Category descriptions of the S_{n} - and S-equivalence

Branko Červar* and Nikica Uglešić ${ }^{\dagger}$

Abstract

By reducing the Mardešić S-equivalence to a finite case, i.e. to each $n \in\{0\} \cup \mathbb{N}$ separately, the authors recently derived the notion of S_{n}-equivalence of compacta. In this paper an additional notion of S_{n}^{+}-equivalence is introduced such that S_{n}^{+}implies S_{n} and S_{n} implies S_{n-1}^{+}. The implications $S_{1}^{+} \Rightarrow S_{1} \Rightarrow S_{0}^{+} \Rightarrow S_{0}$ as well as $S h \Rightarrow S \Rightarrow S_{1}$ are strict. Further, for every $n \in \mathbb{N}$, a category $\underline{\mathcal{A}}_{n}$ and a homotopy relation on its morphism sets are constructed such that the mentioned equivalence relations admit appropriate descriptions in the given settings. There exist functors of $\underline{\mathcal{A}}_{n^{\prime}}$ to $\underline{\mathcal{A}}_{n}, n \leq n^{\prime}$, keeping the objects fixed and preserving the homotopy relation. Finally, the S-equivalence admits a category characterization in the corresponding sequential category \mathcal{A}.

Key words: compactum, $A N R$, shape, S-equivalence, S_{n}-equivalence, category

AMS subject classifications: Primary 55P55; Secondary 18A32
Received June 11, 2007
Accepted November 15, 2007

1. Introduction

A few decades ago S. Mardešić [4] introduced an equivalence relation between metric compacta, called the S-equivalence. The corresponding classification is strictly coarser than the shape type classification [2], [3], [7], [8]. Moreover, the S-equivalence on compact ANR's and compact polyhedra coincides with the homotopy type classification. However, the mentioned relation, being defined only on the class of objects, was not supported by an appropriate associated theory. In other words, it was not clear whether the S-equivalence admits a category characterization by means of its isomorphisms (or at least a category description by means of its morphisms). Furthermore, if such a (full) characterization would exists, there should exist a functor relating the shape category and the new category.

The reason why the S-equivalence was, for example, the problem of the shape types of fibres of a shape fibration. In 1977 D. Coram and P.F. Duvall [1] introduced

[^0]and studied the approximate fibrations between compact ANR's. These are a shape analogue of the standard (Hurewicz) fibrations. In 1978 Mardešić and T.B. Rushing [5] generalized approximate fibrations to shape fibrations between metric compacta. The following important question was asking for the answer (analogously to the same homotopy type of the fibres of a fibration): Whether all the fibres of a shape fibration (over a continuum) have the same shape type? In 1979 J. Keesling and Mardešić [3] gave a negative answer. However, Mardešić [4] had proved before that all those fibres are mutually S-equivalent. He had also proved that some shape invariant classes of compacta (FANR's, movable compacta, compacta having shape dimension $\leq n, \ldots$) are actually S-invariant.

By uniformization of the S-equivalence, Mardešić and Uglešić [7] obtained a finer equivalence relation, called the S^{*}-equivalence, that admits a full category characterization. A quite different characterization of the S^{*}-equivalence was given by the authors [8].

The S-equivalence is defined by means of a certain condition depending on every $n \in \mathbb{N}$. Mardešić and Uglešić had noticed in [7] that it makes sense to consider "the finite parts" of this condition. By following this idea, the authors [9] have recently reduced the mentioned condition to the finite cases, i.e. to every $n \in\{0\} \cup \mathbb{N}$ separately. In that way they derived the notions of S_{n}-equivalences of compacta They proved that the S_{2}-equivalence strictly implies S_{1}-equivalence and that S_{1} equivalence strictly implies S_{0}-equivalence. Further, the S_{1}-equivalence restricted to compacta having the homotopy types of ANR's coincides with the homotopy type classification. Similarly, the S_{1}-equivalence restricted to the class of all FANR's (compacta having the shapes of ANR's) coincides with the shape type classification. Finally, the shape class, the S-equivalence class and the S_{2}-equivalence class of an FANR coincide.

In this paper we have provided a category description for each S_{n}-equivalence relation as well as for the S-equivalence. To do this, we have first introduced the additional equivalence relations, called the S_{n}^{+}-equivalences, $n \in\{0\} \cup \mathbb{N}$, such that

$$
S_{0} \Leftarrow S_{0}^{+} \Leftarrow S_{1} \Leftarrow \cdots \Leftarrow S_{n} \Leftarrow S_{n}^{+} \Leftarrow S_{n+1} \Leftarrow \cdots .
$$

The implications $S_{0} \Leftarrow S_{0}^{+} \Leftarrow S_{1} \Leftarrow S_{1}^{+}$as well as $S_{1} \Leftarrow S \Leftarrow S h$ are strict.
Further, for every $n \in \mathbb{N}$, a category $\underline{\mathcal{A}}_{n}$ and an equivalence (homotopy) relation on its morphisms sets are constructed such that the $S_{n}\left(S_{n}^{+}\right)$-equivalence admits an appropriate description by means of the corresponding morphisms of $\mathcal{A}_{m(n)}$ $\left(\underline{\mathcal{A}}_{m(n)^{+}}\right)$. More precisely, by following the basic idea of [8], the objects of $\underline{\mathcal{A}}_{n}$ are all inverse sequences \boldsymbol{X} of compact ANR's (or compact polyhedra); a morphism set $\underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ consists of all so-called free n-hyperladders $F_{n}=\left(f_{\boldsymbol{j}^{n}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$; there exists a homotopy relation $F_{n} \simeq F_{n}^{\prime}$ on each morphism set. (However, this equivalence relation is not compatible with the composition, so there is no appropriate quotient category.) There exist functors of $\underline{\mathcal{A}}_{n^{\prime}}$ to $\underline{\mathcal{A}}_{n}, n \leq n^{\prime}$, which keep the objects fixed and preserve the homotopy relations (Theorem 1.). If there exist an $F_{n} \in \underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G_{n} \in \underline{\mathcal{A}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G_{n} F_{n} \simeq 1_{\boldsymbol{X} n}$ and $F_{n} G_{n} \simeq 1_{\boldsymbol{Y}}$ hold, then we say that \boldsymbol{X} is n-alike \boldsymbol{Y}, denoted by $\boldsymbol{X} \stackrel{n}{\leftrightarrow} \boldsymbol{Y}$. If X and Y are compacta, then $X \stackrel{n}{\leftrightarrow} Y$ is defined by means of $\boldsymbol{X} \stackrel{n}{\leftrightarrow} \boldsymbol{Y}$, where $\boldsymbol{X}, \boldsymbol{Y}$ are associated with X, Y, respectively $(X=\lim \boldsymbol{X}, Y=\lim \boldsymbol{Y})$. Among other facts, we have
proved the following ones (Theorems 3-6):

$$
\begin{gathered}
\left(S_{3 n+1}(X)=S_{3 n+1}(Y)\right) \Rightarrow(X \stackrel{2 n+1}{\longleftrightarrow} Y), \quad n \geq 0 ; \\
\left(S_{3 n+2}^{+}(X)=S_{3 n+2}^{+}(Y)\right) \Rightarrow(X \stackrel{2 n+2}{\longleftrightarrow} Y), \quad n \geq 0 ; \\
(X \stackrel{2 n+1}{\longleftrightarrow} Y) \Rightarrow\left(S_{n}(X)=S_{n}(Y)\right), \quad n \geq 0 ; \\
(X \stackrel{2 n}{\leftrightarrow} Y) \Rightarrow\left(S_{n-1}^{+}(X)=S_{n-1}^{+}(Y)\right), \quad n \geq 1 .
\end{gathered}
$$

As a consequence (Corollary 1.)

$$
((X \stackrel{n}{\hookrightarrow} Y) \wedge(Y \stackrel{n}{\longleftrightarrow} Z)) \Rightarrow\left(X \stackrel{\left[\frac{n}{3}\right]}{\longleftrightarrow} Z\right), \quad n \geq 3
$$

Finally, $S(X)=S(Y)$ if and only if X and Y are alike, $X \leftrightarrow Y$ (Corollary 2.), where $X \leftrightarrow Y$ is defined by means of $X \stackrel{n}{\leftrightarrow} Y$ for all $n \in \mathbb{N}$.

2. Preliminaries

Let $c \mathcal{M}$ denote the class of all compact metrizable spaces (compacta), and let $c \underline{\mathcal{M}}$ denote the class of all inverse sequences over $c \mathcal{M}$. By [4], Definition 1., two inverse sequences $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$ are said to be S-equivalent, denoted by $S(\boldsymbol{Y})=S(\boldsymbol{X})$, provided, for every $n \in \mathbb{N}$, the following condition is fulfilled:

$$
\begin{gathered}
\left(\forall j_{1}\right)\left(\exists i_{1}\right)\left(\forall i_{1}^{\prime} \geq i_{1}\right)\left(\exists j_{1}^{\prime} \geq j_{1}\right)\left(\forall j_{2} \geq j_{1}^{\prime}\right)\left(\exists i_{2} \geq i_{1}^{\prime}\right) \cdots \\
\cdots\left(\forall i_{n-1}^{\prime} \geq i_{n-1}\right)\left(\exists j_{n-1}^{\prime} \geq j_{n-1}\right)\left(\forall j_{n} \geq j_{n-1}^{\prime}\right)\left(\exists i_{n} \geq i_{n-1}^{\prime}\right)
\end{gathered}
$$

and there exist mappings

$$
f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}, k=1, \ldots, n
$$

and

$$
g_{k} \equiv g_{i_{k}^{\prime}}^{n}: Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}, k=1, \ldots, n-1
$$

making the following diagram

$$
\begin{align*}
& X_{i_{1}} \leftarrow X_{i_{1}^{\prime}} \leftarrow \cdots \leftarrow X_{i_{n-1}^{\prime}} \leftarrow X_{i_{n}} \\
& \downarrow f_{1} \uparrow g_{1} \quad \cdots \quad \uparrow g_{n-1} \quad \downarrow f_{n} \tag{D}\\
& Y_{j_{1}} \leftarrow Y_{j_{1}^{\prime}} \leftarrow \cdots \leftarrow \leftarrow Y_{j_{n-1}^{\prime}} \leftarrow Y_{j_{n}}
\end{align*}
$$

commutative up to homotopy. Two compacta X and Y are said to be S-equivalent, denoted by $S(Y)=S(X)$, provided there exists a pair (equivalently, for every pair) of limits $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ and $\boldsymbol{q}: Y \rightarrow \boldsymbol{Y}$ of inverse sequences consisting of compact ANR's such that $S(\boldsymbol{Y})=S(\boldsymbol{X})$ (see [4], Remarks 1. and 2. and Definition 2.). If $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ is the limit, then we also say that \boldsymbol{X} is associated with X.

If compacta X and Y have the same shape [6], $S h(Y)=S h(X)$, then $S(Y)=$ $S(X)$. There exist compacta X and Y such that $S(Y)=S(X)$ and $S h(Y) \neq S h(X)$ (see [3], [2], [7]).

If the choice of indices i_{k} and j_{k}^{\prime} does not depend on a given $n \in \mathbb{N}$ (while the mappings still depend on n, i.e. $f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}$ and $g_{k} \equiv g_{i_{k}^{\prime}}^{n}: Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}$), then the S-equivalence becomes the S^{*}-equivalence (see [7], Definitions 6.-9., and [8], Lemmata 4. and 5.). There exists a pair X, Y of compacta such that $S^{*}(Y)=$ $S^{*}(X)$ and $S h(Y) \neq S h(X)$ (see [7], [8]). However, we have no example yet which could show that the S^{*}-equivalence is indeed strictly finer than the S-equivalence.

According to [9], given an $n \in \mathbb{N}$, let us denote the above condition, relating \boldsymbol{Y} to \boldsymbol{X}, by $\left(D_{2 n-1}\right)$. Further, let us denote by $\left(D_{2 n}\right)$ the following extension of $\left(D_{2 n-1}\right)$:

$$
\begin{gathered}
\left(\forall j_{1}\right)\left(\exists i_{1}\right)\left(\forall i_{1}^{\prime} \geq i_{1}\right)\left(\exists j_{1}^{\prime} \geq j_{1}\right) \cdots \\
\cdots\left(\forall j_{n} \geq j_{n-1}^{\prime}\right)\left(\exists i_{n} \geq i_{n-1}^{\prime}\right)\left(\forall i_{n}^{\prime} \geq i_{n}\right)\left(\exists j_{n}^{\prime} \geq j_{n}\right)
\end{gathered}
$$

and there exist mappings

$$
f_{k} \equiv f_{j_{k}}^{n}: X_{i_{k}} \rightarrow Y_{j_{k}}, g_{k} \equiv g_{i_{k}^{\prime}}^{n}: Y_{j_{k}^{\prime}} \rightarrow X_{i_{k}^{\prime}}, k=1, \ldots, n
$$

making diagram (D), extended by adding one rectangle, commutative up to homotopy.

It is obvious that (relating \boldsymbol{Y} to \boldsymbol{X}), for each $m \in \mathbb{N}$,

$$
\left(D_{m+1}\right) \Rightarrow\left(D_{m}\right)
$$

Given any $\boldsymbol{X}, \boldsymbol{Y} \in c \underline{\mathcal{M}}$ and $n \in\{0\} \cup \mathbb{N}$, let $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ denote condition $\left(D_{2 n+1}\right)$ relating \boldsymbol{Y} to \boldsymbol{X}. Further, let $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ denote condition $\left(D_{2 n+2}\right)$ relating \boldsymbol{Y} to \boldsymbol{X}. It is clear that, for every $n \in \mathbb{N} \cup\{0\}$, the following assertions hold (see also Lemma 1. of [9]):

$$
\begin{aligned}
& S_{n+1}(\boldsymbol{X}, \boldsymbol{Y}) \Rightarrow\left(S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y}) \wedge S_{n}^{+}(\boldsymbol{Y}, \boldsymbol{X})\right) ; \\
& S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y}) \Rightarrow\left(S_{n}(\boldsymbol{X}, \boldsymbol{Y}) \wedge S_{n}(\boldsymbol{Y}, \boldsymbol{X})\right) ; \\
&\left((\forall n \in\{0\} \cup \mathbb{N}) S_{n}(\boldsymbol{X}, \boldsymbol{Y})\right) \Leftrightarrow\left((\forall n \in\{0\} \cup \mathbb{N}) S_{n}(\boldsymbol{Y}, \boldsymbol{X})\right) \Leftrightarrow \\
& \Leftrightarrow(S(\boldsymbol{Y})=S(\boldsymbol{X})) .
\end{aligned}
$$

We shall now slightly modify and extend Definition 1. of [9] such the notion of the S_{n}-equivalence remains unchanged, while the S_{n+1}-domination becomes the S_{n}^{+}-domination. We want to introduce the (new) notions of S_{n}-domination and S_{n}^{+}-equivalence.

Definition 1. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences of compacta and let $n \in$ $\{0\} \cup \mathbb{N}$. Then \boldsymbol{Y} is said to be S_{n}-dominated by \boldsymbol{X}, denoted by $S_{n}(\boldsymbol{Y}) \leq S_{n}(\boldsymbol{X})$, provided condition $S_{n}(\boldsymbol{Y}, \boldsymbol{X})$ holds; \boldsymbol{Y} is said to be S_{n}-equivalent to \boldsymbol{X}, denoted by $S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$, provided the both conditions $S_{n}(\boldsymbol{Y}, \boldsymbol{X})$ and $S_{n}(\boldsymbol{X}, \boldsymbol{Y})$ are fulfilled. Similarly and dually, \boldsymbol{Y} is said to be S_{n}^{+}-dominated by \boldsymbol{X}, denoted by $S_{n}^{+}(\boldsymbol{Y}) \leq$ $S_{n}^{+}(\boldsymbol{X})$, provided condition $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ holds; \boldsymbol{Y} is said to be S_{n}^{+}-equivalent to \boldsymbol{X}, denoted by $S_{n}^{+}(\boldsymbol{Y})=S_{n}^{+}(\boldsymbol{X})$, provided the both conditions $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ and $S_{n}^{+}(\boldsymbol{Y}, \boldsymbol{X})$ are fulfilled.

If X and Y are compacta, then we define $S_{n}(Y) \leq S_{n}(X)$ and $S_{n}(Y)=S_{n}(X)$ $\left(S_{n}^{+}(Y) \leq S_{n}^{+}(X)\right.$ and $\left.S_{n}^{+}(Y)=S_{n}^{+}(X)\right)$ provided $S_{n}(\boldsymbol{Y}) \leq S_{n}(\boldsymbol{X})$ and $S_{n}(\boldsymbol{Y})=$
$S_{n}(\boldsymbol{X}) \quad\left(S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X})\right.$ and $\left.S_{n}^{+}(\boldsymbol{Y})=S_{n}^{+}(\boldsymbol{X})\right)$ respectively, for some, equivalently: any, compact ANR inverse sequences $\boldsymbol{X}, \boldsymbol{Y}$ associated with X, Y respectively.

Obviously, by definition,

$$
\begin{gathered}
\left(S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})\right) \Leftrightarrow\left(S_{n}(\boldsymbol{Y}) \leq S_{n}(\boldsymbol{X}) \wedge S_{n}(\boldsymbol{X}) \leq S_{n}(\boldsymbol{Y})\right) \\
\left(S_{n}^{+}(\boldsymbol{Y})=S_{n}^{+}(\boldsymbol{X})\right) \Leftrightarrow\left(S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X}) \wedge S_{n}^{+}(\boldsymbol{X}) \leq S_{n}^{+}(\boldsymbol{Y})\right)
\end{gathered}
$$

Further, according to Lemma 2. of [9], the following implications hold:

$$
\begin{gathered}
\left(S_{n+1}(\boldsymbol{Y}) \leq S_{n+1}(\boldsymbol{X})\right) \Rightarrow\left(S_{n}^{+}(\boldsymbol{Y})=S_{n}^{+}(\boldsymbol{X})\right) \\
\quad\left(S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X})\right) \Rightarrow\left(S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})\right)
\end{gathered}
$$

Furthermore, $S(\boldsymbol{Y})=S(\boldsymbol{X})$ if and only if, for every $n \in\{0\} \cup \mathbb{N}, S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$ (or, equivalently, $S_{n}^{+}(\boldsymbol{Y})=S_{n}^{+}(\boldsymbol{X})$). Analogous statements hold for compacta as well. Consequently, the following sequence of implications (of equivalences of compacta strictly coarser than the shape type classification - Sh) is established:

$$
S_{0} \Leftarrow S_{0}^{+} \Leftarrow S_{1} \Leftarrow \cdots \Leftarrow S_{n} \Leftarrow S_{n}^{+} \Leftarrow S_{n+1} \Leftarrow \cdots \Leftarrow S \Leftarrow S^{*} \Leftarrow S h
$$

Observe that the S_{0}-domination is a trivial relation, i.e. for every pair $X(\neq \varnothing)$, Y of compacta, $S_{0}(Y) \leq S_{0}(X)$ holds. Also, $S_{0}(\varnothing) \leq S_{0}(\varnothing)$. The S_{0}-equivalence is the trivial equivalence relation, i.e. for every pair X, Y of nonempty compacta, $S_{0}(Y)=S_{0}(X)$ holds. Also, $S_{0}(\varnothing)=\{\varnothing\}$. The S_{1}-equivalence strictly implies S_{0}-equivalence (Theorem 1. and Example 1. of [9]), and the S_{2}-equivalence strictly implies S_{1}-equivalence (Theorem 2. and Example 2. of [9]). The S_{0}^{+}-equivalence is not trivial because $S_{0}^{+}(\{*\}) \leq S_{0}^{+}(\{*\} \sqcup\{*\})$ and $S_{0}^{+}(\{*\} \sqcup\{*\}) \not S_{0}^{+}(\{*\})$. Further, the S_{1}-equivalence strictly implies S_{0}^{+}-equivalence. Namely, by Theorem 6. and Example 3. of [9], $S_{0}^{+}(C)=S_{0}^{+}(L)$ and $S_{1}(C) \neq S_{1}(L)$, where C is the Cantor set and

$$
L=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\} \subseteq \mathbb{R}
$$

Moreover, by Theorems 1. and 5. of [9], every two compacta, such that each of them is shape dominated by the other, are S_{0}^{+}-equivalent. Example 1. of [9] shows that there exists a pair of mutually homotopy dominated compacta which are not S_{1}-equivalent. By Theorem 2. and Example 2. of [9], the S_{1}^{+}-equivalence strictly implies S_{1}-equivalence. Indeed, $S_{1}^{+}(L) \leq S_{1}^{+}(L \sqcup L)$, while $S_{1}^{+}(L \sqcup L) \nless S_{1}^{+}(L)$. Finally, as we mentioned before, $S h$ strictly implies S^{*} (see [7] and [8]). Hence, the next implications are strict:

$$
S_{0} \Leftarrow S_{0}^{+} \Leftarrow S_{1} \Leftarrow S_{1}^{+}, S_{1} \Leftarrow S \text { and } S^{*} \Leftarrow S h .
$$

3. Construction of the categories and functors

We are following the basic idea for a "subshape" category construction described in Section 2. of [8]. However, in this setting we have to abandon the "uniformity"
conditions for the morphisms and their homotopy relation (see Definitions 2.4. and 2.7. of [8]). We only need a slight control over the index functions. First of all, recall the notion of an n-ladder ([8], Definition 2.1.). For a given $n \in \mathbb{N}$ and any $j_{1}, \ldots, j_{n+1} \in \mathbb{N}$ such that $j_{1}<\cdots<j_{n+1}$, the corresponding ordered ($n+1$)-tuple $\left(j_{1}, \ldots, j_{n+1}\right)$ is denoted by \boldsymbol{j}^{n}. The set of all such $(n+1)$-tuples \boldsymbol{j}^{n} is denoted by $\boldsymbol{J}(n)$. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences of compact metric spaces, let $n \in \mathbb{N}$ and let $\boldsymbol{j}^{n} \in \boldsymbol{J}(n)$. An ordered pair $\left(f, f_{j}\right)$ consisting of an increasing (index) function

$$
f: \bigcup_{\lambda=1}^{n}\left[j_{\lambda}, \alpha_{\lambda}\right]_{\mathbb{N}} \rightarrow\left[j_{1}, j_{n+1}-1\right]_{\mathbb{N}}, j_{\lambda} \leq \alpha_{\lambda}<j_{\lambda+1}
$$

and of a set of mappings

$$
f_{j}: X_{f(j)} \rightarrow Y_{j}, j \in \bigcup_{\lambda=1}^{n}\left[j_{\lambda}, \alpha_{\lambda}\right]_{\mathbb{N}}
$$

is said to be an n-ladder of \boldsymbol{X} to \boldsymbol{Y} over \boldsymbol{j}^{n}, denoted by $f_{\boldsymbol{j}^{n}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$, provided the two following conditions are satisfied:

$$
\begin{gathered}
\left(\forall \lambda \in[1, n]_{\mathbb{N}}\right) f\left(j_{\lambda}\right) \geq j_{\lambda} \wedge f\left(\alpha_{\lambda}\right)<j_{\lambda+1} ; \\
\left(\forall j, j^{\prime} \in \bigcup_{\lambda=1}^{n}\left[j_{\lambda}, \alpha_{\lambda}\right]_{\mathbb{N}}\right) j \leq j^{\prime} \Rightarrow f_{j} p_{f(j) f\left(j^{\prime}\right)} \simeq q_{j j^{\prime}} f_{j^{\prime}}
\end{gathered}
$$

An n-ladder $f_{\boldsymbol{j}^{n}}$ having an empty λ-block, i.e. with no mapping for any $j \in$ $\left[j_{\lambda}, j_{\lambda+1}-1\right]_{\mathbb{N}}$, is allowed. We also admit the empty n-ladder of \boldsymbol{X} to \boldsymbol{Y} over \boldsymbol{j}^{n}, i.e. the empty set of mappings for a given \boldsymbol{j}^{n}.

If $f_{\boldsymbol{j}^{n}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $g_{\boldsymbol{k}^{n}}=\left(g, g_{k}\right): \boldsymbol{Y} \rightarrow \boldsymbol{Z}$ are n-ladders, then we compose them only in the case $\boldsymbol{j}^{n}=\boldsymbol{k}^{n}$ by using the ordinary rule, i.e.

$$
g_{\boldsymbol{k}^{n}} f_{\boldsymbol{k}^{n}} \equiv u_{\boldsymbol{k}^{n}}=\left(u, u_{k}\right)
$$

such that $u=f g$ (wherever it is defined) and $u_{k}=g_{k} f_{g(k)}, k \in \bigcup_{\lambda=1}^{n}\left[k_{\lambda}, \gamma_{\lambda}\right]_{\mathbb{N}}$, $\gamma_{\lambda} \leq \beta_{\lambda}$. Clearly, $g_{\boldsymbol{k}^{n}} f_{\boldsymbol{k}^{n}}: \boldsymbol{X} \rightarrow \boldsymbol{Z}$ is an n-ladder of \boldsymbol{X} to \boldsymbol{Z} over \boldsymbol{k}^{n}. Notice that its λ-block is empty whenever the corresponding block of $f_{\boldsymbol{k}^{n}}$ or $g_{\boldsymbol{k}^{n}}$ is empty, or $g\left(k_{\lambda}\right)>\alpha_{\lambda}$. It is obvious that the composition of n-ladders is associative. Let $1_{\boldsymbol{X} \boldsymbol{i}^{n}}$ be the restriction of the identity morphism (of the inv-category $(c \mathcal{M})^{\mathbb{N}}$) $1_{\boldsymbol{X}}=\left(1_{\mathbb{N}}, 1_{X_{i}}\right): \boldsymbol{X} \rightarrow \boldsymbol{X}$ to $\boldsymbol{i}^{n} \in \boldsymbol{J}(n)$. Clearly, $1_{\boldsymbol{X}^{n}}$ is an n-ladder of \boldsymbol{X} to \boldsymbol{X} over \boldsymbol{i}^{n}. Notice that $f_{\boldsymbol{j}^{n}} 1_{\boldsymbol{X} \boldsymbol{j}^{n}}=f_{\boldsymbol{j}^{n}}$ and $1_{\boldsymbol{X} \boldsymbol{i}^{n}} g_{\boldsymbol{i}^{n}}=g_{\boldsymbol{i}^{n}}$ hold for all n-ladders $f_{\boldsymbol{j}^{n}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $g_{i^{n}}: \boldsymbol{Z} \rightarrow \boldsymbol{X}$.

Let $n=1$ and $\boldsymbol{j}^{1} \in \boldsymbol{J}(1)$, and let $f_{\boldsymbol{j}^{1}}, f_{\boldsymbol{j}^{1}}^{\prime}=\left(f^{\prime}, f_{j}^{\prime}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be 1-ladders over the same \boldsymbol{j}^{1}. Then $f_{\boldsymbol{j}^{1}}$ is said to be homotopic to $f_{\boldsymbol{j}^{1}}^{\prime}$ (compare Definition 2.3. of
[8]) provided they both are empty or there exists an $i^{1} \in\left[j_{1}, j_{2}-1\right]_{\mathbb{N}}$ such that

$$
f_{j_{1}} p_{f\left(j_{1}\right) i^{1}} \simeq f_{j_{1}}^{\prime} p_{f^{\prime}\left(j_{1}\right) i^{1}}
$$

In the general case of a pair of n-ladders the definition of being m-homotopic, $m \leq n$, is as follows: Let $n, m \in \mathbb{N} \cup\{\omega\}, m \leq n$, and let $f_{j^{n}}, f_{j^{n}}^{\prime}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be n-ladders over the same \boldsymbol{j}^{n}. Then $f_{\boldsymbol{j}^{n}}$ is said to be m-homotopic to $f_{\boldsymbol{j}^{n}}^{\prime}$, denoted by $f_{\boldsymbol{j}^{n}} \simeq_{m} f_{\boldsymbol{j}^{n}}^{\prime}$, provided, for every $\lambda \in[1, m]_{\mathbb{N}}$, the both $f_{\boldsymbol{j}^{n}}$ and $f_{\boldsymbol{j}^{n}}^{\prime}$ have the λ-block empty or there exists an $i^{\lambda} \in\left[j_{\lambda}, j_{\lambda+1}-1\right]_{\mathbb{N}}$ such that

$$
f_{j_{\lambda}} p_{f\left(j_{\lambda}\right) i^{\lambda}} \simeq f_{j_{\lambda}}^{\prime} p_{f^{\prime}\left(j_{\lambda}\right) i^{\lambda}}
$$

Notice that $f_{j^{n}} \simeq_{m^{\prime}} f_{\boldsymbol{j}^{n}}^{\prime}$ implies $f_{\boldsymbol{j}^{n}} \simeq_{m} f_{\boldsymbol{j}^{n}}^{\prime}$ whenever $m \leq m^{\prime}$. Clearly, the m-homotopy relation of n-ladders is an equivalence relation on the corresponding set. In the case of $m=n$, we simply write $f_{\boldsymbol{j}^{n}} \simeq f_{\boldsymbol{j}^{n}}^{\prime}$.

Definition 2. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences of compact metric spaces and let $n \in \mathbb{N}$. A free n-hyperladder of \boldsymbol{X} to \boldsymbol{Y}, denoted by $F_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$, is any family $F_{n}=\left(f_{\boldsymbol{j}^{n}}\right)$ of n-ladders $f_{\boldsymbol{j}^{n}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ indexed by all $\boldsymbol{j}^{n} \in \boldsymbol{J}(n)$. The set of all free n-hyperladders F_{n} of \boldsymbol{X} to \boldsymbol{Y} is denoted by $\boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y})$.

If $F_{n}=\left(f_{\boldsymbol{j}^{n}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $G_{n}=\left(g_{\boldsymbol{k}^{n}}\right): \boldsymbol{Y} \rightarrow \boldsymbol{Z}, \boldsymbol{k}^{n} \in \boldsymbol{J}(n)$, are free n hyperladders, then we compose them by composing the appropriate n-ladders $f_{\boldsymbol{j}^{n}}$ and $g_{\boldsymbol{k}^{n}}$ such that $\boldsymbol{j}^{n}=\boldsymbol{k}^{n}$. Hence,

$$
G_{n} F_{n} \equiv U_{n}=\left(u_{\boldsymbol{k}^{n}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Z}
$$

is a free n-hyperladder, where $u_{\boldsymbol{k}^{n}} \equiv g_{\boldsymbol{k}^{n}} f_{\boldsymbol{k}^{n}}, \boldsymbol{k}^{n} \in \boldsymbol{J}(n)$. Since the composition of n-ladders is associative, the composition of free n-hyperladders is associative. Notice that $1_{\boldsymbol{X}_{n}}=\left(1_{\boldsymbol{X} \boldsymbol{i}^{n}}\right), \boldsymbol{i}^{n} \in \boldsymbol{J}(n)$, is the identity n-hyperladder on \boldsymbol{X}. Indeed,

$$
\begin{gathered}
F_{n} 1_{\boldsymbol{X} n}=\left(f_{\boldsymbol{j}^{n}}\right)\left(1_{\boldsymbol{X} \boldsymbol{i}^{n}}\right)=\left(f_{\boldsymbol{j}^{n}} 1_{\boldsymbol{X} \boldsymbol{j}^{n}}\right)=\left(f_{\boldsymbol{j}^{n}}\right)=F_{n}, \\
1_{\boldsymbol{X} n} G_{n}=\left(1_{\boldsymbol{X} \boldsymbol{i}^{n}}\right)\left(g_{\boldsymbol{i}^{n}}\right)=\left(1_{\boldsymbol{X} \boldsymbol{i}^{n}} g_{\boldsymbol{i}^{n}}\right)=\left(g_{\boldsymbol{i}^{n}}\right)=G_{n}
\end{gathered}
$$

hold for all n-hyperladders $F_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $G_{n}: \boldsymbol{Z} \rightarrow \boldsymbol{X}$. Thus, for every $n \in \mathbb{N}$, there exists a category $\underline{\mathcal{M}}_{n}$ having the object class $\operatorname{Ob} \underline{\mathcal{M}}_{n}$, which consists of all inverse sequences in $c \mathcal{M}$, and the morphism class $\operatorname{Mor} \underline{\mathcal{M}}_{n}$, which consists of all the morphism sets $\underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$. Further, there exists the corresponding sequential category $\underline{\mathcal{M}}="\left(\underline{\mathcal{M}}_{n}\right) "$ (see Section 5 . below).

For every $n \in \mathbb{N}$, let $\underline{\mathcal{A}}_{n}$ denote the full subcategory of $\underline{\mathcal{M}}_{n}$ whose objects are all inverse sequences \boldsymbol{X} in $c A N R$ (compact ANR's) or $c P o l$ (compact polyhedra), and let $\underline{\mathcal{A}} \subseteq \underline{\mathcal{M}}$ be the corresponding sequential (sub)category.

In order to define a certain equivalence (homotopy) relation on each set $\boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y})$, let us first consider the simplest case $n=1$. Recall that $f_{\boldsymbol{j}^{1}} \simeq f_{\boldsymbol{j}^{1}}^{\prime}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ means

$$
\left(\exists i^{1} \in\left[j_{1}, j_{2}-1\right]_{\mathbb{N}}\right) f_{j_{1}} p_{f\left(j_{1}\right) i^{1}} \simeq f_{j_{1}}^{\prime} p_{f^{\prime}\left(j_{1}\right) i^{1}}
$$

Let $F_{1}=\left(f_{\boldsymbol{j}^{1}}\right), F_{1}^{\prime}=\left(f_{\boldsymbol{j}^{1}}^{\prime}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be a pair of free 1-hyperladders. Then F_{1} is said to be homotopic to F_{1}^{\prime}, provided every $j_{1} \in \mathbb{N}$ admits an $i^{1} \in \mathbb{N}, i^{1} \geq j_{1}$, such that, for every $j_{2}>i^{1}$, the corresponding 1-ladders $f_{\boldsymbol{j}^{1}} \in F_{1}$ and $f_{\boldsymbol{j}^{1}}^{\prime} \in F_{1}^{\prime}$ (assigned to the pair $\left.\boldsymbol{j}^{1}=\left(j_{1}, j_{2}\right) \in \boldsymbol{J}(1)\right)$ are homotopic, $f_{\boldsymbol{j}^{1}} \simeq f_{\boldsymbol{j}^{1}}^{\prime}$ with respect to the chosen index i^{1}. Briefly, $F_{1} \simeq F_{1}^{\prime}$ provided

$$
\left(\forall j_{1} \in \mathbb{N}\right)\left(\exists i^{1} \geq j_{1}\right)\left(\forall j_{2}>i^{1}\right) \boldsymbol{f}_{\boldsymbol{j}^{1}} \simeq \boldsymbol{f}_{\boldsymbol{j}^{1}}^{\prime}\left(\text { "up to } i^{1 "}\right)
$$

In the general case, the definition is as follows (compare Definition 2.7. of [8]):
Definition 3. Let $n \in \mathbb{N}$ and let $F_{n}=\left(f_{\boldsymbol{j}^{n}}\right), F_{n}^{\prime}=\left(f_{\boldsymbol{j}^{n}}^{\prime}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be a pair of free n-hyperladders. Then F_{n} is said to be homotopic to F_{n}^{\prime}, denoted by $F_{n} \simeq F_{n}^{\prime}$, provided $F_{n}=F_{n}^{\prime}$, or $F_{n} \neq F_{n}^{\prime}$ and

$$
\begin{gathered}
(\forall m \leq n) \\
\left(\forall j_{1} \in \mathbb{N}\right)\left(\exists i^{1} \geq j_{1}\right)\left(\forall j_{2}>i^{1}\right) \cdots\left(\forall j_{m}>i^{m-1}\right)\left(\exists i^{m} \geq j_{m}\right)\left(\forall j_{m+1}>i^{m}\right) \\
\left(\forall j_{m+2}>j_{m+1}\right) \ldots\left(\forall j_{n+1}>j_{n}\right)
\end{gathered}
$$

the corresponding n-ladders $f_{\boldsymbol{j}^{n}} \in F_{n}$ and $f_{\boldsymbol{j}^{n}}^{\prime} \in F_{n}^{\prime}$ are m-homotopic, $f_{\boldsymbol{j}^{n}} \simeq_{m} f_{\boldsymbol{j}^{n}}$ ("up to i^{1}, \ldots, i^{m} ").

It is readily seen that this homotopy relation is an equivalence relation on each set $\boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y})$. The homotopy class $\left[F_{n}\right]$ of an $F_{n} \in \boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ is denoted by $\boldsymbol{F}_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$.

Remark 1. The homotopy relation of free n-hyperladders is not compatible with the composition in the category $\underline{\mathcal{M}}_{n}$. Thus, although the quotient sets $\underline{\mathcal{M}}_{n}(\boldsymbol{X}, \boldsymbol{Y}) / \simeq$ exist, there is no appropriate quotient category.

Theorem 1. For every pair $n, n^{\prime} \in \mathbb{N}$, $n \leq n^{\prime}$, there exists a restriction functor $\underline{R}_{n n^{\prime}}: \underline{\mathcal{M}}_{n^{\prime}} \rightarrow \underline{\mathcal{M}}_{n}$ (which is not unique) keeping the objects fixed and preserving the homotopy relation. $\underline{R}_{n n}$ is the identity functor. Furthermore, for all $n \leq n^{\prime} \leq n^{\prime \prime}$, there exist $\underline{R}_{n n^{\prime}}, \underline{R}_{n^{\prime} n^{\prime \prime}}$ and $\underline{R}_{n n^{\prime \prime}}$ such that $\underline{R}_{n n^{\prime}} \underline{R}_{n^{\prime} n^{\prime \prime}}=\underline{R}_{n n^{\prime \prime}}$. The same holds for the subcategories $\underline{\mathcal{A}}_{n} \subseteq \underline{\mathcal{M}}_{n}, n \in \mathbb{N}$.

Proof. Let $n \leq n^{\prime}$ and let $F_{n^{\prime}}=\left(f_{\boldsymbol{j}^{n^{\prime}}}\right) \in \underline{\boldsymbol{L}}_{n^{\prime}}(\boldsymbol{X}, \boldsymbol{Y})$. For every $\boldsymbol{j}^{n^{\prime}} \in \boldsymbol{J}\left(n^{\prime}\right)$, let $f_{\boldsymbol{j}^{n}}^{\boldsymbol{j}^{n^{\prime}}}$ denote the restriction of $f_{\boldsymbol{j}^{n^{\prime}}} \in F_{n^{\prime}}$ to a $\boldsymbol{j}^{n} \in \boldsymbol{J}(n)$. Let

$$
\psi: \boldsymbol{J}(n) \rightarrow \boldsymbol{J}\left(n^{\prime}\right), \psi\left(\boldsymbol{j}^{n}\right)=\boldsymbol{j}^{n^{\prime}}
$$

be an injective function such that

$$
\left(\forall \lambda \in[1, n+1]_{\mathbb{N}}\right) j_{\lambda}^{\prime}=j_{\lambda}
$$

Notice that ψ induces a certain function $\Psi=\Psi_{\psi, \boldsymbol{X}, \boldsymbol{Y}}$ of $\underline{\boldsymbol{L}}_{n^{\prime}}(\boldsymbol{X}, \boldsymbol{Y})$ to $\underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ given by

$$
F_{n^{\prime}}=\left(f_{\boldsymbol{j}^{n^{\prime}}}\right) \mapsto\left(f_{\boldsymbol{j}^{n}}\right)=F_{n}=\Psi\left(F_{n^{\prime}}\right)
$$

where $f_{\boldsymbol{j}^{n}}=f_{\boldsymbol{j}^{n}}^{\psi\left(\boldsymbol{j}^{n}\right)}$ for every $\boldsymbol{j}^{n} \in \boldsymbol{J}(n)$.
Observe that $\Psi\left(1_{\boldsymbol{X} n^{\prime}}\right)=1_{\boldsymbol{X} n}$. Moreover, since the composition of free hyperladders is defined coordinatewise (by indices), the following fact is obvious:

If $G_{n^{\prime}} F_{n^{\prime}}=U_{n^{\prime}} \mapsto U_{n}, G_{n^{\prime}} \mapsto G_{n}$ and $F_{n^{\prime}} \mapsto F_{n}$, then $U_{n}=G_{n} F_{n}$.
It implies that $\Psi\left(G_{n^{\prime}} F_{n^{\prime}}\right)=\Psi\left(G_{n^{\prime}}\right) \Psi\left(F_{n^{\prime}}\right)$. Therefore, the injection ψ induces a functor $\underline{R}_{n n^{\prime}}^{\psi}: \underline{\mathcal{M}}_{n^{\prime}} \rightarrow \underline{\mathcal{M}}_{n}$, keeping the objects fixed, determined by $\underline{R}_{n n^{\prime}}^{\psi}\left(F_{n^{\prime}}\right)=$ $\Psi\left(F_{n^{\prime}}\right)$. Let $F_{n^{\prime}}^{\prime}=\left(f_{\boldsymbol{j}^{n^{\prime}}}^{\prime}\right) \in \underline{\boldsymbol{L}}_{n^{\prime}}(\boldsymbol{X}, \boldsymbol{Y})$ be another free n^{\prime}-hyperladder such that $F_{n^{\prime}}^{\prime} \simeq F_{n^{\prime}}$, and let $\underline{R}_{n n^{\prime}}^{\psi}\left(F_{n^{\prime}}^{\prime}\right)=F_{n}^{\prime}=\left(f_{\boldsymbol{j}^{n}}^{\prime}\right) \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$. Then one readily sees that, for every $m \leq n\left(\leq n^{\prime}\right)$, the corresponding homotopy condition of $F_{n^{\prime}} \simeq F_{n^{\prime}}^{\prime}$ implies the analogous condition for $\underline{R}_{n n^{\prime}}^{\psi}\left(F_{n^{\prime}}\right) \simeq \underline{R}_{n n^{\prime}}^{\psi}\left(F_{n^{\prime}}^{\prime}\right)$. Thus, the functor $\underline{R}_{n n^{\prime}}^{\psi}$: $\underline{\mathcal{M}}_{n^{\prime}} \rightarrow \underline{\mathcal{M}}_{n}$ preserves the homotopy equivalence relation of free hyperladders. Notice that $n^{\prime}=n$ implies that $\psi=1_{\underline{J}(n)}$ is unique. Hence, $\Psi_{1, \boldsymbol{X}, \boldsymbol{Y}}$ as well as the functor $\underline{R}_{n n}^{1}={\underline{\mathcal{M}_{n}}}_{n}$ is the unique identity functor. Finally, if $n \leq n^{\prime} \leq n^{\prime \prime}$ then, for every pair ψ, ψ^{\prime} as above, the functors $\underline{R}_{n n^{\prime}}^{\psi}: \underline{\mathcal{M}}_{n^{\prime}} \rightarrow \underline{\mathcal{M}}_{n}, \underline{R}_{n^{\prime} n^{\prime \prime}}^{\psi^{\prime}}: \underline{\mathcal{M}}_{n^{\prime \prime}} \rightarrow \underline{\mathcal{M}}_{n^{\prime}}$ and $\underline{R}_{n n^{\prime \prime}}^{\psi^{\prime} \psi}: \underline{\mathcal{M}}_{n^{\prime \prime}} \rightarrow \underline{\mathcal{M}}_{n}$ satisfy $\underline{R}_{n n^{\prime}}^{\psi} \underline{R}_{n^{\prime} n^{\prime \prime}}^{\psi^{\prime}}=\underline{R}_{n n^{\prime \prime}}^{\psi^{\prime} \psi}$. The last statement is now obvious.

Let X and Y be compact metric spaces, and let $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ and $\boldsymbol{q}: Y \rightarrow \boldsymbol{Y}$ be associated (limits) in $c A N R$ or $c P o l$ with X and Y respectively. Let $\boldsymbol{p}^{\prime}: X \rightarrow \boldsymbol{X}^{\prime}$ and $\boldsymbol{q}^{\prime}: Y \rightarrow \boldsymbol{Y}^{\prime}$ be an other such a pair. Then there is a (unique) pair of natural isomorphisms $\boldsymbol{u}: \boldsymbol{X} \rightarrow \boldsymbol{X}^{\prime}, \boldsymbol{v}: \boldsymbol{Y} \rightarrow \boldsymbol{Y}^{\prime}$ in the pro-category tow-HcANR such that $\boldsymbol{u} H(\boldsymbol{p})=H\left(\boldsymbol{p}^{\prime}\right)$ and $\boldsymbol{v} H(\boldsymbol{q})=H\left(\boldsymbol{q}^{\prime}\right)$, where H is the homotopy functor. Let us choose a pair of representatives $\left(u^{\prime}, u_{s}^{\prime}\right): \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{X},\left(v, v_{j}\right): \boldsymbol{Y} \rightarrow \boldsymbol{Y}^{\prime}$ of \boldsymbol{u}^{-1} and \boldsymbol{v} in $i n v-c A N R$ respectively, such that the index functions u^{\prime} and v are increasing and unbounded and $u^{\prime} v \geq 1_{\mathbb{N}}$. Let $n \in \mathbb{N}$ and let $F_{n}=\left(f_{\boldsymbol{j}^{n}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be a free n-hyperladder. We want to show that $\left(u^{\prime}, u_{s}^{\prime}\right),\left(v, v_{j}\right)$ and F_{n} yield a free n-hyperladder $F_{n}^{\prime}=\left(f_{\boldsymbol{j}^{n}}^{\prime}\right): \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ obtained by "composing" $\left(u^{\prime}, u_{s}^{\prime}\right), F_{n}$ and $\left(v, v_{j}\right)$.

\boldsymbol{X}	$\stackrel{\left(u^{\prime}, u_{i}^{\prime}\right)}{\longleftrightarrow}$	\boldsymbol{X}^{\prime}
$F_{n} \downarrow$		$\downarrow F_{n}^{\prime}$
\boldsymbol{Y}	$\underset{\left(v, v_{j}\right)}{\longrightarrow}$	\boldsymbol{Y}^{\prime}

Even more, if $F_{n} \simeq G_{n}$ then $F_{n}^{\prime} \simeq G_{n}^{\prime}$. Let us first consider the simplest case $n=1$. Let $\boldsymbol{j}^{1}=\left(j_{1}, j_{2}\right) \in \boldsymbol{J}(1)$. Put $t_{1}=v\left(j_{1}\right)$ and $t_{2}=v\left(j_{2}\right)$. Then $\boldsymbol{t}^{1}=$ $\left(t_{1}, t_{2}\right) \in \boldsymbol{J}(1)$, and consider the corresponding 1-ladder $f_{\boldsymbol{t}^{1}} \in F_{1}$ of \boldsymbol{X} to \boldsymbol{Y}. We now define the 1-ladder $f_{\boldsymbol{j}^{1}}^{\prime}: \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ by means of $f_{\boldsymbol{t}^{1}}$ and the restrictions of $\left(u^{\prime}, u_{s}^{\prime}\right)$ to the appropriate subset of $\left[s_{1}, s_{2}\right]_{\mathbb{N}}=\left[t_{1}, t_{2}\right]_{\mathbb{N}}$ and of $\left(v, v_{j}\right)$ to the appropriate subset of $\left[j_{1}, j_{2}\right]_{\mathbb{N}}$. More precisely, the index function of $f_{j^{1}}^{\prime}$ is defined by means of the composition $u^{\prime} f v$, where f is the index function of $f_{\boldsymbol{t}^{1}}$. Notice that $f^{\prime}\left(j_{1}\right)=u^{\prime} f v\left(j_{1}\right) \geq i_{1}=j_{1}$ holds by our assumptions and by $f\left(t_{1}\right) \geq s_{1}=t_{1}$. Obviously, such an $f_{\boldsymbol{j}^{1}}^{\prime}$ is empty if and only if $f^{\prime}\left(j_{1}\right) \geq i_{2}=j_{2}$. Let $F_{1}^{\prime}=\left(f_{\boldsymbol{j}^{1}}^{\prime}\right)$, $\boldsymbol{j}^{1} \in \boldsymbol{J}(1)$, be the family of all such 1-ladders. Then, clearly, $F_{1}^{\prime}: \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ is a free 1-hyperladder. Let a free 1-hyperladder $G_{1}=\left(g_{\boldsymbol{t}^{1}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ be given such that $G_{1}=\left(g_{\boldsymbol{t}^{1}}\right) \simeq\left(f_{\boldsymbol{t}^{1}}\right)=F_{1}$, and let $G_{1}^{\prime}=\left(g_{\boldsymbol{j}^{1}}^{\prime}\right): \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ be constructed in the
same way by means of $\left(u^{\prime}, u_{s}^{\prime}\right),\left(g_{\boldsymbol{t}^{1}}\right)$ and $\left(v, v_{j}\right)$, i.e. $\left(g_{\boldsymbol{j}^{1}}^{\prime}\right)="\left(v, v_{j}\right)\left(g_{\boldsymbol{t}^{1}}\right)\left(u^{\prime}, u_{s}\right) "$. Then a straightforward verification shows that $G_{1}^{\prime}=\left(g_{j^{1}}^{\prime}\right) \simeq\left(f_{j^{1}}^{\prime}\right)=F_{1}^{\prime}$. Namely, one has to choose an existing index s^{1} for $t_{1}=v\left(j_{1}\right)$, and then a desired index $i^{1} \geq u^{\prime}\left(s^{1}\right) \geq s^{1}$. Then, for every $j_{2}>i^{1}$ and $t_{2}=v\left(j_{2}\right) \geq i^{1}$, the both relations $f_{\boldsymbol{t}^{1}} \simeq g_{\boldsymbol{t}^{1}}$ and $f_{\boldsymbol{j}^{1}}^{\prime} \simeq g_{\boldsymbol{j}^{1}}^{\prime}$ hold. If $n>1$, one applies the same construction on every λ-block, inductively on $\lambda=1, \ldots, n$. Therefore, for every $n \in \mathbb{N}$, there exists a correspondence between the morphisms sets

$$
h=h_{\left(v, v_{j}\right)}^{\left(u^{\prime}, u_{s}^{\prime}\right)}: \underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y}) \rightarrow \underline{\mathcal{A}}_{n}\left(\boldsymbol{X}^{\prime}, \boldsymbol{Y}^{\prime}\right), \quad h\left(F_{n}\right)=F_{n}^{\prime}
$$

where (shortly writing) $F_{n}^{\prime}="\left(u^{\prime}, u_{s}^{\prime}\right) F_{n}\left(v, v_{j}\right)$ ". Moreover, there is a correspondence between the quotient sets

$$
h=h_{\boldsymbol{v}}^{\boldsymbol{u}^{-1}}: \underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y}) / \simeq \rightarrow \underline{\mathcal{A}}_{n}\left(\boldsymbol{X}^{\prime}, \boldsymbol{Y}^{\prime}\right) / \simeq, \quad h\left(\left[F_{n}\right]\right)=\left[F_{n}^{\prime}\right]
$$

where (shortly writing) $\left[F_{n}^{\prime}\right]=" \boldsymbol{v}\left[F_{n}\right] \boldsymbol{u}^{-1} "$. Let us observe that by the same construction (using the appropriate representatives $\left(u, u_{i}\right)$ and $\left(v^{\prime}, v_{t}^{\prime}\right)$ of \boldsymbol{u} and \boldsymbol{v}^{-1} respectively), every $F_{n}^{\prime}: \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ gives an $F_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ preserving the homotopy relation. More precisely, every free n-hyperladder $F_{n}^{\prime}: \boldsymbol{X}^{\prime} \rightarrow \boldsymbol{Y}^{\prime}$ (homotopy class $\left[F_{n}^{\prime}\right]$) yields a free n-hyperladder $F_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ (homotopy class $\left[F_{n}\right]$), $F_{n}="\left(v^{\prime}, v_{t}^{\prime}\right) F_{n}^{\prime}\left(u, u_{i}\right) ",\left(\left[F_{n}\right]=" \boldsymbol{v}^{-1}\left[F_{n}^{\prime}\right] \boldsymbol{u} "\right)$.
It is readily seen that $h_{\boldsymbol{v}}^{u^{-1}}$ is a bijection, and that $h_{\boldsymbol{u}}^{\boldsymbol{u}^{-1}}$ preserves the identity. However, one can not well define the value of such a bijection on a composite, because the composition of homotopy classes can not be well defined (Remark 1.).

According to the above consideration, we may state the following theorem:
Theorem 2. Let X and Y be compact metric spaces, and let $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$, $\boldsymbol{p}^{\prime}: X \rightarrow \boldsymbol{X}^{\prime}, \boldsymbol{q}: Y \rightarrow \boldsymbol{Y}$ and $\boldsymbol{q}^{\prime}: Y \rightarrow \boldsymbol{Y}^{\prime}$ be inverse limits in tow-cANR. Then, for every $n \in \mathbb{N}$, there exists a bijection

$$
h \equiv h_{\boldsymbol{v}}^{\boldsymbol{u}^{-1}}: \underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y}) / \simeq \rightarrow \underline{\mathcal{A}}_{n}\left(\boldsymbol{X}^{\prime}, \boldsymbol{Y}^{\prime}\right) / \simeq, \quad h\left[F_{n}\right]=" \boldsymbol{v}\left[F_{n}\right] \boldsymbol{u}^{-1 "}
$$

where $\boldsymbol{u}: \boldsymbol{X} \rightarrow \boldsymbol{X}^{\prime}$ and $\boldsymbol{v}: \boldsymbol{Y} \rightarrow \boldsymbol{Y}^{\prime}$ are the unique isomorphisms in the procategory tow-HcANR satisfying $\boldsymbol{u} H(\boldsymbol{p})=H \boldsymbol{p}^{\prime}$ and $\boldsymbol{v} H(\boldsymbol{q})=H \boldsymbol{q}^{\prime}$. If $\boldsymbol{v}=\boldsymbol{u}$, then $h_{\boldsymbol{u}}^{\boldsymbol{u}^{-1}}\left(\left[1_{\boldsymbol{X}_{n}}\right]\right)=\left[1_{\boldsymbol{X}^{\prime} n}\right]$.

The next definition brings a useful notion (at least for a brief writing).
Definition 4. Let $n \in \mathbb{N}$ and let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences in $c \mathcal{M}$. Then \boldsymbol{X} is said to be n-alike \boldsymbol{Y}, denoted by $\boldsymbol{X} \stackrel{n}{\leftrightarrow} \boldsymbol{Y}$, provided there exists a pair of free n-hyperladders $F_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{X}, \boldsymbol{Y}), G_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G_{n} F_{n} \simeq 1_{\boldsymbol{X} n}$ and $F_{n} G_{n} \simeq 1_{\boldsymbol{Y} n}$. If X and Y are compacta, then $X \stackrel{n}{\leftrightarrow} Y$ is defined by means of $\boldsymbol{X} \stackrel{n}{\leftrightarrow} \boldsymbol{Y}$ in $\underline{\mathcal{A}}_{n}$, for any choice of the associated \boldsymbol{X} and \boldsymbol{Y} in $c A N R$ or cPol. Further, \boldsymbol{X} is said to be alike \boldsymbol{Y} (X is said to be alike Y), denoted by $\boldsymbol{X} \leftrightarrow \boldsymbol{Y}$ $(X \leftrightarrow Y)$, provided $\boldsymbol{X} \stackrel{n}{\leftrightarrow} \boldsymbol{Y}(X \stackrel{n}{\leftrightarrow} Y)$ for every $n \in \mathbb{N}$.

It is obvious that the relations $\stackrel{n}{\leftrightarrow}, n \in \mathbb{N}$, are reflexive and symmetric. We do not know whether they are transitive (compare Corollary 1. below). However, each of them generates an equivalence relation on the object class. On the other hand, the both relations \leftrightarrow are equivalence relations (see Corollary 2. below). In the next section we shall relate $\stackrel{m}{\leftrightarrow}$ to the $S_{n^{-}}$and S_{n}^{+}-equivalence and vice versa.

4. The $S_{n^{-}}$and S_{n}^{+}-equivalence in the category $\underline{\mathcal{A}}_{m}$

According to Lemma 4.1. of [8], $S(\boldsymbol{X})=S(\boldsymbol{Y})$ is equivalent to the following two conditions:
(1) For every $m \in \mathbb{N}$, there exists a pair $\left(f^{m},\left(F_{j}^{m}\right)_{j \in \mathbb{N}}\right)$ consisting of a strictly increasing function $f^{m}: \mathbb{N} \rightarrow \mathbb{N}$ and, for every $j \in \mathbb{N}$, of a family F_{j}^{m} of mappings $f_{\alpha j}^{m}: X_{f^{m}(j)} \rightarrow Y_{j}, \alpha \in A_{j}^{m}$, such that
(i) $(\forall j \in \mathbb{N}) f^{m}(j) \geq j$;
(ii) $\left(\forall j_{1}<\cdots<j_{m}\right.$ in $\left.\mathbb{N}\right)\left(\forall \lambda \in[1, m]_{\mathbb{N}}\right)\left(\exists f_{j_{\lambda}}^{m} \in F_{j_{\lambda}}^{m}\right)$
$\lambda \leq \lambda^{\prime} \Rightarrow f_{j_{\lambda}}^{m} p_{f^{m}\left(j_{\lambda}\right) f^{m}\left(j_{\lambda^{\prime}}\right)} \simeq q_{j_{\lambda} j_{\lambda^{\prime}}} f_{j_{\lambda^{\prime}}}^{m} ;$
(2) For every $m>1$ there exists a pair $\left(g^{m},\left(G_{i}^{m}\right)_{i \in \mathbb{N}}\right)$ having properties (i)' and (ii) $)^{\prime}$ analogue to (i) and (ii) respectively, where $g^{m}: \mathbb{N} \rightarrow \mathbb{N}$ is increasing, $g_{\beta i}^{m}: Y_{g^{m}(i)} \rightarrow$ X_{i} is a mapping, $\beta \in B_{i}^{m}$, and
(iii) $\left(\forall j_{1}\right)\left(\forall i_{1} \geq f^{m}\left(j_{1}\right)\right)\left(\forall j_{2} \geq g^{m}\left(i_{1}\right)\right) \cdots\left(\forall j_{m} \geq f^{m}\left(j_{m-1}\right)\right)$
there exist mappings $f_{j_{1}}^{m} \in F_{j_{1}}^{m}, \ldots, f_{j_{n}}^{m} \in F_{j_{n}}^{m}, g_{i_{1}}^{m} \in G_{i_{1}}^{m}, \ldots, g_{i_{n-1}}^{m} \in G_{i_{n-1}}^{m}$ such that the corresponding diagram

$X_{f^{m}\left(j_{1}\right)}$	\leftarrow	$X_{i_{1}}$	\leftarrow	$X_{f^{m}\left(j_{2}\right)}$	$\leftarrow \ldots \leftarrow$	$X_{i_{n-1}}$	\leftarrow	$X_{f^{m}\left(j_{n}\right)}$
$\downarrow f_{j_{1}}^{m}$		$\uparrow g_{i_{1}}^{m}$		$\downarrow f_{j_{2}}^{m}$		$\uparrow g_{i_{n-1}}^{m}$		$\downarrow f_{j_{n}}^{m}$
$Y_{j_{1}}$	\leftarrow	$Y_{g^{m}\left(i_{1}\right)}$	\leftarrow	$Y_{j_{2}}$		$Y_{g^{m-1}\left(i_{n-1}\right)}$		$Y_{j_{n}}$

commutes up to homotopy.
Further, we may assume that $f^{m}, g^{m} \geq 1_{\mathbb{N}}$. Clearly, for a fixed $m=2 n+1$, the conditions from above characterize condition $S_{n}(\boldsymbol{X}, \boldsymbol{Y}), n \in\{0\} \cup \mathbb{N}$. In a quite similar way one can characterize condition $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$.

Our first goal is to describe the $S_{n^{-}}$and S_{n}^{+}-equivalence in terms of the category $\underline{\mathcal{M}}_{m}\left(\underline{\mathcal{A}}_{m}\right)$, i.e. by the m-alikeness, for some (possible maximal) $m \in \mathbb{N}$. Since the S_{0}-domination and S_{0}-equivalence are trivial, we are beginning with the S_{0}^{+}domination. More general, in the case of the S_{n}^{+}-domination the following fact holds:

Lemma 1. Let $n \in\{0\} \cup \mathbb{N}$ and let $S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X})$. Then there exist an $F_{n+1} \in \underline{\boldsymbol{L}}_{n+1}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G_{n+1} \in \underline{\boldsymbol{L}}_{n+1}(\boldsymbol{Y}, \boldsymbol{X})$ such that $F_{n+1} G_{n+1} \simeq 1_{\boldsymbol{Y} n+1}$ in $\underline{\mathcal{M}}_{n+1}$.

Proof. Let $S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X})$, i.e. let condition $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ be fulfilled, $n \in\{0\} \cup$ \mathbb{N}. Then condition $\left(D_{2 n+2}\right)$ gives rise of the appropriate homotopy commutative diagrams. First, consider the simplest case $n=0$. A typical diagram corresponding to $\left(D_{2}\right)$ is given below.

Namely, condition $\left(D_{2}\right)$ implies that, for every t_{1} there exists an s_{1}, and for every $s_{1}^{\prime} \geq s_{1}$ there exists a $t_{1}^{\prime} \geq t_{1}$, and there exist appropriate mappings f_{1} and g_{1}. Thus, given an ordered pair $j_{1}<j_{2}$, i.e. a $\boldsymbol{j}^{1} \in \boldsymbol{J}(1)$, there exists a nonempty 1-ladder $f_{\boldsymbol{j}^{1}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ consisting of an existing mapping $f_{1}: X_{i_{1}^{\prime}} \rightarrow Y_{j_{1}}$ ($t_{1}=j_{1}, s_{1}=i_{1}^{\prime}$) whenever $i_{1}^{\prime}<i_{2}=j_{2}$. Also, there exists a nonempty 1-ladder $g_{\boldsymbol{i}^{1}}: \boldsymbol{Y} \rightarrow \boldsymbol{X}, \boldsymbol{i}^{1}=\boldsymbol{j}^{1}$, consisting of mappings $g_{i}=g_{1} p_{i i_{1}^{\prime}}: X_{i} \rightarrow Y_{j_{1}^{\prime}}, i=i_{1}, \ldots, i_{1}^{\prime}$, $\left(s_{1}^{\prime}=s_{1}=i_{1}^{\prime}, t_{1}^{\prime}=j_{1}^{\prime}\right)$, whenever $i_{1}^{\prime}<i_{2}=j_{2}$ and $j_{1}^{\prime}<j_{2}$, where a mapping $g_{1}: Y_{j_{1}^{\prime}} \rightarrow X_{i_{1}^{\prime}}$ exists by the assumption.

Otherwise, let those 1-ladders be empty. Let $F_{1}=\left(f_{\boldsymbol{j}^{1}}\right)$ and $G_{1}=\left(g_{\boldsymbol{i}^{1}}\right), \boldsymbol{j}^{1}, \boldsymbol{i}^{1} \in$ $\boldsymbol{J}(1)$, be the families obtained by all such 1-ladders. Then, clearly, $F_{1}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ and $G_{1}: \boldsymbol{Y} \rightarrow \boldsymbol{X}$ are free 1-hyperladders, i.e. $F_{1} \in \boldsymbol{L}_{1}(\boldsymbol{X}, \boldsymbol{Y})$ and $G_{1} \in \boldsymbol{L}_{1}(\boldsymbol{Y}, \boldsymbol{X})$. By construction, given a j_{1}, one may put $j^{1}=j_{1}^{\prime}$. Then, for every $j_{2}>j^{1}$, the homotopy condition for $F_{1} G_{1}$ and $1_{Y 1}$ obviously holds, i.e. $F_{1} G_{1} \simeq 1_{Y 1}$ in $\underline{\mathcal{M}}_{1}(\boldsymbol{Y}, \boldsymbol{Y})$.
Let us now consider the general case. Let $S_{n}^{+}(\boldsymbol{Y}) \leq S_{n}^{+}(\boldsymbol{X})$, i.e. let condition $S_{n}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ be fulfilled, $n>0$. Then the diagrams corresponding to condition $\left(D_{2 n+2}\right)$ give rise of mappings to obtain a pair of free $(n+1)$-hyperladders $F_{n+1} \in$ $\boldsymbol{L}_{n+1}(\boldsymbol{X}, \boldsymbol{Y}), G_{n+1} \in \boldsymbol{L}_{n+1}(\boldsymbol{Y}, \boldsymbol{X})$. Indeed, given a $\boldsymbol{j}^{n+1} \in \boldsymbol{J}(n+1)$, one can construct the $(n+1)$-ladder $f_{\boldsymbol{j}^{n+1}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ by means of the mappings $f_{\lambda}: X_{i_{\lambda}^{\prime}} \rightarrow Y_{j_{\lambda}}$ $\left(t_{\lambda}=j_{\lambda}, s_{\lambda}=i_{\lambda}^{\prime}\right)$ whenever $i_{\lambda}^{\prime}<i_{\lambda+1}=j_{\lambda+1}, \lambda=1, \ldots, n+1$. Otherwise, let the λ-block of $f_{\boldsymbol{j}^{n+1}}$ be empty. Also, let the $(n+1)$-ladder $g_{\boldsymbol{i}^{n+1}}: \boldsymbol{Y} \rightarrow \boldsymbol{X}$, $\boldsymbol{i}^{n+1}=\boldsymbol{j}^{n+1}$, consist of the mappings $g_{\lambda}: Y_{j_{\lambda}^{\prime}} \rightarrow X_{i_{1}^{\prime}}\left(s_{\lambda}^{\prime}=s_{\lambda}=i_{1}^{\prime}, t_{\lambda}^{\prime}=j_{\lambda}^{\prime}\right)$, whenever $i_{\lambda}^{\prime}<i_{\lambda+1}=j_{\lambda+1}$ and $j_{\lambda}^{\prime}<j_{\lambda+1}, \lambda=1, \ldots, n+1$. Otherwise, let the λ-block of $g_{i^{n+1}}$ be empty. (One can also use the characterization from above: The nonempty λ-blocks are those that satisfy $f^{n}\left(j_{\lambda}\right)<j_{\lambda+1}$ - for $f_{j^{n+1}}$, and $g^{n} f^{n}\left(j_{\lambda}\right)<j_{\lambda+1}-$ for $g_{\boldsymbol{i}^{n+1}}, \boldsymbol{i}^{n+1}=\boldsymbol{j}^{n+1}$.) Now, a straightforward verification shows that $F_{n+1} G_{n+1} \simeq 1_{\boldsymbol{Y} n+1}$ in $\underline{\mathcal{M}}_{n+1}(\boldsymbol{Y}, \boldsymbol{Y})$. Namely, given an $m \leq n+1$, for every j_{1} put $j^{1}=j_{1}^{\prime}$, for every $j_{2}>j^{1}$ put $j^{2}=j_{2}^{\prime}, \ldots$, for every $j_{m}>j^{m-1}$ put $j^{m} \geq j_{m}^{\prime}$. And then, for every choice of $j_{n+2}>\cdots>j_{m+1}>j^{m}$, the corresponding $(n+1)$-ladders $f_{\boldsymbol{j}^{n+1}} g_{\boldsymbol{j}^{n+1}} \in F_{n+1} G_{n+1}$ and $1_{\boldsymbol{Y}^{n+1}} \in 1_{\boldsymbol{Y} n+1}$ are m-homotopic, $f_{\boldsymbol{j}^{n+1}} g_{\boldsymbol{j}^{n+1}} \simeq{ }_{m} 1_{\boldsymbol{Y} \boldsymbol{j}^{n+1}}$.

Lemma 2. Let $n \in \mathbb{N}$ and $S_{n}(\boldsymbol{Y}) \leq S_{n}(\boldsymbol{X})$. Then there exist $F_{n}, F_{n}^{\prime} \in$ $\underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and $G_{n}, G_{n}^{\prime} \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ such that $F_{n} G_{n} \simeq 1_{\boldsymbol{Y} n}$ and $G_{n}^{\prime} F_{n}^{\prime} \simeq 1_{\boldsymbol{X} n}$ in $\underline{\mathcal{M}}_{n}$.

Proof. Let $S_{n}(\boldsymbol{Y}) \leq S_{n}(\boldsymbol{X})$, i.e. let condition $S_{n}(\boldsymbol{Y}, \boldsymbol{X})$ be fulfilled, $n \in \mathbb{N}$. Then the corresponding condition is $\left(D_{2 n+1}\right)$. We are applying the characterization from above. Denote the appropriate index functions g^{n} and f^{n} by g and f respectively. Let an $\boldsymbol{i}^{n} \in \boldsymbol{J}(n)$ be given. We define the first blocks of $g_{\boldsymbol{i}^{n}}$ and $f_{\boldsymbol{j}^{n}}, \boldsymbol{j}^{n}=\boldsymbol{i}^{n}$, by means of mappings $g_{i_{1}}^{n}, g_{f g\left(i_{1}\right)}^{n}$ and $f_{g\left(i_{1}\right)}^{n}$, and the bonding mappings, respectively, whenever $g f g\left(i_{1}\right)<j_{2}=i_{2}$; otherwise, let their first blocks
be empty. For every other $\lambda=2, \ldots, n$, we define the λ-blocks of $g_{i^{n}}$ and $f_{\boldsymbol{j}^{n}}$ by means of mappings $g_{f\left(j_{\lambda}\right)}^{n}$ and $f_{j_{\lambda}}^{n}$, and the bonding mappings, respectively, whenever $g f\left(j_{\lambda}\right)<j_{\lambda+1}=i_{\lambda+1}$; otherwise, let their λ-blocks be empty. This construction yields a $G_{n} \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ and an $F_{n} \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ such that $F_{n} G_{n} \simeq 1_{\boldsymbol{Y}} n$ in $\underline{\mathcal{M}}_{n}$.

On the other hand, for every $\lambda=1, \ldots, n-1$, we can define the λ-blocks of $g_{i^{n}}^{\prime}$ and $f_{\boldsymbol{j}^{n}}^{\prime}, \boldsymbol{j}^{n}=\boldsymbol{i}^{n}$, by means of mappings $g_{i_{\lambda}}^{n}$ and $f_{g\left(i_{\lambda}\right)}^{n}$, and the bonding mappings, respectively, whenever $f g\left(i_{\lambda}\right)<i_{\lambda+1}=j_{\lambda+1}$; otherwise, let these blocks be empty. For $\lambda=n$, we define the n-blocks of $g_{\boldsymbol{i}^{n}}$ and $f_{\boldsymbol{j}^{n}}$ by means of mappings $g_{i_{n}}^{n}, g_{f g\left(i_{n}\right)}^{n}$ and $f_{g\left(i_{n}\right)}^{n}$, and the bonding mappings, respectively, whenever $g f g\left(i_{n}\right)<j_{n+1}=$ i_{n+1}; otherwise, let their n-blocks be empty.

The construction yields a $G_{n}^{\prime} \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ and an $F_{n}^{\prime} \in \underline{\boldsymbol{L}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ such that $G_{n}^{\prime} F_{n}^{\prime} \simeq 1_{\boldsymbol{X} n}$ in \mathcal{M}_{n}.

Lemma 3. If $S_{3 n+1}(\boldsymbol{Y}) \leq S_{3 n+1}(\boldsymbol{X})\left(\right.$ or $\left.S_{3 n+1}(\boldsymbol{X}) \leq S_{3 n+1}(\boldsymbol{Y})\right), n \in\{0\} \cup \mathbb{N}$, then $\boldsymbol{X} \stackrel{2 n+1}{\longleftrightarrow} \boldsymbol{Y}$.

Proof. Let $S_{3 n+1}(\boldsymbol{Y}) \leq S_{3 n+1}(\boldsymbol{X})$, i.e. let condition $S_{3 n+1}(\boldsymbol{Y}, \boldsymbol{X})$ be fulfilled, $n \in\{0\} \cup \mathbb{N}$. Recall that the corresponding condition is $\left(D_{6 n+3}\right)$. As before, denote the appropriate index functions $g^{3 n+1}$ and $f^{3 n+1}$ by g and f respectively. Consider a λ-block of an $\boldsymbol{i}^{2 n+1} \in \boldsymbol{J}(2 n+1), \lambda \in 1, \ldots, 2 n+1$. If λ is odd and $g f g\left(i_{\lambda}\right)<j_{\lambda+1}=i_{\lambda+1}$, let $g_{\boldsymbol{i}^{2 n+1}}$ and $f_{\boldsymbol{j}^{2 n+1}}, \boldsymbol{j}^{2 n+1}=\boldsymbol{i}^{2 n+1}$, on these blocks be defined by means of the existing mappings $g_{i_{\lambda}}^{3 n+1}, g_{f g\left(i_{\lambda}\right)}^{3 n+1}$ and $f_{g\left(i_{\lambda}\right)}^{3 n+1}$, and the bonding mappings, respectively; otherwise, let their odd λ-blocks be empty. If λ is even and $f g f\left(j_{\lambda}\right)<i_{\lambda+1}=j_{\lambda+1}$, let $g_{i^{2 n+1}}$ and $f_{j^{2 n+1}}$ on these blocks be defined by means of the existing mappings $g_{f\left(j_{\lambda}\right)}^{3 n+1}$ and $f_{j_{\lambda}}^{3 n+1}, f_{g f\left(j_{\lambda}\right)}^{3 n+1}$, and the bonding mappings, respectively; otherwise, let their even λ-blocks be empty.

This construction yields a pair of free (2n+1)-hyperladders $G_{2 n+1} \in \underline{\boldsymbol{L}}_{2 n+1}(\boldsymbol{Y}, \boldsymbol{X})$, $F_{2 n+1} \in \underline{\boldsymbol{L}}_{2 n+1}(\boldsymbol{X}, \boldsymbol{Y})$. It is readily seen that $F_{2 n+1} G_{2 n+1} \simeq 1_{\boldsymbol{Y} 2 n+1}$ and $G_{2 n+1} F_{2 n+1} \simeq 1_{\boldsymbol{X} 2 n+2}$ in $\underline{\mathcal{M}}_{2 n+1}$ hold. It means that $\boldsymbol{X} \stackrel{2 n+1}{\longleftrightarrow} \boldsymbol{Y}$. The proof in the case $S_{3 n+1}(\boldsymbol{X}) \leq S_{3 n+1}(\boldsymbol{Y})$ is quite similar.

Lemma 4. If $S_{3 n+2}^{+}(\boldsymbol{Y}) \leq S_{3 n+2}^{+}(\boldsymbol{X})\left(\right.$ or $\left.S_{3 n+2}^{+}(\boldsymbol{X}) \leq S_{3 n+2}^{+}(\boldsymbol{Y})\right), n \in\{0\} \cup \mathbb{N}$, then $\boldsymbol{X} \stackrel{2 n+2}{\longleftrightarrow} \boldsymbol{Y}$.

Proof. Let $S_{3 n+2}^{+}(\boldsymbol{Y}) \leq S_{3 n+2}^{+}(\boldsymbol{X})$, i.e. let condition $S_{3 n+2}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ be fulfilled, $n \in\{0\} \cup \mathbb{N}$. Recall that the corresponding condition is $\left(D_{6 n+6}\right)$. Let us apply the above characterization. Denote the appropriate index functions $f^{3 n+2}$ and $g^{3 n+2}$ by f and g respectively. Consider a λ-block of a $\boldsymbol{j}^{2 n+2} \in \boldsymbol{J}(2 n+2), \lambda \in 1, \ldots, 2 n+2$. If λ is odd and $f g f\left(j_{\lambda}\right)<i_{\lambda+1}=j_{\lambda+1}$, let $f_{\boldsymbol{j}^{2 n+2}}$ and $g_{i^{2 n+2}}, i^{2 n+2}=j^{2 n+2}$, on these blocks be defined by means of the existing mappings $f_{j_{\lambda}}^{3 n+2}, f_{g f\left(j_{\lambda}\right)}^{3 n+2}$ and $g_{f\left(j_{\lambda}\right)}^{3 n+2}$, and the bonding mappings, respectively; otherwise, let their odd λ-blocks be empty. If λ is even and $g f g\left(i_{\lambda}\right)<j_{\lambda+1}=i_{\lambda+1}$, let $f_{\boldsymbol{j}^{2 n+2}}$ and $g_{i^{2 n+2}}$ on these blocks be defined by means of the existing mappings $f_{g\left(i_{\lambda}\right)}^{3 n+2}$ and $g_{i_{\lambda}}^{3 n+2}, g_{f g\left(i_{\lambda}\right)}^{3 n+2}$, and the bonding mappings, respectively; otherwise, let their even λ-blocks be empty.

In this way a pair of free $(2 n+2)$-hyperladders $F_{2 n+2} \in \underline{\boldsymbol{L}}_{2 n+2}(\boldsymbol{X}, \boldsymbol{Y}), G_{2 n+2} \in$ $\underline{\boldsymbol{L}}_{2 n+2}(\boldsymbol{Y}, \boldsymbol{X})$ is constructed. It is readily seen that $G_{2 n+2} F_{2 n+2} \simeq 1_{\boldsymbol{X} 2 n+2}$ and $F_{2 n+2} G_{2 n+2} \simeq 1_{\boldsymbol{Y} 2 n+2}$ in $\underline{\mathcal{M}}_{2 n+2}$ hold. Thus, $\boldsymbol{X} \stackrel{2 n+2}{\longleftrightarrow} \boldsymbol{Y}$. The proof in the case $S_{3 n+2}^{+}(\boldsymbol{X}) \leq S_{3 n+2}^{+}(\boldsymbol{Y})$ is quite similar.

Remark 2. It seems that, in general circumstances, the estimation integers $m \in \mathbb{N}$ of $\underline{\mathcal{M}}_{m}$ in Lemmata 1. - 4. are the best possible (maximal).

The next theorems are the obvious consequences of the above lemmata.
Theorem 3. Let \boldsymbol{X} and \boldsymbol{Y} be compact $A N R$ inverse sequences associated with metric compacta X and Y respectively, and let $n \in\{0\} \cup \mathbb{N}$.
(i) If $S_{n}(Y) \leq S_{n}(X)$ and $n>0$, then there exist $F_{n}, F_{n}^{\prime} \in \underline{\mathcal{A}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and $G_{n}, G_{n}^{\prime} \in \underline{\mathcal{A}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ such that $F_{n} G_{n} \simeq 1_{\boldsymbol{Y} n}$ and $G_{n}^{\prime} F_{n}^{\prime} \simeq 1_{\boldsymbol{X} n}$ in $\underline{\mathcal{A}}_{n}$.
(ii) If $S_{3 n+1}(Y)=S_{3 n+1}(X)$, then $X \stackrel{2 n+1}{\leftrightarrow} Y$.

Proof. The proof follows immediately by Lemmata 2. and 3.
Theorem 4. Let \boldsymbol{X} and \boldsymbol{Y} be compact $A N R$ inverse sequences associated with metric compacta X and Y respectively, and let $n \in\{0\} \cup \mathbb{N}$.
(i) If $S_{n}^{+}(Y) \leq S_{n}^{+}(X)$, then there exist an $F_{n+1} \in \underline{\mathcal{A}}_{n+1}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G_{n+1} \in$ $\underline{\mathcal{A}}_{n+1}(\boldsymbol{Y}, \boldsymbol{X})$ such that $F_{n+1} G_{n+1} \simeq 1_{\boldsymbol{Y} n+1}$ in $\underline{\mathcal{A}}_{n+1}$.
(ii) If $S_{3 n+2}^{+}(Y)=S_{3 n+2}^{+}(X)$, then $X \stackrel{2 n+2}{\longleftrightarrow} Y$.

Proof. The proof follows immediately by Lemmata 1. and 4.
Let us now consider the converse problem: How do the appropriate homotopy relations (m-alikeness) in the category $\underline{\mathcal{A}}_{m}, m \in \mathbb{N}$, imply the $S_{n^{-}}$and S_{n}^{+}-domination (the $S_{n^{-}}$and S_{n}^{+}-equivalence) of compacta?

Lemma 5. If there exist an $F_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{Y}, \boldsymbol{X}), n>1$, such that $F_{n} G_{n} \simeq 1_{\boldsymbol{Y} n}$, then $S_{0}^{+}(\boldsymbol{Y}) \leq S_{0}^{+}(\boldsymbol{X})$.

Proof. According to Theorem 1., it suffices to prove that $F_{2} G_{2} \simeq 1_{\boldsymbol{Y} 2}$ implies $S_{0}^{+}(\boldsymbol{Y}) \leq S_{0}^{+}(\boldsymbol{X})$. By our assumption (see Definition 3.), for $m=n=2$,

$$
\left(\forall t_{1}\right)\left(\exists t^{1} \geq t_{1}\right)\left(\forall t_{2}>t^{1}\right)\left(\exists t^{2} \geq t_{2}\right)\left(\forall t_{3}>t^{2}\right) \quad f_{\boldsymbol{t}^{2}} g_{\boldsymbol{t}^{2}} \simeq 1_{\boldsymbol{Y} t^{2}}
$$

holds. Now, given a $j_{1} \in \mathbb{N}$, take $t_{1}=j_{1}$ and put $i_{1}=t^{1}$. Let $i_{1}^{\prime} \geq i_{1}$. Take $t_{2}=i_{1}^{\prime}$ (or any $t_{2}>i_{1}^{\prime}$ if $t^{1}=t_{1}$ happens), and put $j_{1}^{\prime}=t^{2}$. Let $t_{3}>t^{2}$. Then the corresponding homotopy relation $f_{\boldsymbol{t}^{2}} g_{\boldsymbol{t}^{2}} \simeq 1_{\boldsymbol{Y} \boldsymbol{t}^{2}}$ yields a mapping $f_{1}=f_{t_{1}}^{2} p_{f\left(t_{1}\right) i_{1}}$: $X_{i_{1}} \rightarrow Y_{t_{1}}=Y_{j_{1}}$ and a mapping $g_{1}=p_{i_{1}^{\prime} f\left(t_{2}\right)} g_{f\left(t_{2}\right)}^{2} q_{g f\left(t_{2}\right) j_{1}^{\prime}}: Y_{j_{1}^{\prime}}=Y_{t^{2}} \rightarrow X_{i_{1}^{\prime}}$ such that $f_{1} p_{i_{1} i_{1}^{\prime}} g_{1} \simeq q_{j_{1} j_{1}^{\prime}}$.

Thus, condition $S_{0}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ holds, i.e. $S_{0}^{+}(\boldsymbol{Y}) \leq S_{0}^{+}(\boldsymbol{X})$.
Lemma 6. If $\boldsymbol{X} \stackrel{2 n+1}{\leftrightarrow} \boldsymbol{Y}$ in $\underline{\mathcal{M}}_{2 n+1}, n \in\{0\} \cup \mathbb{N}$, then $S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$.
Proof. If $n=0$, the claim is trivial. Let $n=1$, and let there exist an $F_{3} \in \underline{\mathcal{M}}_{3}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G_{3} \in \underline{\mathcal{M}}_{3}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G_{3} F_{3} \simeq 1_{\boldsymbol{X} 3}$ and $F_{3} G_{3} \simeq 1_{\boldsymbol{Y} 3}$. By the procedure similar to the one used in the proof of Lemma 5. $\quad(m=n=3)$, one obtains the following homotopy commutative diagram:

More precisely,

$$
\begin{gathered}
\left(\forall t_{1}\right)\left(\exists t^{1} \geq t_{1}\right)\left(\forall t_{2}>t^{1}\right)\left(\exists t^{2} \geq t_{2}\right) \\
\left(\forall t_{3}>t^{2}\right)\left(\exists t^{3} \geq t_{3}\right)\left(\forall t_{4}>t^{3}\right) \quad f_{\boldsymbol{t}^{3}} g_{\boldsymbol{t}^{3}} \simeq 1_{\boldsymbol{Y} t^{3}}
\end{gathered}
$$

and

$$
\begin{gathered}
\left(\forall s_{1}\right)\left(\exists s^{1} \geq s_{1}\right)\left(\forall s_{2}>s^{1}\right)\left(\exists s^{2} \geq s_{2}\right) \\
\left(\forall s_{3}>s^{2}\right)\left(\exists s^{3} \geq s_{3}\right)\left(\forall s_{4}>s^{3}\right) \quad g_{s^{3}} f_{\boldsymbol{s}^{3}} \simeq 1_{\boldsymbol{X} \boldsymbol{s}^{3}}
\end{gathered}
$$

Thus,

$$
\left(\forall j_{1}\right)\left(\exists i_{1}\right)\left(\forall i_{1}^{\prime} \geq i_{1}\right)\left(\exists j_{1}^{\prime} \geq j_{1}\right)\left(\forall j_{2} \geq j_{1}^{\prime}\right)\left(\exists i_{2} \geq i_{1}^{\prime}\right)
$$

and there exist mappings f_{1}, g_{1} and f_{2} (dotted arrows - compositions of the appropriate f_{s} and g_{t} with the bonding mappings) such that the corresponding diagram commutes up to homotopy. It proves that condition $S_{1}(\boldsymbol{X}, \boldsymbol{Y})$ holds, i.e. $S_{1}(\boldsymbol{X}) \leq S_{1}(\boldsymbol{Y})$. Since the assumptions are symmetric, $S_{1}(\boldsymbol{Y}) \leq S_{1}(\boldsymbol{X})$ also holds. Thus, $S_{1}(\boldsymbol{Y})=S_{1}(\boldsymbol{X})$. If $n>1$, the proof works in the same way.

Lemma 7. If $\boldsymbol{X} \stackrel{2 n}{\longleftrightarrow} \boldsymbol{Y}$ in $\underline{\mathcal{M}}_{2 n}, n \in \mathbb{N}$, then $S_{n-1}^{+}(\boldsymbol{Y})=S_{n-1}^{+}(\boldsymbol{X})$.
Proof. If $n=1$, then by Definition 4. and Lemma 5., $S_{0}^{+}(\boldsymbol{Y}) \leq S_{0}^{+}(\boldsymbol{X})$ and $S_{0}^{+}(\boldsymbol{X}) \leq S_{0}^{+}(\boldsymbol{Y})$. (We do not even need a unique pair $F_{2}, G_{2}!$) Hence, $S_{0}^{+}(\boldsymbol{Y})=S_{0}^{+}(\boldsymbol{X})$. Let $n>1$. First, consider the case $n=2$. By applying the both homotopy relations $F_{4} G_{4} \simeq 1_{\boldsymbol{Y} 4}$ and $G_{4} F_{4} \simeq 1_{\boldsymbol{X} 4}$ simultaneously (starting with $F_{4} G_{4} \simeq 1_{Y 4}$), for $m=n=4$, the following procedure is possible: Given a j_{1}, take $t_{1}=s_{1}=j_{1}$ and put $i_{1}=\max \left\{t^{1}, s^{1}\right\}$; let $i_{1}^{\prime} \geq i_{1}$; take $t_{2}=s_{2}=i_{1}^{\prime}$, and put $j_{1}^{\prime}=\max \left\{t^{2}, s^{2}\right\}$; let $j_{2} \geq j_{1}^{\prime}$; take $t_{3}=s_{3}=j_{2}$, and put $i_{2}=\max \left\{t^{3}\right.$, $\left.s^{3}\right\}$; let $i_{2}^{\prime} \geq i_{2}$; take $t_{4}=s_{4}=i_{2}^{\prime}$, and put $j_{2}^{\prime}=\max \left\{t^{4}, s^{4}\right\}$, finally, let $t_{5}=s_{5}>j_{2}^{\prime}$.

Since $f_{\boldsymbol{t}^{4}} g_{\boldsymbol{t}^{4}} \simeq 1_{\boldsymbol{Y} \boldsymbol{t}^{4}}$ and $g_{\boldsymbol{s}^{4}} f_{\boldsymbol{s}^{4}} \simeq 1_{\boldsymbol{X} \boldsymbol{s}^{4}}, \boldsymbol{s}^{4}=\boldsymbol{t}^{4}$, the needed mappings (dotted arrows) exist such that condition $S_{1}^{+}(\boldsymbol{X}, \boldsymbol{Y})$ holds, i.e. $S_{1}^{+}(\boldsymbol{Y}) \leq S_{1}^{+}(\boldsymbol{X})$. In the same way, beginning with $G_{4} F_{4} \simeq 1_{\boldsymbol{X} 4}$, one can prove that $S_{1}^{+}(\boldsymbol{X}) \leq S_{1}^{+}(\boldsymbol{Y})$ holds. Therefore, $S_{1}^{+}(\boldsymbol{Y})=S_{1}^{+}(\boldsymbol{X})$. If $n>2$, the proof is quite similar.

The next theorems follow by the above Lemmata 6. and 7. respectively.

Theorem 5. Let X and Y be metric compacta, and let $n \in\{0\} \cup \mathbb{N}$. If $X \stackrel{2 n+1}{\leftrightarrow} Y$, then $S_{n}(Y)=S_{n}(X)$.

Theorem 6. Let X and Y be metric compacta, and let $n \in \mathbb{N}$. If $X \stackrel{2 n}{\leftrightarrow} Y$, then $S_{n-1}^{+}(Y)=S_{n-1}^{+}(X)$.

Corollary 1. Let X, Y and Z be metric compacta, and let $n \in \mathbb{N}$, $n \geq 3$. If $X \stackrel{n}{\leftrightarrow} Y$ and $Y \stackrel{n}{\leftrightarrow} Z$, then $X \stackrel{\left[\frac{n}{3}\right]}{\leftrightarrow} Z$.

Proof. Let $n \in \mathbb{N}, n \geq 3$, and let $X \stackrel{n}{\leftrightarrow} Y$ and $Y \stackrel{n}{\leftrightarrow} Z$. If n is odd, i.e. $n=$ $2 k+1, k \in \mathbb{N}$, then Theorem 5. implies $S_{k}(Y)=S_{k}(X)$ and $S_{k}(Z)=S_{k}(Y)$. Thus, $S_{k}(Z)=S_{k}(X)$. By Theorem 3.(ii), $S_{k}(Z)=S_{k}(X)$ implies $X \stackrel{l}{\longleftrightarrow} Z$ whenever $l \leq\left[\frac{2 k+1}{3}\right]=\left[\frac{n}{3}\right]$. If n is even, i.e. $n=2(k+1), k \in \mathbb{N}$, then Theorem 6. implies $S_{k}^{+}(Y)=S_{k}^{+}(X)$ and $S_{k}^{+}(Z)=S_{k}^{+}(Y)$. Thus, $S_{k}^{+}(Z)=S_{k}^{+}(X)$. By Theorem 4.(ii), $S_{k}^{+}(Z)=S_{k}^{+}(X)$ implies $X \stackrel{l}{\leftrightarrow} Z$ whenever $l \leq\left[\frac{2(k+1)}{3}\right]=\left[\frac{n}{3}\right]$.

Remark 3. By Theorem 1., there are functors of $\underline{\mathcal{A}}_{n^{\prime}}$ to $\underline{\mathcal{A}}_{n}, n \leq n^{\prime}$, keeping the objects fixed and preserving the homotopy relation. One can easily construct a functor of $\underline{\mathcal{A}}_{n}$ to $\underline{\mathcal{A}}_{n^{\prime}}$ keeping the objects fixed. For instance, let $n=1$ and $n^{\prime}=2$. First, given a free 1-hyperladder $F_{1}=\left(f_{\boldsymbol{j}^{1}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$, one has to construct a free 2hyperladder $F_{2}=\left(f_{\boldsymbol{j}^{2}}\right): \boldsymbol{X} \rightarrow \boldsymbol{Y}$ by means of F_{1}. Let $\boldsymbol{j}^{2}=\left(j_{1}, j_{2}, j_{3}\right) \in \boldsymbol{J}(2)$. Put $t_{1}=j_{1}$ and $t_{2}=j_{3}$, and consider the 1-ladder $f_{\boldsymbol{t}^{1}} \in F_{1}$, where $\boldsymbol{t}^{1}=\left(t_{1}, t_{2}\right) \in \boldsymbol{J}(1)$. Now define the 2-ladder $f_{\boldsymbol{j}^{2}}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ by using the maximal admissible restriction of $f_{\boldsymbol{t}^{1}}$ to first and second block of \boldsymbol{j}^{2}. It is readily seen that this construction preserves the identities and composition. If $n^{\prime}>n>1$, the construction is quite similar (but not unique). Let us observe that these functors do not preserve the homotopy relation. Namely, if they would preserve it, then all the S_{n} - and S_{n}^{+}-equivalences would coincide, contradicting to the known examples.

5. The category characterization of the S-equivalence

Let us observe that there exists a sequential category $\underline{\mathcal{M}}$ having the "coordinates" all the categories $\underline{\mathcal{M}}_{n}, n \in \mathbb{N}$. That means, $O b(\underline{\mathcal{M}})=\overline{O b}\left(\underline{\mathcal{M}}_{n}\right)$, for any n, i.e. the objects are all inverse sequences of compacta, while

$$
\underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y})=\left\{F=\left(F_{n}\right) \mid F_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{X}, \boldsymbol{Y})=\boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y}), n \in \mathbb{N}\right\} .
$$

The composition is defined coordinatewise, and the identity on an \boldsymbol{X} is $1_{\boldsymbol{X}}=\left(1_{\boldsymbol{X} n}\right)$. There also exists its full subcategory $\underline{\mathcal{A}} \subseteq \underline{\mathcal{M}}$ determined by all the inverse sequences of compact ANR's (or compact polyhedra).

Let $F=\left(F_{n}\right), F^{\prime}=\left(F_{n}^{\prime}\right) \in \underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y})$. Then F is said to be homotopic to F^{\prime}, denoted by $F \simeq F^{\prime}$, provided $F_{n} \simeq F_{n}^{\prime}$ in $\boldsymbol{L}_{n}(\boldsymbol{X}, \boldsymbol{Y})$, for every $n \in \mathbb{N}$. Clearly, this homotopy relation is an equivalence relation on every set $\underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y})$. The equivalence class $[F]$ of an F is denoted by \boldsymbol{F}.

Theorem 7. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences in cM. Then $S(\boldsymbol{Y})=S(\boldsymbol{X})$ if and only if there exists a pair of morphisms $F \in \underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y}), G \in \underline{\mathcal{M}}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G F \simeq 1_{\boldsymbol{X}}$ and $F G \simeq 1_{\boldsymbol{Y}}$ in $\underline{\mathcal{M}}$. Let X and Y be compact metric spaces, and let $\boldsymbol{X}, \boldsymbol{Y}$ be associated with X, Y respectively. Then $S(Y)=S(X)$ if and only if
there exists a pair of morphisms $F \in \underline{\mathcal{A}}(\boldsymbol{X}, \boldsymbol{Y}), G \in \underline{\mathcal{A}}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G F \simeq 1_{\boldsymbol{X}}$ and $F G \simeq 1_{Y}$ in $\underline{\mathcal{A}}$.

Proof. Recall that $S(\boldsymbol{Y})=S(\boldsymbol{X})$ is equivalent to $S_{n}(\boldsymbol{Y})=S(\boldsymbol{X})_{n}$ (or $\left.S_{n}^{+}(\boldsymbol{Y})=S^{+}(\boldsymbol{X})_{n}\right)$ for every $n \in\{0\} \cup \mathbb{N}$. Notice that one may formally reduce the statement to $n \geq n_{0}$, for an arbitrary n_{0}. According to Definition 4., Lemmata 3. and 4. imply that, for every $n \in \mathbb{N}$, there exists a pair of morphisms $F_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{X}, \boldsymbol{Y}), G_{n} \in \underline{\mathcal{M}}_{n}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G_{n} F_{n} \simeq 1_{\boldsymbol{X} n}$ and $F_{n} G_{n} \simeq 1_{\boldsymbol{Y} n}$. Therefore, there exist an $F=\left(F_{n}\right) \in \underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y})$ and a $G=\left(G_{n}\right) \in \underline{\mathcal{M}}(\boldsymbol{Y}, \boldsymbol{X})$ such that $G F \simeq 1_{\boldsymbol{X}}$ and $F G \simeq 1_{\boldsymbol{Y}}$ in \mathcal{M}. Conversely, if $G F \simeq 1_{\boldsymbol{X}}$ and $F G \simeq 1_{\boldsymbol{Y}}$ in \mathcal{M}, then $G_{n} F_{n} \simeq 1_{\boldsymbol{X} n}$ and $F_{n} G_{n} \simeq 1_{\boldsymbol{Y}}$ in $\underline{\mathcal{M}}_{n}$, for every $n \in \mathbb{N}$. Now, according to Definition 4., Lemmata 6. and 7. imply $S_{n}(\boldsymbol{Y})=S_{n}(\boldsymbol{X})$, for every $n \in \mathbb{N}$. Thus, $S(\boldsymbol{Y})=S(\boldsymbol{X})$. The claim concerning compacta follows by Theorems 3. and 4. as well as by Theorems 5 . and 6 .

An elegant reformulation of Theorem 7. is as follows:
Corollary 2. Let \boldsymbol{X} and \boldsymbol{Y} be inverse sequences in cM. Then $S(\boldsymbol{Y})=S(\boldsymbol{X})$ if and only if $\boldsymbol{X} \leftrightarrow \boldsymbol{Y}$, i.e. \boldsymbol{X} is alike \boldsymbol{Y}. Consequently, for a pair X, Y of compacta, $S(Y)=S(X)$ if and only if $X \leftrightarrow Y$, i.e. X is alike Y.

Remark 4. (a) The established category characterization of the S-equivalence is not full, i.e. it is not described by means of the isomorphisms. Thus, there is no desired functor of the shape category to $\underline{\mathcal{A}}$.
(b) It is clear that, in general, the homotopy relation $F \simeq F^{\prime}$ in $\underline{\mathcal{M}}$ (스) is not compatible with the category composition. Nevertheless, since the S-equivalence is an equivalence relation, Theorem 7. (Corollary 2.) implies that the alikeness is an equivalence relation too. Thus, the following useful fact holds: If $F \in \underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Y})$, $G \in \underline{\mathcal{M}}(\boldsymbol{Y}, \boldsymbol{X}), F^{\prime} \in \underline{\mathcal{M}}(\boldsymbol{Y}, \boldsymbol{Z})$ and $G^{\prime} \in \underline{\mathcal{M}}(\boldsymbol{Z}, \boldsymbol{Y})$ such that $G F \simeq 1_{\boldsymbol{X}}, F G \simeq 1_{\boldsymbol{Y}}$, $G^{\prime} F^{\prime} \simeq 1_{\boldsymbol{Y}}$ and $F^{\prime} G^{\prime} \simeq 1_{\boldsymbol{Z}}$ in $\underline{\mathcal{M}}$, then there exist an $F^{\prime \prime} \in \underline{\mathcal{M}}(\boldsymbol{X}, \boldsymbol{Z})$ and a $G^{\prime \prime} \in \underline{\mathcal{M}}(\boldsymbol{Z}, \boldsymbol{X})$ such that $G^{\prime \prime} F^{\prime \prime} \simeq 1_{\boldsymbol{X}}$ and $F^{\prime \prime} G^{\prime \prime} \simeq 1_{\boldsymbol{Z}}$ in $\underline{\mathcal{M}}$.

References

[1] D. Coram, P.F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7(1977), 275-288.
[2] K. R. Goodearl, T.B. Rushing, Direct limit groups and the KeeslingMardešić shape fibration, Pacific J. Math. 86(1980), 471-476.
[3] J. Keesling, S. Mardešić, A shape fibration with fibres of different shape, Pacific J. Math. 84(1979), 319-331.
[4] S. Mardešıć, Comparing fibres in a shape fibration, Glasnik Mat. 13(33)(1978), 317-333.
[5] S. Mardešić, B.T. Rushing, Shape fibrations I, Gen. Topology Appl. 9(1978), 193-215.
[6] S. Mardešić, J. Segal, Shape Theory, North Holland, Amsterdam, 1982.
[7] S. Mardešić, N. Uglešić, A category whose isomorphisms induce an equivalence relation coarser than shape, Top. Appl. 153(2005), 448-463.
[8] N. Uglešić, B. Červar, A subshape spectrum for compacta, Glasnik Mat. 40 (60)(2005), 351-388.
[9] N. Uglešić, B. ČERVAR, The S_{n}-equivalence of compacta, Glasnik Mat. 42(62) (2007), 195-211.

[^0]: *Department of Mathematics, University of Split, Teslina 12/III, HR-21 000 Split, Croatia, e-mail: brankoch@pmfst.hr
 ${ }^{\dagger}$ University of Zadar, Studentski dom F. Tuđmana 24 D, HR-23 000 Zadar, Croatia, e-mail: nuglesic@unizd.hr

