the displacements field;
• ε = ε(u) = (εij(u)) – the linearized strain tensor, that is εij(u) =

1
2 (ui,j + uj,i);

• σ = (σij) – the stress tensor;
• ϕ – the electric potential;
• E = E(ϕ) = (Ei(ϕ)) – the electric field, that is Ei(ϕ) = −ϕ,i;
• D = (Di) – the electric displacement field.

Mathematically, a coupled phenomenon of electromechanical interaction can
be appropriately described by the system of partial differential equations (see
[20, 21, 22]) which includes the equation of motion for continuum media

(2.1) ρ ü − Div σ = f0 in Ω × (0, T ),

and the static equation for a piezoelectric medium in the acoustic range of
frequencies, i.e. the equation of forced electrostatics for dielectrics

(2.2) divD = q0 in Ω × (0, T ),

where ρ > 0 is the density, f0 represents the density of body forces and q0
is the volume density of free electric charges. Notice also that Div and div
represent the divergence operators for tensor and vector valued functions, that
is

Div σ = (σij,j), div D = (Di,i).

The constitutive relations for the piezoelectric material are

(2.3) σ = Aε(u) − E∗E(ϕ) in Ω × (0, T ),
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(2.4) D = Eε(u) + βE(ϕ) in Ω × (0, T ),

where A = (aijkl) is a (fourth-order) elasticity tensor, E = (eijk) is the (third-
order) piezoelectric tensor, β = (βij) is the electric permittivity tensor and
E∗ will be denote the transposite of the tensor E given by

Eσ · v = σ · E∗v ∀σ ∈ S
d, v ∈ R

d.

The relations (2.3)-(2.4) may be written in components as

σij = aijklεkl(u) − EkijEk(ϕ) and Di = Eijkεjk(u) + βijEj .

Notice that (2.3)-(2.4) represents an electro-elastic constitutive law. The
equality shows that the mechanical properties of the materials are described by
an elastic constitutive relation (for more details, see [3, 8, 9, 10, 20, 12, 11, 12]
for elastic and viscoelastic cases) and, moreover, it takes into account the
dependence of the stress field on the electric field. Relation (2.4) describes a
linear dependence of the electric displacement field on the strain and electric
fields; such kind of relations have been frequently considered in the literature,
see for instance [1, 10, 16, 17] and the references therein.
Next, to complete the model, we need to prescribe the mechanical and elec-
trical boundary conditions. To this end, we consider first a partition of Γ
into three disjoints measurable parts Γ1,Γ2,Γ3 such that meas(Γ1) > 0. We
assume that the body is clamped on Γ1 and surfaces traction of density f2

act on Γ2, that is:

(2.5) u = 0 on Γ1 × (0, T ),

(2.6) σν = f2 on Γ2 × (0, T ).

On Γ3 the body can arrive in frictional contact with an obstacle, the so-called
foundation which is electrically nonconducting and the contact is given by:

(2.7)



















(a) σν = −S, S ≥ 0, on Γ3 × (0, T ),

(b) στ = −Sµ
u̇τ

|u̇τ |
if u̇τ 6= 0 on Γ3 × (0, T ),

(c) |στ | ≤ Sµ if u̇τ = 0 on Γ3 × (0, T ).

These equations represent the Tresca model, i.e. the contact surface is given
and we impose a non-positive normal stress −S. Relations (2.7) assert that
the tangential stress is bounded by the normal stress multiplied by the value
of the friction coefficient µ. If such a limit is not attained, sliding does not
occur.

Now, to describe the electric boundary conditions we assume that Γ is
divided into two disjoints measurable parts Γa and Γb such thatmeas(Γa) > 0.
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We also assume, for simplicity, that the electrical potential vanishes on Γa and
the electric charge is prescribed on Γb. Thus, we use the conditions:

(2.8) ϕ = 0 on Γa × (0, T ),

(2.9) D · ν = q2 on Γb × (0, T ),

where q2 represents the given density of the surface electric charges.
Finally, to complete the model, we prescribe the initial displacement and

velocity in Ω, that is

(2.10) u(0) = u0, u̇(0) = v0 in Ω,

where u0 and v0 are given.
Our main goal here is to prove existence and uniqueness of weak solution

to the following problem

Problem P . Find a displacement field u : Ω× [0, T ] → Rd, a stress field
σ : Ω × [0, T ] → Sd, an electric potential field ϕ : Ω × [0, T ] → R and an
electric displacement field D : Ω × [0, T ] → Rd such that (2.1)–(2.10) hold.

In the next section we derive a variational formulations of the problem
P and we investigate his solvability. Notice also that the contact frictional
conditions (2.7) do not involve the electrical unknowns, that is they represent
purely mechanic boundary conditions. An important extension of the result
presented in this paper would allow mixed electrical and mechanical condition
on the contact surface and will be presented in a forthcoming paper.

3. Preliminaries and main results

Everywhere in what follows we use the usual notation for the Lp and
Sobolev spaces associated to Ω and Γ. Let X be a Banach space, T a positive
real number and 1 ≤ p ≤ ∞, denotes by Lp(0, T ;X) the Banach space of all
measurable functions u :]0, T [→ X such that t→ ‖u(t)‖X is in Lp(0, T ) with
the norm

‖u‖p = (

∫ T

0

‖u(t)‖p
X dt)

1

p , if 1 ≤ p <∞

and if p = ∞

‖u‖∞ = ess supt∈[0,T ]‖u(t)‖X ·

For k = 1, 2, . . . , we also use de classical notations for the W k,p(0, T ;X).
Thus, keeping in mind the boundary condition (2.5), we introduce the closed
subspace of [H1(Ω)]d defined by

V = { v = (vi) | vi ∈ H1(Ω), v = 0 on Γ1 }.

For the stress filed we use the spaces

Q = { τ = (τij) | τij = τji ∈ L2(Ω) },
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Q1 = { τ ∈ Q | τij,j ∈ L2(Ω) }.

Recall that the spaces Q and Q1 are real Hilbert spaces endowed with the
inner products

(σ, τ )Q =

∫

Ω

σijτij dx,

(σ, τ )Q1
= (σ, τ )Q + (Div σ,Div τ )L2(Ω)d

and the associated norms ‖ · ‖Q and ‖ · ‖Q1
, respectively. Over the space V

we use the inner product

(3.1) (u,v)V = (ε(u), ε(v))Q

and let ‖·‖ be the associated norm. Sincemeas(Γ1) > 0, it follows from Korn’s
inequality (see e.g. [19] p.79) that ‖ · ‖ and ‖ · ‖[H1(Ω)]d are equivalent norms

on V , thus (V, (·, ·)V ) is a real Hilbert space. Let us denote H := [L2(Ω)]d

endowed with the inner product

(u,v) :=

∫

Ω

ρu · v dx, ∀ u, v ∈ H,

which generates an equivalent norm (by using (3.10)) denoted by | · |. Since

V is dense in H , we identify H and H
′

and we write V ⊂ H ≡ H
′

⊂ V
′

.
Next, for the electric potential field and the electric displacement field we

use respectively the functional spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }

and

W = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

The spaces W and W are real Hilbert spaces with the inner products

(ϕ, ψ)W = (ϕ, ψ)H1(Ω),

(D,E)W = (D,E)L2(Ω)d + (div D, div E)L2(Ω)

and the associated norms ‖ · ‖W and ‖ · ‖W respectively and since W is dense

in L2(Ω), we write W ⊂ L2(Ω) ⊂W
′

.
In the study of Problem P we assume that the elasticity tensor A, the

piezoelectric tensor E and the electric permittivity tensor β satisfy:

(3.2)



























(a) A = (aijkl) : Ω × Sd → Sd.

(b) aijkl = aklij = ajikl ∈ L∞(Ω).

(c) ∃mA > 0 such that aijklεijεkl ≥ mA|ε|
2

∀ ε ∈ Sd, a.e. in Ω.

(3.3)

{

(a) E = (eijk) : Ω × Sd → Rd.

(b) eijk = eikj ∈ L∞(Ω).
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(3.4)



























(a) β = (βij) : Ω × R
d → R

d.

(b) βij = βji ∈ L∞(Ω).

(c) ∃mβ > 0, such that βijEiEj ≥ mβ |E|2

∀E ∈ Rd, a.e. in Ω.

We denote by a : V × V −→ R and b : W ×W −→ R the following bilinear
and symmetric applications

a(u,v) := (Aε(u), ε(v))Q, b(ϕ, ψ) := (β∇ϕ,∇ψ)L2(Ω)d

We also denote by e : V ×W −→ R the following bilinear application

e(v, ψ) := (Eε(v),∇ψ)L2(Ω)d = (E∗∇ψ, ε(v))Q

Then from (3.1)-(3.4) we find MA > 0, ME > 0 and Mβ > 0 such that

(3.5) |a(u,v)| ≤MA‖u‖‖v‖, ∀u,v ∈ V,

(3.6) |b(ϕ, ψ)| ≤Mβ‖ϕ‖W ‖ψ‖W , ∀ϕ, ψ ∈ W,

(3.7) |e(v, ψ)| ≤ME‖v‖ ‖ψ‖W , ∀v ∈ V, ∀ψ ∈ W.

From (3.2), (3.4), Korn inequality and Poincaré inequality we deduce that
there exists mA > 0 and mb > 0 such that

(3.8) a(v,v) ≥ mA||v||
2, b(ψ, ψ) ≥ mb||ψ||

2
W , ∀v ∈ V, ∀ψ ∈W.

The friction coefficient µ : Γ3 7→ R+ is assumed to satisfy

(3.9) µ(s) ≥ 0 for all s ∈ Γ3 and µ ∈ L∞(Γ3).

For the density and the normal stress we suppose that the following conditions
are satisfied
(3.10)

ρ ∈ L∞(Ω) and there exists ρ0 such that 0 < ρ0 ≤ ρ(x), a.e. x ∈ Ω

and

(3.11) S(s) ≥ 0 for all s ∈ Γ3 and S ∈ L∞(Γ3).

The body forces and the surface tractions have the regularity

(3.12) f0 ∈W 2,2(0, T ;L2(Ω)d), f2 ∈W 2,2(0, T ;L2(Γ2)
d).

The volume and surface densities of the electric charges satisfy

(3.13) q0 ∈W 2,2(0, T ;L2(Ω)), q2 ∈ W 2,2(0, T ;L2(Γb)).

The initial conditions satisfy

(3.14) u0, v0 ∈ V.
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Next, using Riesz’s representation theorem, we define the elements f(t) ∈ V
′

and q(t) ∈W
′

respectively by

(3.15) 〈f(t),v〉V ′ ,V =

∫

Ω

f0(t)·v dx+

∫

Γ2

f2(s, t)·v(s) ds−

∫

Γ3

S(s)vν(s) ds,

(3.16) 〈q(t), ψ〉W ′ ,W =

∫

Ω

q0(t)ψ dx−

∫

Γb

q2(t)ψ da,

for all v ∈ V, ψ ∈ W and t ∈ [0, T ]. Keeping in mind assumptions (3.12)-
(3.13), it follows that the integrals in (3.15)-(3.16) are well-defined and we
have the following regularities

(3.17) f ∈ W 2,2(0, T ; V
′

) and q ∈W 2,2(0, T ; W
′

)

Having in mind (3.6)-(3.8) and (3.13)-(3.14) the variational problem

b(ϕ0, ψ) = e(u0, ψ) + 〈q(0), ψ〉W ′ ,W ∀ψ ∈W

has a unique solution ϕ0 ∈W . Hence, we can define

σ(0) = σ0 = Aε(u0) − E∇ϕ0.

In addition we suppose that

(3.18) Divσ0 ∈ H and σ0 ν = f2(0) on Γ2,

and we assume that at initial time t = 0 there is no frictional process on Γ3 :

(3.19) σ0 τ = 0, v0τ = 0 on Γ3.

Relations (3.18) give the regularity of the initial data and ensure the compat-
ibility between the initial data and the boundary conditions.

Finally, we define the functional j : V 7→ R as follows:

(3.20) j(v) :=

∫

Γ3

S(s)µ(s)|vτ (s)| ds, ∀v ∈ V.

Using integration by parts, it is straightforward to see that if (u,σ, ϕ,D) are
sufficiently regular functions satisfying (2.1)-(2.10) then, for all t ∈ [0, T ], we
have

(3.21) (ü(t),w)+(σ(t), ε(w))Q =

∫

Γ3

στ (t)·wτds+〈f (t),w〉V ′ ,V , ∀ w ∈ V,

(3.22) (D(t),∇ψ)L2(Ω)d + 〈q(t), ψ〉W ′ ,W = 0, ∀ ψ ∈ W.

Keeping in mind (2.7), we find

στ · (vτ − u̇τ ) + Sµ(s)(|vτ | − |u̇τ |) ≥ 0, a.e. on Γ3 × [0, T ].

Therefore, taking w = v − u̇(t) in (3.21), we have:

(3.23) (ü(t),v − u̇(t)) + (σ(t), ε(v) − ε(u̇(t))Q + j(v) − j(u̇(t))

≥ 〈f (t),v − u̇(t)〉V ′ ,V , ∀v ∈ V, t ∈ [0, T ]
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(3.24) (D(t),∇ψ)L2(Ω)d + 〈q(t), ψ〉W ′ ,W = 0, ∀ψ ∈W, t ∈ [0, T ].

Here and below we use ∇ψ to denote the gradient of the scalar function
ψ ∈ W , that is ∇ψ = (ψ,i ). We substitute now (2.3) in (3.23), (2.4) in
(3.24), use the notation E = −∇ϕ and the initial condition (2.10) to derive the
following variational formulation of problem P , in the terms of displacement
and electric potential fields.

Problem PV . Find the displacement field u : [0, T ] → V and the electric
potential ϕ : [0, T ] →W such that

(3.25) (ü(t),v − u̇(t)) + a(u(t),v − u̇(t)) + e(v − u̇(t), ϕ(t))

+j(v) − j(u̇(t)) ≥ 〈f(t),v − u̇(t)〉V ′ ,V ∀v ∈ V, t ∈ [0, T ],

(3.26) b(ϕ(t), ψ) − e(u(t)), ψ) = 〈q(t), ψ〉W ′ ,W ∀ψ ∈W, t ∈ [0, T ],

(3.27) u(0) = u0, u̇(0) = v0.

The main result of this section is the following:

Theorem 3.1. Assume that (3.2)-(3.4), (3.9)-(3.14) and (3.18)-(3.19)
hold. Then there exists a unique solution (u, ϕ) of Problem PV such that

(3.28) u ∈W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H), ϕ ∈W 1,∞(0, T ;W ).

A “quadruple” of functions (u, σ, ϕ, D) which satisfy (2.3)-(2.4), (3.25)-
(3.27) is called a weak solution of the piezoelectric contact problem P . We
conclude by Theorem 3.1 that, under the assumptions (3.2)-(3.4), (3.9)-(3.14)
and (3.18)-(3.19), there exists a unique weak solution of Problem P .

4. Proof of Theorem 3.1

The proof of Theorem 3.1 will be carried out in several steps. First, we
prove the uniqueness result.

Uniqueness. Let consider two solutions (u1, ϕ1), (u2, ϕ2) to problem
PV with the regularity (3.28) and write w(t) = u2(t) − u1(t) and φ(t) =
ϕ2(t) − ϕ1(t). If we write the variational inequality (3.25) successively for
(u1, ϕ1) and (u2, ϕ2), taking v = u̇2(t) in the first inequality and v = u̇1(t)
in the second one, and add the resulting inequalities, we obtain

(4.1) (ẅ(t), ẇ(t)) + a(w(t), ẇ(t)) + e(ẇ(t), φ(t)) ≤ 0, ∀ t ∈ (0, T ).

We can easily deduce from variational equality (3.26) that

(4.2) e(w(t), ψ) = b(φ(t), ψ) , ∀ t ∈ (0, T ), ∀ ψ ∈W,

which implies that

(4.3) e(ẇ(t), φ(t)) = b(φ̇(t), φ(t)) , ∀ t ∈ (0, T ).
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Then, from (4.1) and (4.3) we have

(4.4)
1

2

d

dt

(

|ẇ(t)|2 + a(w(t),w(t)) + b(φ(t), φ(t))
)

≤ 0, ∀ t ∈ (0, T ).

Using w(0) = 0, (4.2) with ψ = φ(0) and t = 0, and coercivity of the bilinear
form b(·, ·) we get φ(0) = 0. Since w(0) = ẇ(0) = 0, φ(0) = 0, we deduce
from the above inequality that w = 0 and φ = 0, ∀t ∈ [0, T ].

Existence. Firstly, by using Riesz’s representation theorem we find the
operators: B : W →W

′

, Θ : V →W
′

and Θ∗ : W → V
′

defined by:

(4.5) 〈Bϕ,ψ〉W ′W = b(ϕ, ψ), ∀ψ ∈W,

(4.6) 〈Θv, ψ〉W ′ ,W = (Eε(v),∇ψ)L2(Ω)d = e(v, ψ) ∀ψ ∈W,

(4.7) 〈Θ∗ϕ,v〉V ′ ,V = (E∗∇ϕ, ε(v))Q = e(v, ϕ) ∀v ∈ V

where Θ∗ is the adjoint of Θ. Having in mind (3.4) we observe that B is
positive definite-adjoint operator.

Now, we prove the following equivalence result.

Lemma 4.1. The couple (u, ϕ) is a solution to problem PV if only if

(ü(t),v−u̇(t))+a(u(t),v−u̇(t))+〈Θ∗B−1Θu(t),v−u̇(t)〉V ′ ,V +j(v)−j(u̇(t))

(4.8) ≥ 〈f (t) − Θ∗B−1q(t),v − u̇(t)〉V ′ ,V , ∀v ∈ V, ∀ t ∈ [0, T ],

(4.9) u(0) = u0, u̇(0) = v0,

(4.10) ϕ(t) = B−1Θu(t) +B−1q(t), ∀ t ∈ [0, T ].

Proof. Let (u, ϕ) be a solution of PV . We solve the equation (3.26) on
u(t). To this end, let u ∈ C(0, T ;V ) and find ϕ : [0, T ] →W such that

(4.11) b(ϕ(t), ψ) = e(u(t), ψ) + 〈q(t), ψ〉W ′ ,W , ∀ψ ∈W, ∀ t ∈ [0, T ].

It follows from (3.4) that the bilinear form b(·, ·) is continuous, symmetric
and coercive on W . Moreover, keeping in mind the assumption (3.3) on the
piezoelectric tensor E it follows that the linear form defined on W by:

ψ 7→ (Eε(u(t)),∇ψ)L2(Ω)d + 〈q(t), ψ〉W ′ ,W

is continuous on W and belong to C(0, T ;W
′

). Using the Lax-Milgram theo-
rem, we conclude that the equation (4.11) has unique solution ϕ ∈ C(0, T ;W ).

Thus, using the equations (4.5), (4.6) and (4.7), we write equation (3.26)
in a explicit form i.e. equation (4.10) and then equation (3.25) is equivalent
to (4.8), thus the problem PV is now equivalent to: find u : [0, T ] → V and
ϕ : [0, T ] →W such that (4.8), (4.9) and (4.10) are satisfied.
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Now, to show the global existence of solution u of the problem (4.8) - (4.9).
To this end, we will use the Faedo-Galerkin’s and compactness methods. Let
us consider (φi)i∈IN ∈ V a sequence of linear independent functions such that
V = ∪∞

m=1V
m where V m = Span{φ1, φ2, . . . , φm}. We shall suppose that V m

is chosen such that for m large enough we have u0 and v0 belong to V m.
We also consider, for all ǫ > 0, the family of convex and differentiable

functions ψǫ : R
d → R given by

ψǫ(v) =
√

|v|2 + ǫ2 − ǫ, v ∈ R
d.

It is easy to show that such a family of functions satisfies:

(4.12) 0 ≤ ψǫ(v) ≤ |v|, ∀v ∈ R
d,

(4.13) |ψǫ(v) − |v|| ≤ ǫ, ∀v ∈ R
d,

and

(4.14) ψ
′

ǫ(v)(w) =
v · w

√

|v|2 + ǫ2
, ∀v,w ∈ R

d.

From equation (4.14), we have

(4.15) |ψ
′

ǫ(v)(w)| ≤ |w|, ∀v,w ∈ R
d,

We then define a family of regularized frictional functional jǫ : V → R by

(4.16) jǫ(v) =

∫

Γ3

S(s)µ(s)ψǫ(vτ (s)) ds, ∀v ∈ V.

The functionals jǫ are Gâteaux-differentiable with respect to v and represent
an approximation of j, i.e. there exists a constant C such that

(4.17) |jǫ(v) − j(v)| ≤ Cǫ, ∀v ∈ V.

We denote by Jǫ : V → V
′

the derivative of jǫ given by

(4.18) < Jǫ(v),w >V ′ , V =

∫

Γ3

S(s)µ(s)ψ
′

ǫ(vτ (s)(wτ (s)) ds, ∀v,w ∈ V.

Now, we define the regularized problem associated to (4.8)-(4.9) in finite-
dimensional spaces: find um

ǫ : [0, T ] → Vm such that:

(4.19) (üm
ǫ (t),v)+a(um

ǫ (t),v)+〈Θ∗B−1Θum
ǫ (t),v〉V ′ ,V +〈Jǫ(u̇

m
ǫ (t),v〉V ′ ,V

= 〈f (t) − Θ∗B−1q(t),v〉V ′ ,V , ∀v ∈ V m, ∀ t ∈ [0, T ].

(4.20) um
ǫ (0) = u0, u̇m

ǫ (0) = v0,

Since v → Jǫ(v) is Lipschitz continuous on V m we deduce that for all ǫ > 0
and m ∈ N the problem(4.19)-(4.20) has an unique global solution um

ǫ ∈
C2(0, T ; V m).

In the next, we provide convergence result involving the sequences {um
ǫ }.

To this end, we need a priori estimates to pass to the limit as ǫ → 0 and
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m → ∞. To simplify the exposition, we omit the indices m and ǫ whenever
it is unambiguous. We have the following estimates:

Estimate I. Since 〈Jǫ(v),v〉V ′ , V ≥ 0 for all v ∈ V , therefore if we take

v = u̇(t) in (4.19), we obtain

(4.21)
1

2

d

dt

(

|u̇(t)|2+a(u(t),u(t))+〈Θ∗B−1Θu,u〉V ′ , V

)

≤ 〈h(t), u̇(t)〉V ′ , V

where h(t) = f (t)−Θ∗B−1q(t). We observe that there exists α > 0 such that

(4.22) 〈Θ∗B−1Θu,u〉V ′ , V = 〈Θu, B−1Θu〉W ′
×W ≥ α‖Θu‖2

W ′

If we integrate this inequality over (0, t) and we use the coercivity of the form
a(·, ·) and (4.22) then we find

|u̇(t)|2+mA‖u(t)‖2+α‖Θu(t)‖2
W ′ ≤ |v0|

2+a(u0,u0)+〈Θ∗B−1Θu0,u0〉V ′ , V

+2〈h(t),u(t)〉V ′ , V − 2〈h(0),u0〉V ′ , V − 2

∫ t

0

〈ḣ(θ),u(θ)〉V ′ , V dθ

Now, by using the assumptions on the data and Gronwall’s inequality, it is
straightforward to obtain the following estimates

(4.23)

{

{um
ǫ }m, ǫ is bounded in L∞(0, T ; V )

{u̇m
ǫ }m, ǫ is bounded in L∞(0, T ; H)

Estimate II. Differentiating the equation (4.19) with respect to t and
replacing v by ü(t) we have

(
...
u(t), ü(t)) + a(u̇(t), ü(t)) + 〈Θ∗B−1Θu̇(t), ü(t)〉V ′ , V

+〈
d

dt
Jǫ(u̇(t)), ü(t)〉V ′ , V = 〈ḣ(t), ü(t)〉V ′ , V .(4.24)

Since

〈
d

dt
Jǫ(u̇(t)), ü(t)〉V ′ , V

=

∫

Γ3

S(s)µ(s)

(|u̇τ |2 + ǫ2)
3

2

[

|üτ |
2|u̇τ |

2 − (u̇τ · üτ )2 + ǫ2|üτ |
2
]

ds ≥ 0,

the equation (4.24) implies that
(4.25)
1

2

d

dt

(

|ü(t)|2 + a(u̇(t), u̇(t)) + 〈Θ∗B−1Θu̇(t), u̇(t)〉V ′ , V

)

≤ 〈ḣ(t), ü(t)〉V ′ , V
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Now, using coercivity of the form a(·, ·) together with (4.22) and integrating
over (0, t), 0 ≤ t ≤ T , we get

|ü(t)|2 +mA‖u̇(t)‖2 + α‖Θu(t)‖2

≤ |ü(0)|2 + a(v0,v0) + 〈Θ∗B−1Θv0,v0〉V ′ , V + 2〈ḣ(t), u̇(t)〉V ′ , V(4.26)

−2〈ḣ(0),v0〉V ′ , V − 2

∫ t

0

〈ḧ(s), u̇(s)〉V ′ , V ds.

In order to estimate |ü(0)|, we put t = 0 in (4.19) and use (4.20) to find

(ü(0),v)+a(u0,v)+ 〈Θ∗B−1Θu0,v〉V ′ , V + 〈Jǫ(v0),v〉V ′ , V = 〈h(0),v〉V ′ , V ,

for all v ∈ V m. Keeping in mind (3.19) we have 〈Jǫ(v0),v〉V ′ , V = 0 and
therefore

(4.27) (ü(0),v) = −a(u0,v) − 〈Θ∗B−1Θu0,v〉V ′ , V + 〈h(0),v〉V ′ , V ,

for all v ∈ V m. Using the definition of h(0), (4.10) and (4.27) we get

(ü(0),v) = (Div σ0 + f0(0),v)H , ∀v ∈ V m

which implies

ρü(0) = Div σ0 + f0(0) a.e. in Ω.

Hence, |ü(0)| is bounded. Therefore, from equation (4.26) and assumptions
in data, we can show that there exists C > 0 such that

(4.28) |ü(t)|2 + ‖u̇(t)‖2 ≤ C + C

∫ t

0

(|ü(θ)|2 + ‖u̇(θ)‖2 )dθ.

Now, by using the Gronwall’s inequality, it is straightforward to find the
following estimates:

(4.29)

{

{u̇m
ǫ }m, ǫ is bounded in L∞(0, T ; V )

{üm
ǫ }m, ǫ is bounded in L∞(0, T ; H)

Passage to the limit in m and ǫ. The a priori estimates (4.23) and (4.29)
are used now to deduce that there exists u ∈ W 1,∞(0, T ; V )∩W 2,∞(0, T ; H),
and a subsequence of {um

ǫ }m, ǫ such that for m→ ∞ and ǫ→ 0, we have:

um
ǫ → u and u̇m

ǫ → u̇ weak * in L∞(0, T ; V ),

üm
ǫ → ü weak * in L∞(0, T ; H),

Since W 1,∞(0, T ; V ) →֒ C([0, T ]; V ) we deduce that um
ǫ (T ) → u(T ) weakly

in V . Now, if we denote QT = Ω × (0, T ), we obtain from (4.23) and (4.29)
that

{um
ǫ }ǫ,m and {u̇m

ǫ }ǫ,m are bounded in [H1(QT )]d.
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Keeping in mind that ∂QT =
(

∂Ω×]0, T [
)

∪
(

Ω×{0}
)

∪
(

Ω×{T }
)

and since

the trace map from H1(QT ) to L2(∂QT ) is completely continuous, we find

(4.30)



















(a) um
ǫ → u, u̇m

ǫ → u̇ strongly in L2(Γ×]0, T [)d,

(b) um
ǫ (T ) → u(T ), u̇m

ǫ (T ) → u̇(T ) strongly in H,

(c) um
ǫ (0) → u(0), u̇m

ǫ (0) → u̇(0) strongly in H.

We prove now that u is a solution of a variational problem (4.8)-(4.9).
To this end, let w ∈ L2(0, T ; V ) and {wm} ⊂ L2(0, T ; Vm) such that wm →
w strongly in L2(0, T ; V ). Let us remark that the convexity of jǫ and the
inequality (4.17) imply that

(4.31) 〈Jǫ(z),w− z〉V ′ ,V ≤ jǫ(w)− jǫ(z) ≤ j(w)− j(z)+ 2Cǫ, ∀ z,w ∈ V

If we use the inequality (4.31), we take v = wm(t) − u̇m
ǫ (t) in (4.19) and

integrate (4.19) from 0 to T , we get

2CTǫ+

∫ T

0

(

(üm
ǫ (t),wm(t) − u̇m

ǫ (t)) + a(um
ǫ (t),wm(t) − u̇m

ǫ (t))
)

dt

+

∫ T

0

〈Θ∗B−1Θum
ǫ (t),wm(t) − u̇m

ǫ (t)〉V ′ , V dt

+

∫ T

0

(

j(wm(t)) − j(u̇m
ǫ (t))

)

dt

≥

∫ T

0

〈f(t) − Θ∗B−1q(t),wm(t) − u̇m
ǫ (t)〉V ′ , V dt.

The last inequality implies

2ǫCT +

∫ T

0

(

(üm
ǫ (t),wm(t)) + a(um

ǫ (t),wm(t))

+〈Θ∗B−1Θum
ǫ (t),wm(t)〉V ′ , V

)

dt(4.32)

+
1

2

(

|v0|
2 − |u̇m

ǫ (T )|2 + a(u0,u0) + 〈Θ∗B−1Θu0,u0〉V ′ ,V

)

+

∫ T

0

(

j(wm(t)) − j(u̇m
ǫ (t))

)

dt−

∫ T

0

〈h(t),wm(t) − u̇m
ǫ (t)〉V ′ , V dt

≥
1

2

(

a(um
ǫ (T ),um

ǫ (T )) + 〈Θ∗B−1Θum
ǫ (T ),um

ǫ (T )〉V ′ , V

)

.

Since wm → w strongly in L2(0, T ; V ) then having in mind (4.30) we find

∫ T

0

(

j(wm(t)) − j(u̇m
ǫ (t))

)

dt →

∫ T

0

(

j(w(t)) − j(u̇(t))
)

dt.
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Thus the left member of the inequality (4.32) has a limit when ǫ → 0 and
m→ ∞, if we pass to lower limit in (4.32) with ǫ→ 0 and m→ ∞ we have

∫ T

0

(

(ü(t),w(t)) + a(u(t),w(t)) + 〈Θ∗B−1Θu,w(t)〉V ′ , V

)

dt

+
1

2

(

|v0|
2 − |u̇(T )|2 + a(u0,u0) + 〈Θ∗B−1Θu0,u0〉V ′ , V

)

(4.33)

+

∫ T

0

(

j(w(t)) − j(u̇(t))
)

dt−

∫ T

0

〈h(t),w(t) − u̇(t)〉V ′ , V dt

≥
1

2
lim

m→+∞,ǫ→0
inf

(

a(um
ǫ (T ),um

ǫ (T )) + 〈Θ∗B−1Θum
ǫ (T ),um

ǫ (T )〉V ′ , V

)

≥
1

2

(

a(u(T ),u(T )) + 〈Θ∗B−1Θu(T ),u(T )〉V ′ ,V

)

.

From this inequality, we find
∫ T

0

(

(ü(t),w(t)−u̇(t))+a(u(t),w(t)−u̇(t))+〈Θ∗B−1Θu(t),w(t)−u̇(t)〉V ′ ,V

)

dt

+

∫ T

0

(

j(w(t)) − j(u̇(t))
)

dt ≥

∫ T

0

〈f(t) − Θ∗B−1q(t),w(t) − u̇(t)〉V ′ , V dt.

From the last inequality and uniqueness result we deduce that u is the unique
solution of the variational problem (4.8)-(4.9).

Finally, we define ϕ by (4.10) and taking in mind Lemma 4.1, it is now
easy to show that (u, ϕ) is the unique solution of Problem PV .

5. Asymptotic behavior for vanishing viscosity

In this section we consider a viscous perturbation of problem P . To
this end let η > 0 be a small viscosity parameter and let us replace the
piezoelectric law (2.3)-(2.4) in P with the following linear piezo-viscoelastic
constitutive equations (see [7]), (for the case where the constitutive equation
is viscoelastic without piezoelectricity effect see ([3, 11])):

(5.1) ση = Aε(uη) + η Cε(u̇η) − E∗E(ϕη) in Ω × (0, T ),

(5.2) Dη = Eε(uη) + βE(ϕη) in Ω × (0, T ),

where C = (cijkl) is a (fourth-order) viscosity tensor which is bounded, sym-
metric and positively defined, i.e.

(5.3) cijkl ∈ L∞(Ω), C(x)ε · σ = C(x)σ · ε, C(x)ε · ε ≥ c0|ε|
2

a.e x ∈ Ω, ∀ i, j, k, l = 1, . . . , d and for all σ, ε ∈ Sd.
The viscous piezoelectric problem P η is as follows

Problem P η. Find a displacement field uη : Ω × [0, T ] → Rd, a stress
field ση : Ω × [0, T ] → Sd, an electric potential field ϕη : Ω × [0, T ] → R and
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an electric displacement field Dη : Ω× [0, T ] → Rd such that (5.1)-(5.2),(2.1)-
(2.2) and (2.5)-(2.10) hold.

Now, if we denote by c : V × V → R the following bilinear, symmetric
and coercive application:

(5.4) c(u,v) :=

∫

Ω

Cε(u) · ε(v) dx := (Cε(u), ε(v))Q,

then the variational formulation of P η is:

Problem P
η
V . Find the displacement field uη : [0, T ] → V and the electric

potential ϕη : [0, T ] →W such that ∀v ∈ V, ∀ψ ∈W, ∀ t ∈ [0, T ]

(üη(t),v − u̇η(t)) + a(uη(t),v − u̇η(t)) + η c(u̇η(t),v − u̇η(t))(5.5)

+e(v − u̇η(t), ϕη(t)) + j(v) − j(u̇η(t)) ≥ 〈f (t),v − u̇η(t)〉V ′ ,V

(5.6) b(ϕη(t), ψ) − e(uη(t)), ψ) = 〈q(t), ψ〉W ′ ,W

(5.7) uη(0) = u0, u̇η(0) = v0.

We shall add the following condition:

(5.8) there exists v1 ∈ H such that c(v0, v) = (v1, v) ∀v ∈ V.

We have the following existence and uniqueness result:

Theorem 5.1. Assume that (5.1)-(5.3), (3.2)-(3.4), (3.9)-(3.14) and
(3.18)-(3.19) hold. Then, for all η > 0, there exists a unique solution (uη, ϕη)
of Problem P

η
V such that

(5.9) uη ∈W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H) and ϕη ∈W 1,∞(0, T ;W ).

In addition, if we assume that (5.8) hold. Then there exists a subsequence of
{uη, ϕη}η, denoted again by {uη, ϕη}η, such that when η → 0 we have

uη → u and u̇η → u̇ weak * in L∞(0, T ; V ),

üη → ü weak * in L∞(0, T ; H),

ϕη → ϕ and ϕ̇η → ϕ̇ weak * in L∞(0, T ; W )

where the couple (u, ϕ) is the unique solution of PV ..

Proof. The proof of Theorem 5.1 will be carried out in several steps.
Uniqueness. For all η > 0 we have η c(u̇, u̇) ≥ 0 then the uniqueness

result of Theorem 5.1 is proved in the same way that in Section 4.
Existence. In order to prove the existence result, we start with the

following equivalence result.
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Lemma 5.2. Let η > 0. The couple (uη, ϕη) is a unique solution to
problem P

η
V if only if for all v in V we have:

(üη(t),v − u̇η(t)) + a(uη(t),v − u̇η(t)) + η c(u̇η(t),v − u̇η(t))(5.10)

+〈Θ∗B−1Θuη(t),v − u̇η(t)〉V ′ ,V + j(v) − j(u̇η(t))

≥ 〈f(t) − Θ∗B−1q(t),v − u̇η(t)〉V ′ ,V ,

(5.11) ϕη(t) = B−1Θuη(t) +B−1q(t), ∀ t ∈ [0, T ].

with the initials conditions (5.7).

Let us observe that this lemma can be proved in the same way that Lemma
4.1.

Now, as in Section 4, we consider the regularized problem of (5.10) with
the initials conditions (5.7): find uǫη : [0, T ] → V such that

(üǫη(t),v) + a(uǫη(t),v) + η c(u̇ǫη(t),v) + 〈Θ∗B−1Θuǫη(t),v〉V ′ ,V(5.12)

+〈Jǫ(u̇ǫη(t),v〉V ′ ,V

= 〈f (t),v〉V ′ ,V − 〈Θ∗B−1q(t),v〉V ′ ,V , ∀v ∈ V , ∀ t ∈ [0, T ],

(5.13) uǫη(0) = u0, u̇ǫη(0) = v0.

Estimate I. Since 〈Jǫ(v),v〉V ′ , V ≥ 0 for all v ∈ V , if we take v = u̇ǫη

in (5.12), we obtain

1

2

d

dt

(

|u̇ǫη(t)|2 + a(uǫη(t),uǫη(t)) + 〈Θ∗B−1Θuǫη,uǫη〉V ′ , V

)

(5.14)

+η c(u̇ǫη(t), u̇ǫη(t)) ≤ 〈h(t), u̇ǫη(t)〉V ′ , V

where h(t) = f(t) − Θ∗B−1q(t). Using the same techniques of Section 4, we
can easily deduce:

(5.15) ‖uǫη(t)‖ + |u̇ǫη(t)| ≤ C, η

∫ T

0

‖u̇ǫη(t)‖2 dt ≤ C.

Estimate II. Setting v = üǫη(t) in (5.12) we obtain

|üǫη(t)|2 + a(uǫη(t), üǫη(t)) + 〈Θ∗B−1Θuǫη(t), üǫη(t)〉V ′ , V(5.16)

+
η

2

d

dt
c(u̇ǫη(t), u̇ǫη(t)) + 〈Jǫ(u̇ǫη(t)), üǫη(t)〉V ′ , V

= 〈h(t), üǫη(t)〉V ′ , V .

We have

〈Jǫ(u̇(t)), ü(t)〉V ′ , V =

∫

Γ3

S(s)µ(s)Ψ
′

ǫ(u̇ǫη τ (t))(üǫη τ (t))ds

=

∫

Γ3

S(s)µ(s)
∂

∂t
Ψǫ(u̇ǫη τ (t))ds.
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Now, using coercivity of the form c(·, ·), the last equality and integrating over
(0, t), 0 ≤ t ≤ T , the equation (5.16) we get

∫ t

0

|üǫη(θ)|2 dθ + C
η

2
‖u̇ǫη(t)‖2 ≤

η

2
c(v0,v0)

−

∫ t

0

a(uǫη(θ), üǫη(θ)) dθ −

∫ t

0

〈Θ∗B−1Θuǫη(θ), üǫη(θ)〉V ′ , V dθ(5.17)

+

∫ t

0

〈h(θ), üǫη(θ)〉V ′ , V dθ −

∫ t

0

∫

Γ3

S(s)µ(s)
∂

∂θ
Ψǫ(u̇ǫη τ (s, θ))ds dθ

After integration by parts, we obtain
∫ t

0

|üǫη(θ)|2 dθ +
η

2
‖u̇ǫη(t)‖2 ≤ C − a(uǫη(t), u̇ǫη(t))

−〈Θ∗B−1Θuǫη(t), u̇ǫη(t)〉V ′ , V + 〈h(t), u̇ǫη(t)〉V ′ , V(5.18)

+

∫ t

0

a(u̇ǫη(θ), u̇ǫη(θ)) dθ +

∫ t

0

〈Θ∗B−1Θu̇ǫη(θ), u̇ǫη(θ)〉V ′ , V dθ

−

∫ t

0

〈ḣ(θ), u̇ǫη(θ)〉V ′ , V dθ −

∫ t

0

∫

Γ3

S(s)µ(s)
∂

∂θ
Ψǫ(u̇ǫη τ (s, θ))ds dθ.

Keeping in mind (3.19), (3.9), (3.11), (4.12) and trace theorem, we have

|

∫ t

0

∫

Γ3

S(s)µ(s)
∂

∂θ
Ψǫ(u̇ǫη τ (s, θ))ds dθ|

= |

∫

Γ3

S(s)µ(s)Ψǫ(u̇ǫη τ (t)ds| ≤ C|u̇ǫη τ (t)|L2(Γ3) ≤ C‖u̇ǫη(t)‖.

Therefore, using inequalities (5.15) and (5.18), some easy Young inequalities
and assumptions on data, we get

(5.19)

∫ t

0

|üǫη(θ)|2 dθ +
η

4
‖u̇ǫη(t)‖2 ≤ C + C

∫ t

0

‖u̇ǫη(θ)‖2 dθ

where the generic constants C are depending on data and η. Using the Gron-
wall’s inequality, it is straightforward to find the following estimate: there
exists C(η) > 0 such that

(5.20) η‖u̇ǫη(t)‖2 +

∫ T

0

|üǫη(t)|2 dt ≤ C(η).

Now, using estimates (5.15) and (5.20) we prove, as in Section 4 by passing
to limit in ǫ, that for all fixed η > 0, there exists a unique solution (uη, ϕη)
of Problem P

η
V such that

uη ∈ W 1,∞(0, T ;V ) ∩W 2,2(0, T ;H) and ϕη ∈W 1,∞(0, T ;W ).
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Convergence. We note that all constants considered in the following are
independent of the viscosity parameter η. Now, differentiating the equation
(5.12) with respect to t and replacing v by üǫη(t) we have, as in Section 4

1

2

d

dt

(

|üǫη(t)|2 + a(u̇ǫη(t), u̇ǫη(t) + 〈Θ∗B−1Θu̇ǫη(t), u̇ǫη(t)〉V ′ , V

)

(5.21)

+η c(üǫη(t), üǫη(t))) ≤ 〈ḣ(t), üǫη(t)〉V ′ , V .

Now, using coercivity of the form a(·, ·) together with (4.24) and integrating
over (0, t), 0 ≤ t ≤ T , we get

|üǫη(t)|2 +mA‖u̇ǫη(t)‖2 + α‖Θu̇ǫη(t)‖2 + Cη

∫ t

0

‖üǫη(θ)‖2dθ

≤ |üǫη(0)|2 + a(v0,v0) + 〈Θ∗B−1Θv0,v0〉V ′ , V + 2〈ḣ(t), u̇ǫη(t)〉V ′ , V(5.22)

−2〈ḣ(0),v0〉V ′ , V − 2

∫ t

0

〈ḧ(θ), u̇ǫη(θ)〉V ′ , V dθ.

In order to estimate |üǫη(0)|, we put t = 0 in (5.12) and use (5.13), (5.8) to
find

ρüǫη(0) = Div σ0 + f0(0) − ηv1 a.e. in Ω.

Hence, |üǫη(0)| is bounded. Therefore, from equation (5.22) and assumptions
in data, and by using the Gronwall’s inequality, it is straightforward to find
the following estimates: there exists C > 0 such that

(5.23) ‖u̇ǫη(t)‖ + |üǫη(t)| ≤ C, η

∫ T

0

‖üǫη(t)‖2 dt ≤ C.

From estimates (5.15) and (5.23), we have

(5.24) ‖uǫη(t)‖ + ‖u̇ǫη(t)‖ + |üǫη(t)| ≤ C, η

∫ T

0

‖üǫη(t)‖2 dt ≤ C.

Now, if we pass to limit in (5.24) with ǫ→ 0 and by using the same techniques
of convergence meted in Section 4 we find

(5.25) uη ∈W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H) ∩W 2,2(0, T ;V )

which is the unique solution of (5.12)-(5.13) such that

(5.26) ‖uη(t)‖ + ‖u̇η(t)‖ + |üη(t)| ≤ C, η

∫ T

0

‖üη(t)‖2 dt ≤ C.

From (5.26), we deduce that there exists a subsequence of {uη}η (again de-
noted by {uη}η) such that when η → 0 we have

uη → u and u̇η → u̇ weak * in L∞(0, T ; V ),(5.27)

üη → ü weak * in L∞(0, T ; H),

where

(5.28) u ∈ W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;H).
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Let v ∈ L2(0, T ; V ) and pose v = v(t), then by integrating (5.10) from 0 to
T , we get

∫ T

0

(

(üη(t),v(t)) + a(uη(t),v(t)) + 〈Θ∗B−1Θuη(t),v(t)〉V ′ , V

)

dt

−

∫ T

0

(

〈h(t),v(t) − u̇η(t)〉V ′ , V + ηc(u̇η(t),v(t)) + j(v(t)) − j(u̇η(t))
)

dt(5.29)

≥

∫ T

0

(

(üη(t), u̇η(t)) + a(uη(t), u̇η(t)) + 〈Θ∗B−1Θuη(t), u̇η(t)〉V ′ , V

)

dt

=
1

2

(

|u̇η(T )|2 − |v0|
2 + a(uη(T ),uη(T )) − a(u0,u0)

+〈Θ∗B−1Θuη(T ),uη(T )〉V ′ , V − 〈Θ∗B−1Θu0,u0〉V ′ ,V

)

Using u̇η(T ) → u̇(T ) strongly in H , uη(T ) → u(T ) weakly in V and
the convexity of the continued forms on V defined by: v 7→ a(v,v), v 7→
〈Θ∗B−1Θv,v〉V ′ , V , we have

lim
η→0

inf
(

|u̇η(T )|2 − |v0|
2 + a(uη(T ),uη(T )) − a(u0,u0)

+〈Θ∗B−1Θuη(T ),uη(T )〉V ′ , V − 〈Θ∗B−1Θu0,u0〉V ′ ,V

)

≥
(

|u̇(T )|2 − |v0|
2 + a(u(T ),u(T )) − a(u0,u0)

+〈Θ∗B−1Θu(T ),u(T )〉V ′ , V − 〈Θ∗B−1Θu0,u0〉V ′ ,V

)

.

Furthermore, from (5.26), (5.27) we obtain

|

∫ T

0

ηc(u̇η(t),v(t)) dt| ≤ Cη‖u̇η‖L∞(0,T ;V )‖v‖L2(0,T ;V ) ≤ Cη,

∫ T

0

j(u̇η(t))dt →

∫ T

0

j(u̇(t))dt.

Now, if we pass to the lower limit with η → 0 in (5.29), we have: ∀ v ∈
L2(0, T ; V )

∫ T

0

(

(ü(t),v(t)) + a(u(t),v(t)) + 〈Θ∗B−1Θu(t),v(t)〉V ′ , V

)

dt(5.30)

−

∫ T

0

(

〈h(t),v(t) − u̇(t)〉V ′ , V + j(v(t)) − j(u̇(t))
)

dt
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≥
1

2

(

|u̇(T )|2 − |v0|
2 + a(u(T ),u(T )) − a(u0,u0)

+〈Θ∗B−1Θu(T ),u(T )〉V ′ , V − 〈Θ∗B−1Θu0,u0〉V ′ ,V

)

=

∫ T

0

(

(ü(t), (u̇(t)) + a(u(t), (u̇(t)) + 〈Θ∗B−1Θu(t), u̇(t)〉V ′ , V

)

dt.

From the last inequality and uniqueness result we deduce that u is the unique
solution of the variational problem (5.10) with the conditions (5.7).

Finally, we define ϕ by (5.11) and taking in mind Lemma 5.1, it is now
easy to show that (u, ϕ), the unique solution of Problem PV , is a limit when
η converge to 0 in the appropriated paces of (uη, ϕη) the unique solution of
Problem P

η
V .
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Département de Mathématiques
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