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Abstract. In [4] we gave some sufficient conditions under which, for
given pair of bounded linear operators T and S on an infinite-dimensional
complex Hilbert space H, there is a dense set of vectors in H with orbits
under T and S tending strongly to infinity. In this paper we are going
to extend these results for pairs of operators on an infinite-dimensional
complex and reflexive Banach space.

1. Introduction

Throughout this paper X will denote an infinite-dimensional reflexive
Banach space over the field of complex numbers C and B(X) the algebra of
all bounded linear operators on X . For T ∈ B(X), with r(T ), σ(T ), σp(T ) and
σa(T ) we will denote the spectral radius, the spectrum, the point spectrum
and the approximate point spectrum of T , respectively. Recall that σp(T )
consists of all eigenvalues for T and σa(T ) consists of all λ ∈ σ(T ) for which
there is a sequence of unit vectors (xn)n≥1 in X such that ‖Txn − λxn‖ → 0,
as n → +∞; any such sequence is called a sequence of almost eigenvectors
for λ. It is known that, unlike the point spectrum, which can be empty, the
approximate point spectrum is nonempty for every T ∈ B(X); it contains
both the boundary ∂σ(T ) and σp(T ) [3, Prop. VII.6.7].

Orbit of x ∈ X under T ∈ B(X) is the sequence Orb(T, x)={T nx : n ≥ 0}.
We are interested in the operators T ∈ B(X) for which there is x ∈ X whose
orbit Orb(T, x) tends strongly to infinity, i.e. ‖T nx‖ → +∞, as n → +∞.
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Obviously, if σp(T ) contains a point λ with |λ| > 1, then for every corre-
sponding nonzero vector x in the eigenspace Ker(T − λ), the orbit will tend
strongly to infinity: ‖T nx‖ = |λ|n ‖x‖ → +∞, as n → +∞. In general,
Ker(T − λ) is not dense in X (relative to the norm topology). In order to
produce a dense set of vectors in X whose orbits under T tend strongly to in-
finity we have to look at the points in the approximate point spectrum which
are not eigenvalues.

In [5] we gave a complete proof of the following result, originally stated by
B. Beauzamy [2, Thm. 2.A.5]: if T ∈ B(X) and the circle {λ ∈ C : |λ| = r(T )}
contains a point in σ(T ) which is not an eigenvalue for T , then for every
positive sequence (αn)n≥1 with

∑

n≥1 αn < +∞, in every open ball in X

with radius strictly larger then
∑

n≥1 αn, there is x ∈ X satisfying ‖T nx‖ ≥

αnr(T )n/2 for all n ≥ 1. (For some additional results with similar estimates
for the orbits we refer to [6] and [7]). Note that, if r(T ) > 1, then the space
will contain a dense set of vectors x ∈ X with orbits under T tending strongly
to infinity.

The proof of the previous result that we gave in [5] suggests that it will
remain true if r(T ) is replaced with |λ|, for any λ ∈ σa(T )\σp(T ). Thus we
have

Theorem 1.1. If T ∈ B(X) and λ ∈ σa(T )\σp(T ), then for every pos-

itive sequence (αn)n≥1 with
∑

n≥1 αn < +∞, in every open ball in X with

radius 2
∑

n≥1 αn, there is x ∈ X satisfying

‖T nx‖ ≥
1

2
αn |λ|n, for all n ≥ 1.

We are going to extend this result for suitable pairs of operators in B(X).

2. Preliminary results

The first result in this section describes the behavior of the sequences
of almost eigenvectors, relative to the weak topology, for those points in the
approximate point spectrum that are not eigenvalues. Although this follows
from [2, Prop. II.1.13], for completeness we give bellow its proof.

Proposition 2.1. If A ∈ B(X) and λ ∈ σa(A)\σp(A), then every corre-
sponding sequence of almost eigenvectors for λ tends weakly to 0.

Proof. Let (un)n≥1 be any sequence of almost eigenvectors for
λ ∈ σa(A)\σp(A).

Since in the case of reflexive Banach space ball X = {x ∈ X : ‖x‖ ≤ 1} is
weakly compact, there is a subsequence (unk

)k≥1 of (un)n≥1 and u ∈ ballX
so that unk

→ u (weakly). Then Aunk
− λunk

→ Au − λu (weakly) and, by
‖Aun − λun‖ → 0, as n → +∞, Aunk

− λunk
→ 0 (weakly). But, in the case

of Banach spaces the weak topology separates the points; hence Au−λu = 0.
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If we assume that u 6= 0, then Au − λu = 0 will imply that λ ∈ σp(A),
which contradicts our assumption. So, u = 0. Thus, we obtain that u = 0
is the only accumulation point for (un)n≥1 relative to weak topology. This,
together with the weakly compactness of ball X , gives un → 0 (weakly).

We also need the following modified version of [2, Lemma III.2.A.6] and
[4, Lemma 2.2].

Lemma 2.2. If (un)n≥1 is a sequence in X (not necessarily reflexive)
which tends weakly to 0 and A ∈ B(X), then for every u ∈ X and δ > 0

(a) lim sup
n→+∞

‖A(u + δun)‖ ≥ ‖Au‖;

(b) if ‖Aun‖ → α, as n → +∞, then

lim sup
n→+∞

‖A(u + δun)‖ ≥ max

{

1

2
αδ, ‖Au‖

}

.

Proof. If (un)n≥1 tends weakly to 0, then for every bounded linear func-
tional x∗ on X

|x∗(Au)| = lim
n→+∞

|x∗(A(u + δun))| ≤ lim sup
n→+∞

‖x∗‖ · ‖A(u + δun)‖

and consequently

‖Au‖ = sup {|x∗(Au)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1} ≤ lim sup
n→+∞

‖A(u + δun)‖ ,

where X∗ denotes the dual space of X . This proves (a).
If u ∈ X is such that ‖Au‖ ≥ αδ/2, then the assertion in (b) follows from

(a). If ‖Au‖ < αδ/2, then for all n ≥ 1

‖A(δun)‖ −
αδ

2
≤ ‖A(u + δun)‖ + ‖Au‖ −

αδ

2
≤ ‖A(u + δun)‖ ,

which implies that

αδ

2
= lim

n→+∞

(

‖A(δun)‖ −
αδ

2

)

≤ lim sup
n→+∞

‖A(u + δun)‖ .

3. Main results

Theorem 3.1. If T, S ∈ B(X), λ ∈ σa(T )\σp(T ) and µ ∈ σa(S)\σp(S),

then for any two positive sequences (αn)n≥1 and (βn)n≥1 with
∑

n≥1 αn <+∞

and
∑

n≥1 βn < +∞, in every open ball in X with radius 2
∑

n≥1 (αn + βn)

there is z ∈ X satisfying simultaneously

‖T nz‖ ≥
1

2
αn |λ|

n
and ‖Snz‖ ≥

1

2
βn |µ|

n
, for all n ≥ 1.

Proof. By Proposition 2.1 there are sequences (xn)n≥1 and (yn)n≥1 in
X such that
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(a) ‖xn‖ = 1 = ‖yn‖ for all n ≥ 1;
(b) (xn)n≥1 and (yn)n≥1 both tend weakly to 0;
(c) ‖Txn − λxn‖ → 0 and ‖Syn − µyn‖ → 0, as n → +∞.

Since λ, as an element of σa(T )\σp(T ) ⊆ σ(T ), is with |λ| ≤ r(T ) ≤ ‖T ‖,
for each k ≥ 1
∥

∥T kxn − λkxn

∥

∥ =
∥

∥(T k−1 + λT k−2 + . . . + λk−2T + λk−1)(Txn − λxn)
∥

∥

≤ k ‖T ‖
k−1

‖Txn − λxn‖ .

This implies that
∥

∥T kxn − λkxn

∥

∥ → 0, as n → +∞, for all k ≥ 1. In the same

way we obtain that
∥

∥Skyn − µkyn

∥

∥ → 0, for all k ≥ 1, and hence, by (a),

(3.1)
∥

∥T kxn

∥

∥ → |λ|
k

and
∥

∥Skyn

∥

∥ → |µ|
k
, when n → +∞, for all k ≥ 1.

Fix x ∈ X , 0 < ε < 1/2 and any two sequence (αn)n≥1 and (βn)n≥1 with
∑

n≥1 αn < +∞ and
∑

n≥1 βn < +∞.
We are going to prove that there are positive integers 0 < n1 < m1 <

· · · < nl < ml < . . . such that for every l ≥ 1 the vector

zl = x + (1 + ε)(α1xn1
+ β1ym1

+ · · · + αlxnl
+ βlyml

),

satisfies
∥

∥T jzl

∥

∥ >
1

2
αj |λ|

j
and

∥

∥Sjzl

∥

∥ >
1

2
βj |µ|

j
, for all 1 ≤ j ≤ l.

The proof will be made with the use of mathematical induction. First we
prove that there exists z1 ∈ X such that ‖Tz1‖ > 1

2α1|λ| and ‖Sz1‖ > 1
2β1|µ|.

Since the sequence (xn)n≥1 tends weakly to 0, by Lemma 2.2.(b) we have

lim sup
n→+∞

‖T (x + (1 + ε)α1xn)‖ ≥ max

{

1

2
(1 + ε)α1 |λ| , ‖Tx‖

}

>
1

2
α1 |λ| .

This allows us to find a positive integer n1 so that z′1 = x + (1 + ε)α1xn1

satisfies ‖Tz′1‖ > 1
2α1 |λ| .

In the same way we obtain that

lim sup
n→+∞

‖S(z′1 + (1 + ε)β1yn)‖ ≥ max

{

1

2
(1 + ε)β1 |µ| , ‖Sz′1‖

}

>
1

2
β1 |µ| .

So, we can find integers n1 < m(1) < m(2) < . . . such that

∥

∥S(z′1 + (1 + ε)β1ym(i))
∥

∥ >
1

2
β1 |µ| , for all i ≥ 1.

Clearly, (ym(i))i≥1 tends weakly to 0. Hence, by Lemma 2.2.(a)

lim sup
i→+∞

∥

∥T (z′1 + (1 + ε)β1ym(i))
∥

∥ ≥ ‖Tz′1‖ >
1

2
α1 |λ|

and consequently, there is i0 ≥ 1 so that
∥

∥T (z′1 + (1 + ε)β1ym(i0))
∥

∥ > 1
2α1 |λ|.
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Let m1 = m(i0) > n1 and z1 = z′1 + (1 + ε)β1ym1
= x + (1 + ε)(α1xn1

+

β1ym1
). Then

‖Tz1‖ >
1

2
α1 |λ| and ‖Sz1‖ >

1

2
β1 |µ| .

Suppose that we have found integers 0 < n1 < m1 < . . . < nl−1 < ml−1

for some l ≥ 2 such that each

zk = x + (1 + ε)(α1xn1
+ β1ym1

+ . . . + αkxnk
+ βkymk

), 1 ≤ k ≤ l − 1

satisfies both (3.2) and (3.3) bellow

(3.2)
∥

∥T jzk

∥

∥ >
1

2
αj |λ|

j , for all 1 ≤ j ≤ k ≤ l − 1,

(3.3)
∥

∥Sjzk

∥

∥ >
1

2
βj |µ|

j , for all 1 ≤ j ≤ k ≤ l − 1.

Now we start with the sequence (zl−1 + (1 + ε)αlxn)n≥1. First we are

going to show that there are strictly increasing sequences of positive integers

(Nj(n))n≥1, j = 1, . . . , l − 1, l, . . . , 2l − 2 such that

(P.1) (Nj+1(n))n≥1 is a subsequence of (Nj(n))n≥1, for every 1 ≤ j ≤ 2l−3,

(P.2)
∥

∥T j(zl−1 + (1 + ε)αlxNj(n))
∥

∥ >
1

2
αj |λ|

j
, for all 1 ≤ j ≤ l − 1 and

n ≥ 1,

(P.3)
∥

∥Sj(zl−1 + (1 + ε)αlxNj+l−1(n))
∥

∥ >
1

2
βj |µ|

j , for all 1 ≤ j ≤ l − 1 and

n ≥ 1.

By Lemma 2.2.(a) and (3.2) , for j = 1 and k = l − 1, we have

sup
n≥m

‖T (zl−1 + (1 + ε)αlxn)‖ ≥ lim sup
n→+∞

‖T (zl−1 + (1 + ε)αlxn)‖

≥ ‖Tzl−1‖ >
1

2
α1 |λ| ,

for all m ≥ 1. This allows us to find a strictly increasing sequence of positive

integers (N1(n))n≥1 such that

∥

∥T (zl−1 + (1 + ε)αlxN1(n))
∥

∥ >
1

2
α1 |λ|, for all n ≥ 1.

Now, suppose that for some s ≤ l − 2 we have found the sequences

(Nj(n))n≥1, j = 1, . . . , s, with the desired properties, (that is (P.1) and (P.2)

hold for all j = 1, . . . , s).
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Since (xNs(n))n≥1 tends weakly to 0 (as a subsequence of (xn)n≥1), by

Lemma 2.2.(a) and (3.2), for j = s + 1 and k = l − 1, we have

sup
n≥m

∥

∥T s+1(zl−1 + (1 + ε)αlxNs(n))
∥

∥

≥ lim sup
n→+∞

∥

∥T s+1(zl−1 + (1 + ε)αlxNs(n))
∥

∥

≥
∥

∥T s+1zl−1

∥

∥ >
1

2
αs+1 |λ|

s+1
,

for all m ≥ 1. So, we can find a strictly increasing sequence of positive integers

(Ns+1(n))n≥1 such that (Ns+1(n))n≥1 is a subsequence of (Ns(n))n≥1 and

∥

∥T s+1(zl−1 + (1 + ε)αlxNs+1(n))
∥

∥ >
1

2
αs+1 |λ|

s+1
, for all n ≥ 1.

Thus, inductively we find the sequences (Nj(n))n≥1, j = 1, . . . , l − 1. To

find the sequences (Nj(n))n≥1, j = l, . . . , 2l − 2 we only need to repeat the

previous discussion with (zl−1 + (1 + ε)αlxNl−1(n))n≥1, S and (3.3), instead

of (zl−1 + (1 + ε)αlxn)n≥1, T and (3.2), respectively.

The sequence (xN2l−2(n))n≥1 tends weakly to 0 and
∥

∥T lxN2l−2(n)

∥

∥ → |λ|
l
,

as n → +∞. Hence, by Lemma 2.2.(b),

lim sup
n→+∞

∥

∥T l(zl−1 + (1 + ε)αlxN2l−2(n))
∥

∥ ≥ max

{

1

2
(1 + ε)αl |λ|

l
,
∥

∥T lzl−1

∥

∥

}

>
1

2
αl |λ|

l
,

and consequently, we can find a positive integer i′0 such that N2l−2(i
′
0) > ml−1

and

(3.4)
∥

∥T l(zl−1 + (1 + ε)αlxN2l−2(i′0))
∥

∥ >
1

2
αl |λ|

l
.

Put nl = N2l−l(i
′
0) > ml−1 and z′l = zl−1 + (1 + ε)αlxnl

. Then, by (P.1),

(P.2), (P.3) and (3.4)

(3.5)
∥

∥T jz′l
∥

∥ >
1

2
αj |λ|

j
, for all 1 ≤ j ≤ l,

(3.6)
∥

∥Sjz′l
∥

∥ >
1

2
βj |µ|

j , for all 1 ≤ j ≤ l − 1.

Starting with sequence (z′l +(1+ε)βlyn)n≥1 and applying Lemma 2.2.(a),

(3.5) and (3.6), in the same way as we applied Lemma 2.2.(a), (3.2) and (3.3)

for (zl−1+(1+ε)αlxn)n≥1, we can find strictly increasing sequences of positive

integers (Mj(n))n≥1, j = 1, . . . , l − 1, l, . . . , 2l − 2, 2l − 1 such that
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(P.4) (Mj+1(n))n≥1 is a subsequence of (Mj(n))n≥1, for every 1 ≤ j ≤ 2l−2.

(P.5)
∥

∥Sj(z′l + (1 + ε)βlyMj(n))
∥

∥ >
1

2
βj |µ|

j
, for all 1 ≤ j ≤ l− 1 and n ≥ 1;

(P.6)
∥

∥T j(z′l + (1 + ε)βlyMj+l−1(n))
∥

∥ >
1

2
αj |λ|

j
, for all 1 ≤ j ≤ l and n ≥ 1.

The sequence (yM2l−1(n))n≥1 tends weakly to 0 and
∥

∥SlyM2l−1(n)

∥

∥ → |µ|
l
,

as n → +∞. Hence, by Lemma 2.2.(b)

lim sup
n→+∞

∥

∥Sl(z′l + (1 + ε)βlyM2l−1(n))
∥

∥ ≥ max

{

1

2
(1 + ε)βl |µ|

l
,
∥

∥Slz′l
∥

∥

}

>
1

2
αl |λ|

l
,

and consequently we can find a positive integer i′′0 such that M2l−1(i
′′
0) > nl

and

(3.7)
∥

∥Sl(z′l + (1 + ε)βlyM2l−1(i′′0 ))
∥

∥ >
1

2
βl |µ|

l .

Put ml = M2l−1(i
′
0) > nl and

(3.8) zl = z′l +(1+ε)βlyml
= x+(1+ε)(α1xn1

+β1ym1
+ . . .+αlxnl

+βlyml
).

Then, by (P.4), (P.5), (P.6) and (3.7),

(3.9)
∥

∥T jzl

∥

∥ >
1

2
αj |λ|

j , for all 1 ≤ j ≤ l,

(3.10)
∥

∥Sjzl

∥

∥ >
1

2
βj |µ|

j , for all 1 ≤ j ≤ l.

Thus, by induction, we obtain that there are integers 0 < n1 < m1 <

. . . < nl < ml < . . . such that the sequence (zl)l≥1, given with (3.8), satisfies

both (3.9) and (3.10), for all l ≥ 1. But then, since
∑

n≥1 αn < +∞ and
∑

n≥1 βn < +∞, for any l and k with l > k, by (a) we have

‖zl − zk‖ = (1 + ε)

∥

∥

∥

∥

∥

l
∑

i=k+1

(αixni
+ βiymi

)

∥

∥

∥

∥

∥

≤ (1 + ε)

l
∑

i=k+1

(αi + βi) → 0,

as k, l → +∞. This means that (zl)l≥1 is a Cauchy sequence in the Banach

space X . Hence, there is z ∈ X so that

z = lim
l→+∞

zl = x + (1 + ε)

+∞
∑

i=1

(αixni
+ βiymi

),

and this is the vector with the desired properties. Namely
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1. since 0 < ε < 1/2

‖z − x‖ = lim
l→+∞

‖zl − x‖ = (1 + ε) lim
l→+∞

∥

∥

∥

∥

l
∑

i=1

(αixni
+ βiymi

)

∥

∥

∥

∥

< (1 + 2ε) lim
l→+∞

l
∑

i=1

(αi + βi) = 2
∑

n≥1 (αn + βn),

and, for all n ≥ 1 (by (3.9) and (3.10))

2. ‖T nz‖ = lim
l→+∞

‖T nzl‖ ≥
1

2
αn |λ|

n
and ‖Snz‖ = lim

l→+∞
‖Snzl‖ ≥

1

2
βn |µ|n .

Corollary 3.2. If σa(T )\σp(T ) and σa(S)\σp(S) both have a nonempty
intersection with the domain {λ ∈ C : |λ| > 1}, then there is a dense set of
vectors z ∈ X with both Orb(T, z) and Orb(S, z) tending strongly to infinity.

4. On orbits tending strongly to infinity under T and f(T )

4.1. The general case. Let Ω be a nonempty subset of the complex plane
whose boundary consists of finite number of rectifiable Jordan curves, oriented
in the positive sense and Hol(Ω) the set of all holomorphic functions on some
open neighborhood of the closure of Ω.

Theorem 4.1. If T ∈ B(X), σ(T ) ⊂ Ω and f ∈ Hol(Ω), then

(a) σ(f(T )) = f(σ(T ));
(b) σa(f(T )) = f(σa(T ));
(c) σp(f(T )) ⊆ f(σp(T )) and, if f is non-constant function on each of the

components of Ω, then σp(f(T )) = f(σp(T )).

For the proof of these results we refer the reader to [3, Thm.VII.4.6],
[1, Thm.2.48] and [8, Thm.10.33]. (For the basics of the Riesz’s functional
calculus see also [2].)

If, in addition to the hypotheses of Theorem 4.1.(c), we assume that f is
injective, then f(σa(T )\σp(T )) = f(σa(T ))\f(σp(T )) = σa(f(T ))\σp(f(T )).

Now, applying Theorem 3.1 on T and S = f(T ) we have the following
result.

Theorem 4.2. If T ∈ B(X), λ ∈ σa(T )\σp(T ), σ(T ) ⊂ Ω and
f ∈ Hol(Ω) is injective and non-constant function on each of the compo-
nents of Ω, then for any two positive sequences (αn)n≥1 and (βn)n≥1 with
∑

n≥1 αn < +∞ and
∑

n≥1 βn < +∞, in every open ball in X with radius

2
∑

n≥1 (αn + βn) there is z ∈ X satisfying simultaneously

‖T nz‖ ≥
1

2
αn |λ|

n
and ‖Snz‖ ≥

1

2
βn |f(λ)|

n
, for all n ≥ 1.
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And, by Corollary 3.2, we have:

Corollary 4.3. If T ∈ B(X), σ(T ) ⊂ Ω, f ∈ Hol(Ω) is injective
and non-constant function on each of the components of Ω and σa(T )\σp(T )
contains points λ and µ with |λ| > 1 and |f(µ)| > 1, then there is a dense set
of vectors z ∈ X such that both Orb(T, z) and Orb(f(T ), z) tend strongly to
infinity.

4.2. The case of invertible operator. If T ∈ B(X) is an invertible operator,
then

σ(T ) ⊆
{

λ ∈ C : [r(T−1)]−1 ≤ |λ| ≤ r(T )
}

.

Since f(λ) = λ−1 is holomorphic, non-constant and injective function on
Ω = {λ ∈ C : m ≤ |λ| ≤ M} ⊃ σ(T ), where 0 < m < [r(T−1)]−1 and
M > r(T ), by Theorem 4.2 we obtain:

Theorem 4.4. If T ∈ B(X) is invertible operator and λ ∈ σa(T )\σp(T ),
then for any two positive sequences (αn)n≥1 and (βn)n≥1 with

∑

n≥1 αn < +∞

and
∑

n≥1 βn < +∞, in every open ball in X with radius 2
∑

n≥1 (αn + βn)
there is z ∈ X satisfying simultaneously

‖T nz‖ ≥
1

2
αn |λ|n and ‖T−nz‖ ≥

1

2
βn |λ|−n, for all n ≥ 1.

By Corollary 4.3 we also have the following result.

Corollary 4.5. If T is invertible operator and σa(T )\σp(T ) has a
nonempty intersection with both {λ ∈ C : |λ| > 1} and {λ ∈ C : |λ| < 1}, then
there is a dense set of vectors z ∈ X such that both Orb(T, z) and Orb(T−1, z)
tend strongly to infinity.
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[5] S. Mančevska, Operators with orbits tending to infinity, 8th MSDE, Ohrid (2004)

131-140 (in Macedonian).
[6] V. Müller, Orbits, weak orbits and a local capacity of operators, Int. Eq. Oper. Theory

41 (2001) 230-253.
[7] J. M. A. M. van Neerven On orbits of an operator with spectral radius one, Czech.

Math. J. 45 (1995), 495-502.
[8] W. Rudin, Functional Analysis, McGraw-Hill, Inc. 1973.
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