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A SUM FORM FUNCTIONAL EQUATION RELATED TO

VARIOUS ENTROPIES IN INFORMATION THEORY

Prem Nath and Dhiraj Kumar Singh

University of Delhi, India

Abstract. The general solutions of a sum form functional equation
have been investigated. The relevance of these solutions in relation to
various entropies in information theory has been emphasized.

1. Introduction

For n = 1, 2, . . . let

Γn =

{

(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;

n
∑

i=1

pi = 1

}

denote the set of all n-component discrete complete probability distributions
with nonnegative elements.

The Shannon entropy [5] of a probability distribution (p1, . . . , pn) ∈ Γn

is defined as

Hn(p1, . . . , pn) = −
n
∑

i=1

pi log2 pi(A)

where Hn : Γn → R, n = 1, 2, . . ., R denotes the set of all real numbers and
0 log2 0 = 0. A generalization of the Shannon entropy (A) with which we shall
be concerned in this paper is (with Hα

n : Γn → R, n = 1, 2, . . .)

Hα
n (p1, . . . , pn) = (1 − 21−α)−1

(

1 −
n
∑

i=1

pα
i

)

(B)
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where α > 0, α 6= 1, 0α := 0, 1α := 1 and α ∈ R. The entropies (B) are
known as the nonadditive entropies of degree α, α > 0, α 6= 1 and are due to
Havrda and Charvát [2]. It can be easily seen that

lim
α→1

Hα
n (p1, . . . , pn) = −

n
∑

i=1

pi log2 pi = Hn(p1, . . . , pn) .

Losonczi and Maksa [3] considered the multiplicative type sum form func-
tional equation

n
∑

i=1

m
∑

j=1

f(piqj) =

n
∑

i=1

f(pi)

m
∑

j=1

f(qj)(1.1)

where f : I → R, I = {x ∈ R : 0 ≤ x ≤ 1}, (p1, . . . , pn) ∈ Γn

and (q1, . . . , qm)∈Γm. They found the general solutions of (1.1) for all
(p1, . . . , pn)∈Γn, (q1, . . . , qm)∈Γm, n ≥ 3, m ≥ 3 being fixed integers.

In their recent research work, Nath and Singh [4] considered the multi-
plicative type functional equation

n
∑

i=1

m
∑

j=1

f(piqj) =

n
∑

i=1

g(pi)

m
∑

j=1

h(qj)(1.2)

where f : I → R, g : I → R, h : I → R, (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈
Γm. They found the general solutions of (1.2) for all (p1, . . . , pn) ∈ Γn,
(q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed integers. During the process of
finding these general solutions, they came across the functional equation

n
∑

i=1

m
∑

j=1

T (piqj) =
n
∑

i=1

T (pi)
m
∑

j=1

T (qj) + (m − n)T (0)
m
∑

j=1

T (qj)(1.3)

+ m(n − 1)T (0)

with T : I→R; found its general solutions for all (p1, . . . , pn)∈Γn, (q1, . . . , qm)
∈ Γm, n ≥ 3, m ≥ 3 being fixed integers; and utilized these solutions to find
the corresponding solutions of (1.2).

There are several nonmultiplicative type sum form functional equations
of which the functional equation (1.2) is just a part. One such functional
equations is

n
∑

i=1

m
∑

j=1

f(piqj) =

n
∑

i=1

g(pi)

m
∑

j=1

h(qj) +

m
∑

j=1

f(qj).(1.4)

If the last term on the right hand side of (1.4) is omitted, we obtain (1.2). It
is in this sense that (1.2) is a part of (1.4).

The purpose of this paper is to determine the general solutions of (1.4)
for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed integers
and then discuss the importance of these solutions from information-theoretic
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point of view, especially, in connection with the entropies (A) and (B). These
two tasks have been done in sections 3 and 4 respectively.

The process of determining the general solutions of (1.4) for all (p1, . . . , pn)
∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed integers, needs determining
the general solutions of the functional equation

n
∑

i=1

m
∑

j=1

g(piqj) =

n
∑

i=1

g(pi)

m
∑

j=1

H(qj)(1.5)

+
m
∑

j=1

g(qj) − g(1) + (n − 1)(m − 1)g(0)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed integers
and g : I → R, H : I → R such that H satisfies the condition

H(1) + (m − 1)H(0) = 1 .(1.6)

This has been done in section 2.

2. The general solutions of functional equation (1.5)
with condition (1.6)

Before investigating the general solutions of (1.5), with H satisfying the
condition (1.6), we need some definitions and results already available in the
literature (see Losonczi and Maksa [3]).

Let ∆ = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1}. A mapping
a : I → R is said to be additive on I if a(x + y) = a(x) + a(y) holds for all
(x, y) ∈ ∆. A mapping A : R → R is said to be additive on R if

A(x + y) = A(x) + A(y)(2.1)

holds for all x ∈ R, y ∈ R. It is known (see Daróczy and Losonczi [1]) that if
a mapping a : I → R is additive on I, then it has a unique additive extension
A : R → R in the sense that A : R → R is additive on R and A(x) = a(x) for
all x ∈ I.

Definition 2.1. A mapping M : I → R is said to be multiplicative on I

if M(0) = 0, M(1) = 1 and M(pq) = M(p)M(q) for all p ∈ ]0, 1[, q ∈ ]0, 1[
where ]0, 1[ = {x ∈ R : 0 < x < 1}.

Result 1 ([3]). Let k ≥ 3 be a fixed integer and c be a given constant.
Suppose a mapping ϕ : I → R satisfies the equation

k
∑

i=1

ϕ(pi) = c
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for all (p1, . . . , pk) ∈ Γk. Then there exists an additive mapping B : R → R

such that

ϕ(p) = B(p) −
1

k
B(1) +

c

k

for all p ∈ I.

Result 2 ([3]). If a mapping G : I → R satisfies the functional equation

n
∑

i=1

m
∑

j=1

G(piqj) =

n
∑

i=1

G(pi) +

m
∑

j=1

G(qj)(2.2)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed integers,
then G is of the form

G(p)=

{

G(0)+G(0)(nm−n−m)p + a(p)+D(p, p) if 0<p≤1

G(0) if p = 0
(2.3)

where G(0) is an arbitrary real constant; a : R → R is additive on R;
D :R× ]0, 1]→R is additive in the first variable, ]0, 1]= {x∈R : 0 < x ≤ 1};
there exists a mapping E : R × R → R, additive in both variables, such that
a(1) = E(1, 1) and

D(pq, pq) = D(pq, p) + D(pq, q) + E(p, q)(2.4)

holds for all p ∈ ]0, 1], q ∈ ]0, 1].
From (2.4), it can be easily deduced that

a(1) + D(1, 1) = 0(2.5)

as E(1, 1) = a(1).

Result 3 ([4]). If a mapping T : I → R satisfies the functional equation
(1.3) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed
integers, then T is of the form

T (p) = a(p) + T (0)

where a : R → R is an additive mapping with

a(1) =

{

−mT (0) if T (1) + (m − 1)T (0)− 1 6= 0

1 − mT (0) if T (1) + (m − 1)T (0)− 1 = 0

or

T (p) = M(p) − b(p) + T (0)

where b : R → R is an additive mapping with b(1) = mT (0) and M : I → R is
a nonconstant nonadditive mapping which is also multiplicative in the sense
of Definition 2.1.

Now we prove:
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Theorem 2.2. Let n ≥ 3, m ≥ 3 be fixed integers and g : I → R,
H : I → R be mappings which satisfy the functional equation (1.5) for all
(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Suppose H : I → R also satisfies
the condition (1.6). Then any general solution of (1.5) is of the form



















g(p) = g(0) + [g(1) − g(0)]p + a(p) + D(p, p) if 0 < p ≤ 1

= g(0) if p = 0

H(p) = b1(p) −
1

m
b1(1) +

1

m

(2.6)

with a : R → R and D : R× ]0, 1] → R as explained in Result 2 or
{

g(p) = b2(p) + g(0)

H any real-valued function satisfying (1.6)
(2.7)

with

b2(1) = −ng(0)(2.8)

or
{

g(p) = − [b3(1) + ng(0)]M(p) + b3(p) + g(0), b3(1) + ng(0) 6= 0

H(p) = M(p) − b(p) + H(0)
(2.9)

with

b(1) = mH(0)(2.10)

where b : R → R, bi : R→R (i = 1, 2, 3) are additive mappings and M : I → R

is a nonconstant nonadditive mapping which is multiplicative in the sense of
Definition 2.1.

Proof. Let us write (1.5) in the form

n
∑

i=1







m
∑

j=1

g(piqj) − g(pi)

m
∑

j=1

H(qj) − pi

m
∑

j=1

g(qj)







= − g(1) + (n − 1)(m − 1)g(0).

By Result 1, there exists a mapping A : R × Γm → R, additive in the first
variable such that

m
∑

j=1

g(pqj) − g(p)

m
∑

j=1

H(qj) − p

m
∑

j=1

g(qj)(2.11)

= A(p; q1, . . . , qm) −
1

n
A(1; q1, . . . , qm)

+
1

n
{− g(1) + (n − 1)(m − 1)g(0)}
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for all p ∈ I. The substitution p = 0 in (2.11) and the use of the fact that
A(0; q1, . . . , qm) = 0 gives

A(1; q1, . . . , qm) = − g(1) − (n + m − 1)g(0) + ng(0)
m
∑

j=1

H(qj).(2.12)

From (2.11) and (2.12), after performing necessary calculation work, we obtain

m
∑

j=1

g(pqj) − [g(p) − g(0)]

m
∑

j=1

H(qj) − p

m
∑

j=1

g(qj)(2.13)

= A(p; q1, . . . , qm) + mg(0)

for all p ∈ I.
Let (r1, . . . , rm) ∈ Γm be any probability distribution. Putting p =

r1, . . . , rm successively in (2.13), adding the resulting m equations and us-
ing the additivity of A : R × Γm → R in the first variable, it follows that

m
∑

t=1

m
∑

j=1

g(rtqj) −

[

m
∑

t=1

g(rt) − mg(0)

]

m
∑

j=1

H(qj) −

m
∑

j=1

g(qj)(2.14)

= A(1; q1, . . . , qm) + m2g(0).

From (2.12) and (2.14),

m
∑

t=1

m
∑

j=1

g(rtqj) + g(1) − (m2 − m − n + 1)g(0)(2.15)

=

[

m
∑

t=1

g(rt) + (n − m)g(0)

]

m
∑

j=1

H(qj) +

m
∑

j=1

g(qj).

The left hand side of (2.15) is symmetric in rt and qj , t = 1, . . . , m, j =
1, . . . , m. So, the right hand side of (2.15) must also be symmetric in rt and
qj . This gives us the equation

[ m
∑

t=1

g(rt) + (n − m)g(0)

][ m
∑

j=1

H(qj) − 1

]

(2.16)

=

[ m
∑

j=1

g(qj) + (n − m)g(0)

][ m
∑

t=1

H(rt) − 1

]

.

Case 1.
m
∑

j=1

H(qj) − 1 vanishes identically on Γm. This means that

m
∑

j=1

H(qj) = 1(2.17)
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for all (q1, . . . , qm) ∈ Γm. By Result 1, there exists an additive mapping
b1 : R → R such that

H(p) = b1(p) −
1

m
b1(1) +

1

m
(2.18)

for all p ∈ I. From (1.5) and (2.17), we obtain the equation

n
∑

i=1

m
∑

j=1

g(piqj)=
n
∑

i=1

g(pi)+
m
∑

j=1

g(qj)−g(1)+(n− 1)(m − 1)g(0)(2.19)

valid for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed
integers. Define the mapping G : I → R as

G(x) = g(x) − [g(1) − (n − 1)(m − 1)g(0)]x(2.20)

for all x ∈ I. Then (2.19) reduces to the equation (2.2). By Result 2, G is of
the form (2.3) with a : R → R and D : R× ]0, 1] → R as described in Result 2.
Also, from (2.20), we have

G(0) = g(0).(2.21)

From (2.20), (2.21) and (2.3), it follows that

g(p) =

{

g(0) + [g(1) − g(0)]p + a(p) + D(p, p) if 0 < p ≤ 1

g(0) if p = 0.
(2.22)

Equations (2.22) and (2.18), taken together, constitute the solution (2.6) of
equation (1.5) with a : R → R and D : R× ]0, 1] → R as described in Result 2.
Notice that (2.18) implies (1.6).

Case 2.
m
∑

j=1

H(qj) − 1 does not vanish identically on Γm. Then, there

exists a probability distribution (q∗1 , . . . , q∗m) ∈ Γm such that

m
∑

j=1

H(q∗j ) − 1 6= 0.(2.23)

Putting qj = q∗j , j = 1, . . . , m in (2.16) and performing necessary calculations,
it follows that

m
∑

t=1

g(rt) = λ

[

m
∑

t=1

H(rt) − 1

]

− (n − m)g(0)(2.24)

where

λ =





m
∑

j=1

H(q∗j ) − 1





−1 



m
∑

j=1

g(q∗j ) + (n − m)g(0)



 .

Case 2.1. λ = 0.
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In this case, (2.24) reduces to the equation

m
∑

t=1

g(rt) = (m − n)g(0)(2.25)

valid for all (r1, . . . , rm) ∈ Γm. By Result 1, there exists an additive mapping
b2 : R → R such that

g(p) = b2(p) −
1

m
b2(1) +

1

m
(m − n)g(0)(2.26)

for all p ∈ I. The substitution p = 0, in (2.26), yields (2.8). Making use of
(2.8) in (2.26), we obtain

g(p) = b2(p) + g(0)(2.27)

for all p ∈ I. From (2.8) and (2.27), it follows that

n
∑

i=1

g(pi) = 0(2.28)

and
n
∑

i=1

m
∑

j=1

g(piqj) = n(m − 1)g(0)(2.29)

hold for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. From (1.5), (1.6), (2.25),
(2.28) and (2.29), we arrive at the following conclusion:

H : I→R is an arbitrary real-valued mapping satisfying (1.6) .(2.30)

The statement (2.30), together with equations (2.27) and (2.8), constitute the
solution (2.7), of (1.5), subject to (1.6).

Case 2.2. λ 6= 0.
In this case, let us write (2.24) in the form

m
∑

t=1

[g(rt) − λH(rt)] = (m − n)g(0) − λ .

By Result 1, there exists an additive mapping A : R → R such that

g(p) − λH(p) = A(p) −
1

m
A(1) +

1

m
{(m − n)g(0) − λ}(2.31)

for all p ∈ I. The substitution p = 0, in (2.31), gives

A(1) = mλH(0) − ng(0) − λ.(2.32)

From (2.31) and (2.32), it follows that

g(p) = λ[H(p) − H(0)] + A(p) + g(0)(2.33)
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for all p ∈ I. From (2.33) and (2.32), the following equations valid for all
(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm can be derived:

n
∑

i=1

m
∑

j=1

g(piqj) = λ

n
∑

i=1

m
∑

j=1

H(piqj) − λm(n − 1)H(0)(2.34)

+ n(m − 1)g(0) − λ
n
∑

i=1

g(pi) = λ

n
∑

i=1

H(pi) + λ(m − n)H(0) − λ(2.35)

m
∑

j=1

g(qj) = λ

m
∑

j=1

H(qj) + (m − n)g(0) − λ.(2.36)

Also, from (1.6), (2.32) and (2.33), it follows that

g(1) + (n − 1)g(0) = 0.(2.37)

Now, from (1.5), (2.34), (2.35), (2.36), (2.37) and the fact that λ 6= 0, it
follows that

n
∑

i=1

m
∑

j=1

H(piqj) =

n
∑

i=1

H(pi)

m
∑

j=1

H(qj) + (m − n)H(0)(2.38)

×

m
∑

j=1

H(qj) + m(n − 1)H(0).

Thus, we see that H also satisfies the functional equation (1.3). So, by Result
3, keeping in view (1.6), H is of the form

H(p) = a(p) + H(0)(2.39)

for all p ∈ I, where a : R → R is an additive mapping with

a(1) = 1 − mH(0)(2.40)

or

H(p) = M(p) − b(p) + H(0)(2.41)

for all p ∈ I with b(1) given by (2.10) and M : I → R being a nonconstant
nonadditive mapping which is also multiplicative in the sense of Definition 2.1.
In the former case, making use of the additivity of a : R → R and (2.40), it

follows that
m
∑

j=1

H(qj)−1 = 0 for all (q1, . . . , qm) ∈ Γm, thereby, contradicting

(2.23). Hence we ignore (2.39). In the later case, we prove that
m
∑

j=1

H(qj)− 1

does not vanish identically on Γm. To the contrary, suppose that (2.17) holds
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for all (q1, . . . , qm) ∈ Γm. Also, from (2.41), (2.10) and the additivity of
b : R → R, we have

m
∑

j=1

H(qj) =
m
∑

j=1

M(qj)

for all (q1, . . . , qm) ∈ Γm. Consequently,

m
∑

j=1

M(qj) = 1

for all (q1, . . . , qm) ∈ Γm. By Result 1, there exists an additive mapping
B : R → R such that

M(p) = B(p) −
1

m
B(1) +

1

m
(2.42)

for all p ∈ I. The substitution p = 0, in (2.42), gives B(1) = 1 as B(0) = 0
and M(0) = 0. Hence

M(p) = B(p)

for all p ∈ I. This contradicts the fact that M is nonadditive. Thus,
m
∑

j=1

H(qj) − 1 does not vanish identically on Γm. Making use of (2.10) and

the fact that M(1) = 1, (1.6) follows from (2.41). So, we accept (2.41) with
b(1) = mH(0). Now, from (2.33) and (2.41), it follows that

g(p) = λM(p) − λb(p) + A(p) + g(0)(2.43)

for all p ∈ I with λ 6= 0. Let us define a mapping b3 : R → R as

b3(p) = −λb(p) + A(p)(2.44)

for all p ∈ R. Then b3 : R → R is additive. Also, from (2.44), (2.10) and
(2.32), it follows that

λ = − [b3(1) + ng(0)].(2.45)

Now, from (2.43), (2.44), (2.45) and the fact that λ 6= 0, it follows that

g(p) = − [b3(1) + ng(0)]M(p) + b3(p) + g(0), b3(1) + ng(0) 6=0(2.46)

for all p ∈ I. Equations (2.46) and (2.41), together with (2.10), constitute the
solution (2.9) of (1.5). This completes the proof of Theorem 2.2.

Note: If we put p = 0 in (2.18) and make use of the fact that b1(0) = 0, we
get

b1(1) = 1 − mH(0).(2.47)
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3. The general solutions of functional equation (1.4)

Now we prove:

Theorem 3.1. Let n ≥ 3, m ≥ 3 be fixed integers and f : I → R,
g : I → R, h : I → R, I = [0, 1], be mappings which satisfy the functional
equation (1.4) for all (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Then, any
general solution of (1.4) is of the form











f(p) = a1(p)

g(p) = b2(p) + g(0)

h an arbitrary mapping

(3.1)

with b2(1) given by (2.8) or










f(p) = a1(p)

g an arbitrary mapping

h(p) = a2(p) + h(0)

(3.2)

with

a2(1) = −mh(0)(3.3)

or














































f(p) = [h(1) + (m − 1)h(0)]
{

[g(1) − g(0)]p + a(p) + D(p, p)
}

+ B(p) + f(0) if 0 < p ≤ 1

= f(0) if p = 0

g(p) = g(0) + [g(1) − g(0)]p + a(p) + D(p, p) if 0 < p ≤ 1

= g(0) if p = 0

h(p) = [h(1) + (m − 1)h(0)]

[

b1(p) −
1

m
b1(1) +

1

m

]

(3.4)

with

m(n − 1)f(0) = [g(1) + (n − 1)g(0)][h(1) + (m − 1)h(0)](3.5)

and a : R → R, D : R×]0, 1] → R as described in Result 2 or


















f(p)=[h(1)+(m−1)h(0)]
{

−[b3(1)+ng(0)]M(p)+b3(p)
}

+B(p),

[b3(1) + ng(0)] 6= 0

g(p)=− [b3(1) + ng(0)]M(p) + b3(p) + g(0),

h(p)=[h(1) + (m − 1)h(0)][M(p) − b(p)] + h(0)

(3.6)

with

b(1) = mh(0)[h(1) + (m − 1)h(0)]−1(3.7)

where [h(1) + (m − 1)h(0)] 6= 0 in (3.4), (3.5), (3.6) and (3.7); b : R → R,
B : R → R, bi : R → R(i = 1, 2, 3), ai : R → R(i = 1, 2) are additive
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mappings; and M : I → R is a nonconstant nonadditive mapping which is
multiplicative in the sense of Definition 2.1.

To prove this theorem, we need to prove some lemmas:

Lemma 3.2. Let n ≥ 3, m ≥ 3 be fixed integers and f : I → R be a
mapping which satisfies the functional equation

n
∑

i=1

m
∑

j=1

f(piqj) =

m
∑

j=1

f(qj)(3.8)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. Then there exists an additive
mapping a1 : R → R such that

f(p) = a1(p)(3.9)

for all p ∈ I.

Proof. Choose p1 = 1, p2 = . . . = pn = 0; q1 = 1, q2 = . . . = qm = 0 in
(3.8). We obtain

m(n − 1)f(0) = 0.(3.10)

Since m ≥ 3, n ≥ 3 are fixed integers, so (3.10) gives

f(0) = 0.(3.11)

Now putting q1 = 1, q2 = . . . = qm = 0 in (3.8) and utilizing (3.11), we get
the equation

n
∑

i=1

f(pi) = f(1)

valid for all (p1, . . . , pn) ∈ Γn. By Result 1, there exists an additive mapping
a1 : R → R such that

f(p) = a1(p) −
1

n
a1(1) +

1

n
f(1)(3.12)

for all p ∈ I. Putting p = 0 in (3.12), using (3.11) and the fact that a1(0) = 0,
it follows that a1(1) = f(1). Now, (3.12) reduces to (3.9).

Lemma 3.3. Under the conditions stated in the statement of Theorem 3.1,
the equation

[h(1) + (m − 1)h(0)]

n
∑

i=1

m
∑

j=1

g(piqj)(3.13)

=
n
∑

i=1

g(pi)
m
∑

j=1

h(qj) + [h(1) + (m − 1)h(0)]
m
∑

j=1

g(qj)

+ m(n − 1)[h(1) + (m − 1)h(0)]g(0)

− [g(1) + (n − 1)g(0)][h(1) + (m − 1)h(0)]



A SUM FORM FUNCTIONAL EQUATION 171

holds.

Proof. Let us choose q1 = 1, q2 = . . . = qm = 0 in (1.4). We obtain the
equation

n
∑

i=1

{

f(pi) − [h(1) + (m − 1)h(0)]g(pi)
}

(3.14)

= f(1) − (n − 1)(m − 1)f(0).

By Result 1, there exists an additive mapping B : R → R such that

f(p) − [h(1) + (m − 1)h(0)]g(p)(3.15)

= B(p) −
1

n
B(1) +

1

n

{

f(1) − (n − 1)(m − 1)f(0)
}

for all p ∈ I. Substituting p = 0 and using the fact that B(0) = 0, (3.15)
gives

B(1) = [h(1) + (m − 1)h(0)]ng(0) + f(1) − (nm − m + 1)f(0).(3.16)

From (3.15) and (3.16), it follows that

f(p) = [h(1) + (m − 1)h(0)][g(p) − g(0)] + B(p) + f(0)(3.17)

for all p ∈ I. From (3.17) and (3.16), the following two equations valid for all
(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm can be obtained:

n
∑

i=1

m
∑

j=1

f(piqj) = [h(1) + (m − 1)h(0)]
n
∑

i=1

m
∑

j=1

g(piqj)(3.18)

−n(m − 1)g(0)[h(1) + (m − 1)h(0)]

+ f(1) + (m − 1)f(0),
m
∑

j=1

f(qj) = [h(1) + (m − 1)h(0)]

m
∑

j=1

g(qj)(3.19)

+ (n − m)[h(1) + (m − 1)h(0)]g(0)

+ f(1)− (nm − 2m + 1)f(0).

From (1.4), (3.18) and (3.19), it follows that

[h(1) + (m − 1)h(0)]

n
∑

i=1

m
∑

j=1

g(piqj)(3.20)

=

n
∑

i=1

g(pi)

m
∑

j=1

h(qj) + [h(1) + (m − 1)h(0)]

m
∑

j=1

g(qj)

+ m(n − 1)g(0)[h(1) + (m − 1)h(0)] − m(n − 1)f(0).

Now let us put p1 = 1, p2 = . . . = pn = 0 in (3.14). We obtain (3.5). From
(3.20) and (3.5), the required equation (3.13) follows immediately.
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Proof of Theorem 3.1. We divide our discussion into three cases.

Case 1.
n
∑

i=1

g(pi) vanishes identically on Γn, that is, (2.28) holds for all

(p1, . . . , pn) ∈ Γn. Then, (1.4) reduces to (3.8) and h can be an arbitrary
mapping. By Result 1, applied to (2.28), there exists an additive mapping
b2 : R → R such that g(p) is of the form (2.27) with b2(1) given by (2.8).
Also, by Lemma 3.2, f is of the form (3.9) in which a1 : R → R is an additive
mapping. Thus, we have obtained the solution (3.1) of (1.4) with b2(1) given
by (2.8).

Case 2.
m
∑

j=1

h(qj) vanishes identically on Γm. In this case, solution (3.2)

follows. The details are omitted as the discussion is similar to the one in
Case 1.

Case 3. Neither
n
∑

i=1

g(pi) vanishes identically on Γn nor
m
∑

j=1

h(qj) vanishes

identically on Γm. Then there exist a (p∗1, . . . , p
∗

n) ∈ Γn and a (q∗1 , . . . , q∗m) ∈

Γm such that
n
∑

i=1

g(p∗i ) 6= 0 and
m
∑

j=1

h(q∗j ) 6= 0 and consequently

n
∑

i=1

g(p∗i )

m
∑

j=1

h(q∗j ) 6= 0.(3.21)

We prove that [h(1) + (m − 1)h(0)] 6= 0. To the contrary, suppose that
h(1) + (m − 1)h(0) = 0. Then equation (3.13) reduces to

n
∑

i=1

g(pi)

m
∑

j=1

h(qj) = 0

valid for all (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. In particular,
n
∑

i=1

g(p∗i )

×
m
∑

j=1

h(q∗j ) = 0 thereby contradicting (3.21). Hence h(1) + (m − 1)h(0) 6= 0.

Dividing both sides of (3.13) by [h(1) + (m − 1)h(0)], we obtain

n
∑

i=1

m
∑

j=1

g(piqj) =

n
∑

i=1

g(pi)

(

m
∑

j=1

h(qj)

h(1) + (m − 1)h(0)

)

(3.22)

+

m
∑

j=1

g(qj) − [g(1) − (n − 1)(m − 1)g(0)].

Define a mapping H : I → R as

H(x) = [h(1) + (m − 1)h(0)]−1h(x)(3.23)
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for all x ∈ I. Then, equation (3.22) reduces to the functional equation (1.5).
Moreover, (3.23) gives (1.6). Now we can make use of Theorem 2.2.

The solution (3.4), of (1.4), follows from (2.6), (3.17) and (3.23).
To proceed further, we observe that, from (2.7) and (2.8), (2.37) follows.

Making use of it in (3.5), we get f(0) = 0. Now equations (2.7), (3.17) and
(3.23) give rise to the solution











f(p) = [h(1) + (m − 1)h(0)]b2(p) + B(p)

g(p) = b2(p) + g(0)

h an arbitrary mapping with h(1) + (m − 1)h(0) 6= 0

of (1.4) along with (2.8). But this solution is included in (3.1).
Equation (2.37) also follows from (2.9) and the fact that M(1) = 1. Hence,

as above, we again have f(0) = 0. The solution (3.6), with b(1) given by (3.7),
now follows from (2.9), (3.17), (2.10) and (3.23). This completes the proof of
Theorem 3.1.

Note: from (2.47) and (3.23), it follows that

b1(1) =
h(1) − h(0)

h(1) + (m − 1)h(0)
.(3.24)

4. Comments

The object of this section is to comment upon the various solutions of
Theorem 3.1 from the point of view of information theory.

The solution (3.1) is not of any relevance in information theory as the

mapping h in it is arbitrary and the summands
n
∑

i=1

f(pi) and
n
∑

i=1

g(pi) are

independent of the probabilities p1, . . . , pn. Similarly, the solution (3.2) is also
not of any relevance in information theory. Now we discuss the importance
of solution (3.4) in information theory.

Let (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n ≥ 3, m ≥ 3 being fixed
integers. Let

S1 = {i : 0 < pi ≤ 1, 1 ≤ i ≤ n} and S2 = {j : 0 < qj ≤ 1, 1 ≤ j ≤ m}.

Then S1 and S2 are nonempty sets. Let n0 and m0 denote respectively the
number of elements in S1 and S2. Then 1 ≤ n0 ≤ n and 1 ≤ m0 ≤ m. Making
use of the additivity of a : R → R, B : R → R, b1 : R → R, D : R× ]0, 1] → R

(in the first variable), (2.4), (2.5), (3.24) and the fact that a(1) = E(1, 1),
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from (3.4), it follows that

n
∑

i=1

m
∑

j=1

f(piqj) = n0m0f(0) + [h(1) + (m − 1)h(0)]

×







g(1) − g(0) − D(1, 1) +
∑

i∈S1

∑

j∈S2

D(piqj , piqj)







+ B(1) + (mn − m0n0)f(0)

or

n
∑

i=1

m
∑

j=1

f(piqj) = nmf(0) + [h(1) + (m − 1)h(0)](4.1)

×

{

g(1) − g(0) − 2D(1, 1) +
∑

i∈S1

D(pi, pi)

+
∑

j∈S2

D(qj , qj)







+ B(1) .

Also

n
∑

i=1

g(pi) = n0g(0) + [g(1) − g(0)] − D(1, 1)

+
∑

i∈S1

D(pi, pi) + (n − n0)g(0)

or

n
∑

i=1

g(pi) = [g(1) + (n − 1)g(0)] − D(1, 1) +
∑

i∈S1

D(pi, pi) .(4.2)

Moreover,

m
∑

j=1

h(qj) = h(1) + (m − 1)h(0)(4.3)

and

m
∑

j=1

f(qj) = m0f(0) + [h(1) + (m − 1)h(0)]

{

g(1) − g(0)

−D(1, 1) +
∑

j∈S2

D(qj , qj)

}

+ B(1) + (m − m0)f(0)
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or
m
∑

j=1

f(qj) = mf(0) + [h(1) + (m − 1)h(0)](4.4)

×

{

g(1) − g(0) − D(1, 1) +
∑

j∈S2

D(qj , qj)

}

+ B(1).

Making use of the equations (4.1), (4.2), (4.3) and (4.4), it can be seen that
(1.4) is satisfied if (3.5) holds. To proceed further, we also need

n
∑

i=1

f(pi) = nf(0) + [h(1) + (m − 1)h(0)](4.5)

×

{

g(1) − g(0) − D(1, 1) +
∑

i∈S1

D(pi, pi)

}

+ B(1)

n
∑

i=1

h(pi) = [h(1) + (m − 1)h(0)]

[

m − n

m
b1(1) +

n

m

]

.(4.6)

Keeping in view the form of the Shannon entropy given by (A), it seems
desirable to choose the mapping D : R× ]0, 1] → R defined as

D(x, y) = cx log2 y(4.7)

for all x ∈ R, y ∈ ]0, 1], c an arbitrary real constant. The case c = 0 is not of
much importance. So we restrict to c 6= 0. Now

D(p, p) = cp log2 p(4.8)

for all p ∈ ]0, 1] and D(1, 1) = 0. To accommodate the 0-probabilities, we
may assume

lim
p→0+

D(p, p) = 0(4.9)

or equivalently 0 log2 0 = 0 as c 6= 0.

The summand
n
∑

i=1

h(pi), in (4.6), is independent of the probabilities

p1, . . . , pn. Hence it seems to be of no use. But, (4.5) and (4.2), together
with (4.8), (A), D(1, 1) = 0 and 0 log2 0 = 0, give

n
∑

i=1

f(pi) = nf(0) + [h(1) + (m − 1)h(0)]

×
{

g(1) − g(0) − c Hn(p1, . . . , pn)
}

+ B(1)
n
∑

i=1

g(pi) = [g(1) + (n − 1)g(0)] − c Hn(p1, . . . , pn).

Thus, we see that the mappings f and g, appearing in (1.4), are related to
the Shannon entropy.
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It may be noted that the mapping D : R×]0, 1] → R, defined by (4.7), is
additive in the first variable and satisfies (2.4) as E(1, 1)=a(1)=−D(1, 1)=0.

Now we discuss the solution (3.6), together with (3.7). Making use of
the additivity of the mappings b3 : R → R, b : R → R, B : R → R; the
multiplicativity of M : I → R in the sense of Definition 2.1, it follows that

n
∑

i=1

m
∑

j=1

f(piqj) = [h(1) + (m − 1)h(0)][b3(1) + ng(0)](4.10)

×

[

1 −

n
∑

i=1

M(pi)

m
∑

j=1

M(qj)

]

−ng(0)[h(1) + (m − 1)h(0)] + B(1),
n
∑

i=1

g(pi) = [b3(1) + ng(0)]

[

1 −

n
∑

i=1

M(pi)

]

,(4.11)

m
∑

j=1

h(qj) = [h(1) + (m − 1)h(0)]

m
∑

j=1

M(qj),(4.12)

m
∑

j=1

f(qj) = [h(1) + (m − 1)h(0)][b3(1) + ng(0)](4.13)

×

[

1 −
m
∑

j=1

M(qj)

]

−ng(0)[h(1) + (m − 1)h(0)] + B(1).

It can be verified that (4.10) to (4.13) do satisfy (1.4). To proceed further,
we need

n
∑

i=1

f(pi) = [h(1) + (m − 1)h(0)][b3(1) + ng(0)](4.14)

×

[

1 −

n
∑

i=1

M(pi)

]

− ng(0)[h(1) + (m − 1)h(0)] + B(1),

n
∑

i=1

h(pi) = [h(1) + (n − 1)h(0)] − [h(1) + (m − 1)h(0)](4.15)

×

[

1 −
n
∑

i=1

M(pi)

]

.

From the point of view of information theory, taking into consideration
the nonadditive measure of entropy given by Havrda and Charvát [2] given by
(B), it is desirable to choose the mapping M : I → R defined as M(p) = pα,
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0 ≤ p ≤ 1, α ∈ R, α > 0, α 6= 1, 0α := 0 and 1α := 1. Then, we get
n
∑

i=1

f(pi) = [h(1) + (m − 1)h(0)][b3(1) + ng(0)]

× (1 − 21−α)Hα
n (p1, . . . , pn)

−ng(0)[h(1) + (m − 1)h(0)] + B(1),
n
∑

i=1

g(pi) = [b3(1) + ng(0)](1 − 21−α)Hα
n (p1, . . . , pn),

n
∑

i=1

h(pi) = [h(1) + (n − 1)h(0)] − [h(1) + (m − 1)h(0)]

× (1 − 21−α)Hα
n (p1, . . . , pn).

Thus we see that all the three mappings f, g and h, appearing in (1.4), are
related to the nonadditive entropy of degree α due to Havrda and Charvát [2].

Losonczi and Maksa [3] characterized the entropies

Lµ
n(p1, . . . , pn) =

1

µ

[

n
∑

i=1

M(pi) − 1

]

(4.16)

where µ 6= 0.
If we use (4.16), then (4.14), (4.11) and (4.15) can be written respectively

in the form
n
∑

i=1

f(pi) = − [h(1) + (m − 1)h(0)][b3(1) + ng(0)]µLµ
n(p1, . . . , pn)

−ng(0)[h(1) + (m − 1)h(0)] + B(1),
n
∑

i=1

g(pi) = − [b3(1) + ng(0)]µLµ
n(p1, . . . , pn),

n
∑

i=1

h(pi) = [h(1) + (n − 1)h(0)] + [h(1) + (m − 1)h(0)]µLµ
n(p1, . . . , pn).
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