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ČECH-COMPLETE MAPS

Yun-Feng Bai and Takuo Miwa

Shimane University, Japan

Abstract. We introduce a new notion of “Čech-complete map”, and
investigate some its basic properties, invariance under perfect maps, char-
acterizations by compactifications of Čech-complete maps and relationships
between (locally) compact map, Čech-complete map and k-map.

1. Introduction

In this paper we investigate Čech-completeness on continuous maps,
which we call Čech-complete map. This new notion of “Čech-complete map” is
a continuation of generalizing the main notions and theory concerning spaces
to that of maps, and is also a generalization of compact maps [10] (i.e. perfect
maps) which are very important in General Topology. For the studies of para-
compact maps, covering properties on maps and metrizable type maps, see
[2, 3, 4], respectively. This branch of General Topology is known as General
Topology of Continuous Maps or Fibrewise General Topology.

For an arbitrary topological space B let us consider the category TOPB,
the objects of which are continuous maps into the space B, and for the objects
p : X → B and q : Y → B, a morphism from p into q is a continuous map
f : X → Y with the property p = q ◦ f . This is denoted by f : p → q. A
morphism f : p → q is onto, closed, perfect, if respectively, such is the map
f : X → Y . An object p : X → B of TOPB is called a projection, and X

or (X, p) is called a fibrewise space. We also call a morphism f : p → q a
fibrewise map when we write f : (X, p) → (Y, q) or f : X → Y .

In defining properties of a projection p : X → B one does not directly
involve any properties on the spaces X and B (except the existence of a
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topology). Such were the definitions given in [8, 9] for the separation axioms,
compactness, weight and others. We note that this situation is a general-
ization of the category TOP (of topological spaces and continuous maps as
morphisms), since the category TOP is isomorphic to the particular case of
TOPB in which the space B is a singleton set.

In section 2 of this paper, we refer to the notions and notations in TOPB.
In section 3, we define a Čech-complete map, and investigate some its basic
properties. In section 4, we study the invariance of Čech-complete maps under
perfect maps. In section 5, we investigate some characterizations of Čech-
complete map by its compactifications. In section 6, we study the relationships
between locally compact map, Čech-complete map and k-map.

Throughout this paper, we assume that all spaces are topological spaces,
and all maps and projections are continuous. For other terminology and
notations undefined in this paper, one can consult [5] about TOP , and [6, 4]
about TOPB.

2. Preliminaries

In this section, we refer to the notions and notations in Fibrewise Topol-
ogy, which are used in the latter sections.

Let (B, τ) be a topological space B with a fixed topology τ . Throughout
this paper, we will use the abbreviation nbd(s) for neighborhood(s). For each
b ∈ B, N(b) is the set of all open nbds of b, and N, Q and R are the sets of
all natural numbers, all rational numbers and all real numbers, respectively.
Note that the regularity of (B, τ) is assumed in Theorems 3.4, 5.1, 6.1 and
6.3, further the first axiom of countability of (B, τ) is assumed in Theorem
6.3.

For a projection p : X → B and each point b ∈ B, the fibre over b

is the subset Xb = p−1(b) of X . Also for each subset B′ of B we regard
XB′ = p−1(B′) as a fibrewise space over B′ with the projection determined
by p. For a filter (base) F on X , p∗(F) is the filter generated by the family
{p(F )|F ∈ F}. For a fibrewise map f : (X, p) → (Y, q), for a filter (base) F
on X , we define f∗(F) as same. For a filter (base) G on Y , f∗(G) is the filter
generated by the family {f−1(U)|U ∈ G}.

First, we begin to define some separation axioms on maps.

Definition 2.1. A projection p : X → B is called a Ti-map, i = 0, 1, 2
(T2 is also called Hausdorff), if for all x, x′ ∈ X such that x 6= x′, p(x) = p(x′)
the following condition is respectively satisfied:

1. i = 0: at least one of the points x, x′ has a nbd in X not containing
the other point;

2. i = 1: each of the points x, x′ has a nbd in X not containing the other
point;
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3. i = 2: the points x and x′ have disjoint nbds in X.

Definition 2.2. (1) A T0-map p : X → B is called regular if for every
point x ∈ X and every closed set F in X with x 6∈ F , there exists a nbd
W ∈ N(p(x)) such that {x} and F ∩ XW have disjoint nbds in XW

(2) A T1-map p : X → B is called normal if for every O ∈ τ , every pair of
closed disjoint sets F1, F2 of X and every b ∈ O, there exists W ∈ N(b) with
W ⊂ O such that F1 ∩ XW and F2 ∩ XW have disjoint nbds in XW .

We now give the definitions of submap, compact map [10] and locally
compact map [8].

Definition 2.3. (1) The restriction of the projection p : X → B to
a closed (resp. open, type Gδ, etc.) subset of the space X is called a
closed (resp. open, type Gδ, etc.) submap of the map p.

(2) A projection p : X → B is called a compact map if it is perfect (i.e. it
is closed and all its fibres p−1(b) are compact).

(3) A projection p : X → B is said to be a locally compact map if for each
x ∈ Xb, where b ∈ B, there exists a nbd W ∈ N(b) and a nbd U ⊂ XW

of x such that q : XW ∩ U → W is a compact map, where XW ∩ U is
the closure of U in XW and q is the restriction of p to it.

Note that a closed submap of a (resp. locally) compact map is (resp.
locally) compact, and for a (resp. locally) compact map p : X → B and every
B′ ⊂ B the restriction p|XB′ : XB′ → B′ is (resp. locally) compact.

Definition 2.4. (1) For a map p : X → B, a map c(p) : cpX → B

is called a compactification of p if c(p) is compact, X is dense in cpX

and c(p)|X = p.
(2) A map p : X → B is called a T2-compactifiable map if p has a com-

pactification c(p) : cpX → B which is a T2-map.

The following holds.

Proposition 2.5. (1) For i = 0, 1, 2, every submap of a Ti-map is
also a Ti-map. Every submap of a regular map is also regular.

(2) Compact T2-map =⇒ normal map =⇒ regular map =⇒ T2-map.
(3) ([6, Section 8]) Every normal map is T2-compactifiable.
(4) ([6, Section 8]) Every locally compact T2-map is T2-compactifiable.

Remark 2.6. The approach to the compactification of a map was pro-
posed by Whyburn [11], and Pasynkov studied it in [8]. In James [6, Section
8], there is some basic study of compactifiable maps, but note that he uses a
terminology “fibrewise compactification”. For other study of compactifiable
maps, see [1, 7].

Definition 2.7. For the collection of fibrewise spaces {(Xα, pα)|α ∈ Λ},
the subspace X = {t = {tα} ∈

∏
{Xα|α ∈ Λ}| pαtα = pβtβ ∀α, β ∈ Λ} of the
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Tychonoff product
∏

=
∏
{Xα|α ∈ Λ} is called the fan product of the spaces

Xα with respect to the maps pα, α ∈ Λ.
For the projection prα :

∏
→ Xα of the product

∏
onto the factor Xα,

the restriction πα to X will be called the projection of the fan product onto the
factor Xα, α ∈ Λ. From the definition of fan product we have that, pα ◦ πα =
pβ ◦πβ for every α and β in Λ. Thus one can define a map p : X → B, called
the product of the maps pα, α ∈ Λ, by p = pα ◦ πα, α ∈ Λ, and (X, p) is
called the fibrewise product space of {(Xα, pα)|α ∈ Λ}.

Obviously, the projections p and πα, α ∈ Λ, are continuous.

The following proposition holds.

Proposition 2.8. Let {(Xα, pα)|α ∈ Λ} be a collection of fibrewise
spaces.

(1) If each pα is Ti (i = 0, 1, 2), then the product p is also Ti (i = 0, 1, 2).
(2) If each pα is a surjective regular map, then the product p is also a

regular map
(3) ([6, Prop. 3.5]) If each pα is a compact map, then the product p is also

a compact map.
(4) If each pα is a T2-compactifiable map, then the product p is also a

T2-compactifiable map.

We shall conclude this section by defining the concept of b-filters (or tied
filters) which plays an important role in this paper.

Definition 2.9 ([6, Section 4]). For a fibrewise space (X, p), by a b-filter
(or tied filter) on X we mean a pair (b,F), where b ∈ B and F is a filter
on X such that b is a limit point of the filter p∗(F) on B. By an adherence
point of a b-filter F (b ∈ B) on X, we mean a point of the fibre Xb which is
an adherence point of F as a filter on X.

3. Definition and Basic properties of Čech-complete maps

In this section, we define a Čech-complete map and investigate some its
basic properties. First, we shall begin with the following definition.

Definition 3.1. Let X be a topological space, and A a subset of X. We
say that the diameter of A is less than a family A = {As}s∈S of subsets of
the space X, and we shall write δ(A) < A, provided that there exists an s ∈ S

such that A ⊂ As.

Definition 3.2. A T2-compactifiable map p : X → B is Čech-complete
if for each b ∈ B, there exists a countable family {An}n∈N of open (in X)
covers of Xb with the property that every b-filter F which contains sets of
diameter less than An for every n ∈ N has an adherence point.
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Since the real line R with the usual topology is Čech-complete, p : R → B

is Čech-complete where B is a one-point space. All rational numbers Q, as
a subset of R, is not Čech-complete, thus p|Q is not Čech-complete though
p|Q is open and closed. But we have the following results.

Theorem 3.3. For a Čech-complete map p : X → B, if F is a closed
subset of X, then p|F : F → B is Čech-complete.

Proof. Since p : X → B is Čech-complete, for each b ∈ B there exists a
countable family {An}n∈N of open (in X) covers of Xb with the property in
Definition 3.2. Let Un = An|F for every n ∈ N, where An|F = {U ∩ F |U ∈
An}, then {Un}n∈N is a countable family of open (in F ) covers of Fb in F .
For every b-filter F on the space F which contains sets of diameter less than
Un for every n ∈ N, it generates a b-filter F1 which contains sets of diameter
less than An for every n ∈ N, thus the b-filter F1 has an adherence point
x ∈ Xb in the space X . Since F ∈ F1 is closed in the space X and F ⊂ F1,
x is also an adherence point of the b-filter F in the space F , so p|F : F → B

is Čech-complete.

Theorem 3.4. Assume that B is regular. For a Čech-complete map
p : X → B, if G is a Gδ-subset of X, then p|G: G → B is Čech-complete.

Proof. First note that X is regular from the regularity of B and the
fact that p is T2-compactifiable. Let G =

⋂
n∈N

Gn with Gn open in X for

every n ∈ N. Since p : X → B is Čech-complete, for each b ∈ B there exists a
countable family {An}n∈N of open (in X) covers of Xb with the property in
Definition 3.2. For every n ∈ N and x ∈ Gb, there exist An(x) ∈ An and an

open nbd Vn(x) of x such that Vn(x) ⊂ Vn(x) ⊂ Gn ∩ An(x) in the space X .
Let Vn = {Vn(x) ∩ G|x ∈ Gb}, then {Vn}n∈N is a countable family of open
(in G) covers of Gb. For every b-filter F on the space G which contains sets
of diameter less than Vn for every n ∈ N, there exist Fn ∈ F , x ∈ Gb and
Vn(x) ∩ G ∈ Vn for every n ∈ N such that

(∗) Fn ⊂ Vn(x) ∩ G ⊂ Vn(x) ⊂ Vn(x) ⊂ Gn ∩ An(x).

The b-filter F1 on X generated by b-filter F contains sets of diameter less
than An for every n ∈ N, therefore it has an adherence point y in X . From
(*) and F ⊂ F1, it holds that y ∈

⋂
n∈N

Gn = G and y is an adherence point

of the b-filter F in the space G, so p|G: G → B is Čech-complete.

About the product of Čech-complete maps, we have the following.

Theorem 3.5. Let {(Xn, pn)|n ∈ N} be a countable family of fibrewise
spaces and (X, p) be the fibrewise product space of {(Xn, pn)|n ∈ N}, where
X =

∏
B Xn. If each pn is a surjective Čech-complete map, then the product

p is Čech-complete.



224 Y.-F. BAI AND T. MIWA

Proof. For every n ∈ N and b ∈ B, since pn: Xn → B is Čech-complete,
there exists a countable family {Ani}i∈N of open (in Xn) covers of (Xn)b with
the property in Definition 3.2. For every n ∈ N, let An = A1n ×B A2(n−1)×B

· · · ×B An1 ×B (
∏

B Xk)k>n, then {An}n∈N is a countable family of open (in
X) covers of Xb. Let F be a b-filter containing sets of diameter less than An

for every n ∈ N. Then each n ∈ N there exist An = A1n ×B A2(n−1) ×B

· · · ×B An1 ×B (
∏

B Xk)k>n ∈ An and Fn ∈ F such that Fn ⊂ An (and in
this case, πj(Fn) ⊂ Aj(n−(j−1)) for every j ≤ n, where πj :

∏
B Xn → Xj

is the projection). Thus for each n ∈ N, (πn)∗(F) is a b-filter on the space
Xn which contains sets of diameter less than Ani for every i ∈ N , therefore
it has an adherence point xn in the space Xn and F has an adherence point
(xn)n∈N in the space X , Thus p : X → B is Čech-complete.

4. Invariance under perfect maps

In this section, we study the invariance of Čech-complete maps under
perfect maps. We have the following.

Theorem 4.1. Let a fibrewise map f : (X, p) → (Y, q) be a perfect map,
and p and q be T2-compactifiable maps. Then p is Čech-complete if and only
if q is Čech-complete.

Proof. “Only if” part: Suppose that p : X → B is Čech-complete. For
each b ∈ B there exists a countable family {An}n∈N of open (in X) covers of
Xb with the property in Definition 3.2. From the perfectness of f : X → Y ,
for each n ∈ N and y ∈ Yb there exist finite elements Un1, Un2, . . . , Uni(y) of

An and an open nbd Vn,y of y such that f−1(y) ⊂ f−1(Vn,y) ⊂
⋃

k≤i(y) Unk.

For every n ∈ N, let Vn = {Vn,y|y ∈ Yb}. Then {Vn}n∈N is a countable
family of open (in Y ) covers of Yb. For every b-filter F on the space Y

containing sets of diameter less than Vn for every n ∈ N, let F1 is the b-
ultrafilter generated by the b-filter f∗F on the space X . Since for every
n ∈ N there exists Fn ∈ F and Vn,y ∈ Vn such that Fn ⊂ Vn,y, thus
f−1(Fn) ∈ f∗F ⊂ F1 and f−1(Fn) ⊂

⋃
k≤i(y) Unk. Since F1 is a b-ultrafilter

on the space X , from [6, Proposition 4.1] there exists k0 ≤ i(y) such that
Unk0

∈ F1 which shows that the b-filter F1 contains sets of diameter less than
An for every n ∈ N. Therefore F1 has an adherence point x in X and the
b-filter F has an adherence point f(x) in Y , thus q : Y → B is Čech-complete.

“If” part: Suppose that q : Y → B is Čech-complete. For each b ∈ B

there exists a countable family {Vn}n∈N of open (in Y ) covers of Yb with the
property in Definition 3.2. Let An = {f−1(V )|V ∈ Vn} for every n ∈ N, then
{An}n∈N is a countable family of open (in X) covers of Xb. For every b-filter
F on the space X containing sets of diameter less than An for every n ∈ N, it
is easy to see that F1 = f∗F is a b-filter on Y which contains sets of diameter
less than Vn for every n ∈ N, thus it has an adherence point y in Y . From
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the perfectness of f : X → Y and [6, Proposition 4.3] the b-filter F has an
adherence point x ∈ f−1(y), thus p : X → B is Čech-complete.

5. Characterizations of Čech-complete maps by

compactifications of maps

In this section, we investigate some characterizations of Čech-complete
maps by compactifications of the maps. Further, we give an example showing
there exists a projection p : X → B satisfying each fibre is Čech-complete,
but p is not Čech-complete. We can prove the following theorem.

Theorem 5.1. Suppose that B is regular. For a T2-compactifiable map
p : X → B, the following are equivalent:

(1) p is Čech-complete.
(2) For every T2-compactification p′ : X ′ → B of p and each b ∈ B, Xb is

a Gδ-subset of X ′
b.

(3) There exists a T2-compactification p′ : X ′ → B of p such that Xb is a
Gδ-subset of X ′

b for each b ∈ B.

Proof. (1)=⇒(2): Let p′ : X ′ → B is a T2-compactification of the map
p, then X is a subset of X ′ and X = X ′. Since p is Čech-complete, there exists
a countable family {An}n∈N of open (in X) covers of Xb with the property
in Definition 3.2. For every n ∈ N and Aα ∈ An = {Aα|α ∈ Γn}, take an
open subset Uα of X ′ such that Aα = X ′ ∩Uα. Let Gn =

⋃
{Uα|α ∈ Γn} and

G =
⋂

n∈N
Gn, then it holds that Xb = G∩X ′

b. In fact, if Xb 6= G∩X ′
b, there

exists a point x ∈ (X ′
b ∩G)−Xb. The family F = {F | F is a nbd of x in X ′}

is a b-filter with x its an adherence point in the space X ′. From X = X ′ and
x ∈ X ′

b ∩ G, it is easily verified that F1 = F|X is a b-filter on X with the
property that for every n ∈ N there exists an element Fn ∈ F1 and An ∈ An

such that Fn ⊂ An. Therefore the b-filter F1 has an adherence point x0 in
X . It is obvious that x0 is an adherence point of the b-filter F in X ′ with
x 6= x0, which contradicts with the fact that p′ : X ′ → B is T2. Thus Xb is a
Gδ-subset of X ′

b.
(2)=⇒(3): Obviously.

(3)=⇒(1): In this proof, we use the notation M
X′

as the closure of M ⊂
X ′ in X ′. Let p′ : X ′ → B be a T2-compactification of the map p : X → B

such that for every b ∈ B, Xb is a Gδ-subset of X ′
b. We can suppose Xb =⋂

n∈N
G0n where G0n is open in the space X ′

b for every n ∈ N. For each
n ∈ N, take an open subset Gn of X ′ such that G0n = Gn ∩ X ′

b. Since
p′ : X ′ → B is a compact T2-map and B is regular, for every n ∈ N and

x ∈ Xb there exists an open nbd Vxn of x such that Vxn ⊂ Vxn
X′

⊂ Gn. Let
Vn = {Vxn ∩ X |x ∈ Xb}, then {Vn}n∈N is a countable family of open (in X)
covers of Xb. For every b-filter F which contains sets of diameter less than
Vn for every n ∈ N, there exists an element Fn ∈ F and xn ∈ Xb such that
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Fn ⊂ Vxnn ∩ X ∈ Vn, thus Fn ⊂ Fn
X′

⊂ Vxnn
X′

⊂ Gn. Let F1 be the b-filter
generated by F on the space X ′, then F1 has an adherence point x in the

space X ′ from the compactness of p′ : X ′ → B. Since x ∈ Fn
X′

for every
n ∈ N, it holds that x ∈ (

⋂
n∈N

Gn) ∩ X ′
b = Xb. Thus the b-filter F has an

adherence point in X , and therefore p : X → B is Čech-complete.

From Definition 3.2, if p : X → B is Čech-complete, then each fibre of p

is Čech-complete. But the following example shows the converse is false even
if B is a compact T2-space.

Example 5.2. There exists a map p : X → B satisfying the following:

(1) p is a T2-compactifiable map.
(2) Each fibre of p is Čech-complete, but p is not a Čech-complete map.
(3) p is an open map. (Note that p is not a closed map.)

Construction: First, note that the space X is the same space constructed in
[5, Example 1.6.19]. Let X = {0} ∪ (

⋃
m∈N

Xm) where

Xm = {
1

m
} ∪ {

1

m
+

1

m2 + k
|k ∈ N},

A0 = {0} ∪ { 1
m

| m ∈ N} and Ym = Xm − { 1
m
} for every m ∈ N. We denote

the n-th element of Ym by Pmn. The topology on X is generated by a nbd
system defined as follows: For x ∈ Ym for each m ∈ N, B(x) = {{x}}; for
x = 1

m
, B(x) = {Un|n ∈ N}, where Un = Xm − {Pmi|i ≤ n}; for x = 0,

B(0) = {U | there exists a finite set H ⊂ N and F ⊂ X − A0 satisfying

F ∩ Bm is finite for each m ∈ N such that

U = X − (F ∪
⋃

m∈H

Xm)}.

This space X is perfectly normal and sequential [5, Example 1.6.19].
For each n ∈ N, let An = {Pmn|m ∈ N}, then {An}n≥0 is a decomposi-

tion of X generating a quotient space B = {bn|bn = An and n ≥ 0}, which is
a compact T2-space. We denote the quotient map by p : X → B.

Let Wn = {b0}∪{bi|i ≥ n} for each n ∈ N. Then it is easily verified that
{Wn|n ∈ N} is a nbd base of b0 in B.

(1): Since X is a perfectly normal space, p is a normal map, therefore p

is T2-compactifiable by Proposition 2.5 (3).
(2): First, it is obvious that p−1(b) is Čech-complete for each b ∈ B.
Next, we shall show that p is not Čech-complete. For b0 ∈ B and every

countable family {Un}n∈N of open covers of p−1(b0) = A0, there exists Un ∈
Un such that 0 ∈ Un and we can suppose that Un ∈ B(0) for every n ∈ N.
Let F1 = U1 and x1 = maxF1. For every n ≥ 2, let

Fn = Un ∩ Fn−1 ∩ (X − (
⋃

i<n

(Xi ∪ Ai)))
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and xn = max Fn. Let F0 = {xn|n ∈ N}. Then it is easy to see that the
family F={Fn|n ≥ 0} contains sets of diameter less than Un for every n ∈ N

and has the finite intersection property. Since p(Fn) ⊂ Wn and {Wn|n ∈ N}
is a nbd base of b0, F generates a b0-filter F ′ on X . For every x ∈ A0, if
x = 1

m
, then Am is an open nbd of 1

m
with Am ∩ Fn = ∅ for every n > m; if

x = 0, then U = X −F0 is an open nbd of 0 with U ∩F0 = ∅. So the b0-filter
F ′ has no adherence point in X , and thus p is not Čech-complete.

Proof of (3): First, it is easily verified that the map p is open, because
the image of any (three types) basic nbd in X under the map p is open in B.

Next, we shall show that p is not closed. Let F = {Pnn|n ∈ N}. Then it
is easy to see that F is closed in X but p(F ) = B − {b0} is not closed in B.
Thus p is not closed.

6. Relationships between Čech-complete maps and other maps

In this section, we shall prove the following implications under some con-
ditions:

Locally compact map =⇒ Čech-complete map =⇒ k-map
where a k-map p : X → B is same as that X is a fibrewise compactly generated
space over B ([6, Section 10] and Definition 6.2 in this section).

Theorem 6.1. Suppose that B is regular. Every locally compact T2-map
is Čech-complete.

Proof. Let p : X → B be a locally compact T2-map. Then from [6,
Section 8], the map p has the compactification p′ : X ′ → B such that for each
b ∈ B, X ′

b − Xb is a one-point set and X is open in X ′ (note that James call
the space X ′ the fibrewise Alexandroff compactification of X). By this result,
it is clear that p is a T2-compactifiable map, and for each b ∈ B Xb is an open
subset of X ′

b. Thus, p is Čech-complete from Theorem 5.1.

We shall define a k-map as follows:

Definition 6.2. (James [6, Definitions 10.1 and 10.3])

(1) Let (X, p) be a fibrewise space. The subset H of X is quasi-open (resp.
quasi-closed) if the following condition is satisfied: for each b ∈ B and
V ∈ N(b) there exists a nbd W ∈ N(b) with W ⊂ V such that whenever
p|K : K → W is compact then H ∩ K is open (resp. closed) in K.

(2) Let a projection p : X → B be a T2-map. The map p is a k-map if
every quasi-closed subset of X is closed in X or, equivalently, if every
quasi-open subset of X is open in X.

From [6, Proposition 10.2] we know that every locally compact T2-map is
a k-map. Further, we can prove the following.

Theorem 6.3. Suppose that B is regular and satisfies the first axiom of
countability. Then a Čech-complete map p : X → B is a k-map.
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Proof. First, note that we use the following notation in a space Y : For

M ⊂ Y , we denote the closure of M in Y by M
Y

.
Suppose that H is quasi-closed but not closed in the space X . Then there

exists a point x ∈ H
X
− H . Let b = p(x) and {Wn}n∈N be a decreasing nbd

base of b in B. Since p is Čech-complete, from Theorem 5.1 there exists a
T2-compactification p′ : X ′ → B of p such that Xb = (

⋂
n∈N

Gn) ∩ X ′
b with

Gn open in the space X ′ for every n ∈ N. Let U0 = X ′. Since p′ is compact

and B is regular, there exists a nbd Un of x in X ′ such that x ∈ Un
X′

⊂

Un−1 ∩ Gn ∩ p′−1(Wn) for every n ∈ N. Then Z =
⋂

n∈N
Un

X′

⊂ X is a

closed subset of X ′
b by

⋂
n∈N

p′−1(Wn) = p′−1(b). Therefore p|Z : Z → B is
a compact map. Since H is quasi-closed, H ∩ Z is a compact subset of Xb.

So there exists a nbd V of x in X ′ such that V
X′

∩ (H ∩ Z) = ∅.
For every n ∈ N, take a point xn ∈ (V ∩ Un ∩ H) − {xk|k < n} and let

Fn = {xi|i ≥ n} which is included in X . For every n ∈ N, since Fn
X′

⊂

Un−1
X′

, it holds that F ′
n = {y|y is an accumulation point of Fn in X ′} ⊂ Z.

Thus Kn = Fn ∪ Z ⊂ X is fibrewise compact over B (i.e. p|Kn : Kn → B

is compact), because Kn
X′

= Fn ∪ Z
X′

= Fn
X′

∪ Z
X′

= Fn ∪ Z = Kn, and
p′ : X ′ → B is compact. Since Fn ⊂ p′−1(Wn) for every n ∈ N, {Fn}n∈N

generates a b-filter F on K1. From the compactness of p|K1 : K1 → B, F

has an adherence point x0 in the space K1, thus x0 ∈ Fn
X′

∩ K1 for every
n ∈ N, therefore x0 ∈ Z. Without loss of generality, we can suppose x0 6∈ Fn

for every n ∈ N.

Since F ′
n ⊂ Z, it is easy to see that Fn

X
= Fn

X′

∩X = (Fn ∪ F ′
n) ∩X =

Fn ∪ F ′
n = Fn

X′

for every n ∈ N. From Fn ⊂ V ⊂ V
X′

and Fn
X′

⊂ V
X′

⊂

X ′−(H∩Z), x0 ∈ Fn
X′

−(H∩Z). For every nbd U of x0 in X , ∅ 6= U ∩Fn ⊂
U∩(Fn∪(H∩Z)) = U∩((Fn∪H)∩(Fn∪Z)) = U∩H∩(Fn∪Z) = U∩H∩Kn,

thus x0 ∈ H ∩ Kn
Kn

. But since H∩Kn = H∩(Fn∪Z) = (H∩Fn)∪(H∩Z) =
Fn ∪ (H ∩ Z), it holds that x0 6∈ H ∩ Kn. Thus H ∩ Kn is not closed in Kn.

For every nbd W ∈ N(b), there exists n ∈ N such that Wn ⊂ W and
p|Kn : Kn → W is compact. But from the above consideration H ∩Kn is not
closed in the space Kn, which contradicts with the fact that H is quasi-closed
in X .
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