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Category descriptions of the Sn- and S-equivalence
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Abstract. By reducing the Mardešić S-equivalence to a finite case,
i.e. to each n ∈ {0} ∪N separately, the authors recently derived the no-
tion of Sn-equivalence of compacta. In this paper an additional notion
of S+

n -equivalence is introduced such that S+
n implies Sn and Sn implies

S+
n−1. The implications S+

1 ⇒ S1 ⇒ S+
0 ⇒ S0 as well as Sh⇒ S ⇒ S1

are strict. Further, for every n ∈ N, a category An and a homotopy
relation on its morphism sets are constructed such that the mentioned
equivalence relations admit appropriate descriptions in the given set-
tings. There exist functors of An′ to An, n ≤ n′, keeping the objects
fixed and preserving the homotopy relation. Finally, the S-equivalence
admits a category characterization in the corresponding sequential cate-
gory A.
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1. Introduction

A few decades ago S. Mardešić [4] introduced an equivalence relation between
metric compacta, called the S-equivalence. The corresponding classification is
strictly coarser than the shape type classification [2], [3], [7], [8]. Moreover, the
S-equivalence on compact ANR’s and compact polyhedra coincides with the homo-
topy type classification. However, the mentioned relation, being defined only on the
class of objects, was not supported by an appropriate associated theory. In other
words, it was not clear whether the S-equivalence admits a category characteriza-
tion by means of its isomorphisms (or at least a category description by means of
its morphisms). Furthermore, if such a (full) characterization would exists, there
should exist a functor relating the shape category and the new category.

The reason why the S-equivalence was, for example, the problem of the shape
types of fibres of a shape fibration. In 1977 D. Coram and P.F. Duvall [1] introduced
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and studied the approximate fibrations between compact ANR’s. These are a shape
analogue of the standard (Hurewicz) fibrations. In 1978 Mardešić and T.B. Rushing
[5] generalized approximate fibrations to shape fibrations between metric compacta.
The following important question was asking for the answer (analogously to the
same homotopy type of the fibres of a fibration): Whether all the fibres of a shape
fibration (over a continuum) have the same shape type? In 1979 J. Keesling and
Mardešić [3] gave a negative answer. However, Mardešić [4] had proved before that
all those fibres are mutually S-equivalent. He had also proved that some shape
invariant classes of compacta (FANR’s, movable compacta, compacta having shape
dimension ≤ n, . . . ) are actually S-invariant.

By uniformization of the S-equivalence, Mardešić and Uglešić [7] obtained a
finer equivalence relation, called the S∗-equivalence, that admits a full category
characterization. A quite different characterization of the S∗-equivalence was given
by the authors [8].

The S-equivalence is defined by means of a certain condition depending on every
n ∈ N. Mardešić and Uglešić had noticed in [7] that it makes sense to consider “the
finite parts” of this condition. By following this idea, the authors [9] have recently
reduced the mentioned condition to the finite cases, i.e. to every n ∈ {0} ∪ N
separately. In that way they derived the notions of Sn-equivalences of compacta
They proved that the S2-equivalence strictly implies S1-equivalence and that S1-
equivalence strictly implies S0-equivalence. Further, the S1-equivalence restricted
to compacta having the homotopy types of ANR’s coincides with the homotopy
type classification. Similarly, the S1-equivalence restricted to the class of all FANR’s
(compacta having the shapes of ANR’s) coincides with the shape type classification.
Finally, the shape class, the S-equivalence class and the S2-equivalence class of an
FANR coincide.

In this paper we have provided a category description for each Sn-equivalence
relation as well as for the S-equivalence. To do this, we have first introduced the
additional equivalence relations, called the S+

n -equivalences, n ∈ {0}∪N, such that

S0 ⇐ S+
0 ⇐ S1 ⇐ · · · ⇐ Sn ⇐ S+

n ⇐ Sn+1 ⇐ · · · .

The implications S0 ⇐ S+
0 ⇐ S1 ⇐ S+

1 as well as S1 ⇐ S ⇐ Sh are strict.
Further, for every n ∈ N, a category An and an equivalence (homotopy) relation

on its morphisms sets are constructed such that the Sn (S+
n )-equivalence admits

an appropriate description by means of the corresponding morphisms of Am(n)

(Am(n)+). More precisely, by following the basic idea of [8], the objects of An are
all inverse sequences X of compact ANR’s (or compact polyhedra); a morphism
set An(X,Y ) consists of all so-called free n-hyperladders Fn = (fjn) : X → Y ;
there exists a homotopy relation Fn � F ′

n on each morphism set. (However, this
equivalence relation is not compatible with the composition, so there is no appro-
priate quotient category.) There exist functors of An′ to An, n ≤ n′, which keep the
objects fixed and preserve the homotopy relations (Theorem 1.). If there exist an
Fn ∈ An(X,Y ) and a Gn ∈ An(Y ,X) such that GnFn � 1Xn and FnGn � 1Y n

hold, then we say that X is n-alike Y , denoted by X
n↔ Y . If X and Y are

compacta, then X n↔ Y is defined by means of X
n↔ Y , where X, Y are associated

with X , Y , respectively (X = limX, Y = limY ). Among other facts, we have
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proved the following ones (Theorems 3-6):

(S3n+1(X) = S3n+1(Y ))⇒ (X 2n+1↔ Y ), n ≥ 0;

(S+
3n+2(X) = S+

3n+2(Y ))⇒ (X 2n+2↔ Y ), n ≥ 0;

(X 2n+1↔ Y )⇒ (Sn(X) = Sn(Y )), n ≥ 0;

(X 2n↔ Y )⇒ (S+
n−1(X) = S+

n−1(Y )), n ≥ 1.

As a consequence (Corollary 1.)

((X n↔ Y ) ∧ (Y n↔ Z))⇒ (X
[ n
3 ]↔ Z), n ≥ 3.

Finally, S(X) = S(Y ) if and only if X and Y are alike, X ↔ Y (Corollary 2.),
where X ↔ Y is defined by means of X n↔ Y for all n ∈ N.

2. Preliminaries

Let cM denote the class of all compact metrizable spaces (compacta), and let cM
denote the class of all inverse sequences over cM. By [4], Definition 1., two inverse
sequences X,Y ∈ cM are said to be S-equivalent, denoted by S(Y ) = S(X),
provided, for every n ∈ N, the following condition is fulfilled:

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1) · · ·
· · · (∀i′n−1 ≥ in−1)(∃j′n−1 ≥ jn−1)(∀jn ≥ j′n−1)(∃in ≥ i′n−1)

and there exist mappings

fk ≡ fnjk : Xik → Yjk , k = 1, . . . , n,

and

gk ≡ gni′k : Yj′
k
→ Xi′

k
, k = 1, . . . , n− 1,

making the following diagram

Xi1 ← Xi′1 ← · · · ← Xi′n−1
← Xin

↓ f1 ↑ g1 · · · ↑ gn−1 ↓ fn
Yj1 ← Yj′1 ← · · · ← Yj′n−1

← Yjn

(D)

commutative up to homotopy. Two compacta X and Y are said to be S-equivalent,
denoted by S(Y ) = S(X), provided there exists a pair (equivalently, for every pair)
of limits p : X → X and q : Y → Y of inverse sequences consisting of compact
ANR’s such that S(Y ) = S(X) (see [4], Remarks 1. and 2. and Definition 2.). If
p : X →X is the limit, then we also say that X is associated with X .

If compacta X and Y have the same shape [6], Sh(Y ) = Sh(X), then S(Y ) =
S(X). There exist compacta X and Y such that S(Y ) = S(X) and Sh(Y ) �= Sh(X)
(see [3], [2], [7]).
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If the choice of indices ik and j′k does not depend on a given n ∈ N (while the
mappings still depend on n, i.e. fk ≡ fnjk : Xik → Yjk and gk ≡ gni′k

: Yj′
k
→ Xi′

k
),

then the S-equivalence becomes the S∗-equivalence (see [7], Definitions 6.-9., and
[8], Lemmata 4. and 5.). There exists a pair X , Y of compacta such that S∗(Y ) =
S∗(X) and Sh(Y ) �= Sh(X) (see [7], [8]). However, we have no example yet which
could show that the S∗-equivalence is indeed strictly finer than the S-equivalence.

According to [9], given an n ∈ N, let us denote the above condition, relating
Y to X, by (D2n−1). Further, let us denote by (D2n) the following extension of
(D2n−1):

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1) · · ·
· · · (∀jn ≥ j′n−1)(∃in ≥ i′n−1)(∀i′n ≥ in)(∃j′n ≥ jn)

and there exist mappings

fk ≡ fnjk : Xik → Yjk , gk ≡ gni′k : Yj′
k
→ Xi′

k
, k = 1, . . . , n,

making diagram (D), extended by adding one rectangle, commutative up to homo-
topy.

It is obvious that (relating Y to X), for each m ∈ N,

(Dm+1)⇒ (Dm).

Given any X,Y ∈ cM and n ∈ {0} ∪ N, let Sn(X ,Y ) denote condition (D2n+1)
relating Y to X. Further, let S+

n (X ,Y ) denote condition (D2n+2) relating Y to
X. It is clear that, for every n ∈ N ∪ {0}, the following assertions hold (see also
Lemma 1. of [9]):

Sn+1(X,Y )⇒ (S+
n (X,Y ) ∧ S+

n (Y ,X));

S+
n (X,Y )⇒ (Sn(X,Y ) ∧ Sn(Y ,X));

((∀n ∈ {0} ∪ N) Sn(X ,Y ))⇔ ((∀n ∈ {0} ∪ N) Sn(Y ,X))⇔
⇔ (S(Y ) = S(X)).

We shall now slightly modify and extend Definition 1. of [9] such the notion of
the Sn-equivalence remains unchanged, while the Sn+1-domination becomes the
S+
n -domination. We want to introduce the (new) notions of Sn-domination and

S+
n -equivalence.

Definition 1. Let X and Y be inverse sequences of compacta and let n ∈
{0}∪N. Then Y is said to be Sn-dominated by X, denoted by Sn(Y ) ≤ Sn(X),
provided condition Sn(Y ,X) holds; Y is said to be Sn-equivalent to X, denoted by
Sn(Y ) = Sn(X), provided the both conditions Sn(Y ,X) and Sn(X ,Y ) are fulfilled.
Similarly and dually, Y is said to be S+

n -dominated by X, denoted by S+
n (Y ) ≤

S+
n (X), provided condition S+

n (X ,Y ) holds; Y is said to be S+
n -equivalent to X,

denoted by S+
n (Y ) = S+

n (X), provided the both conditions S+
n (X,Y ) and S+

n (Y ,X)
are fulfilled.

If X and Y are compacta, then we define Sn(Y ) ≤ Sn(X) and Sn(Y ) = Sn(X)
(S+
n (Y ) ≤ S+

n (X) and S+
n (Y ) = S+

n (X)) provided Sn(Y ) ≤ Sn(X) and Sn(Y ) =
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Sn(X) (S+
n (Y ) ≤ S+

n (X) and S+
n (Y ) = S+

n (X)) respectively, for some, equiva-
lently: any, compact ANR inverse sequences X, Y associated with X, Y respec-
tively.

Obviously, by definition,

(Sn(Y ) = Sn(X))⇔ (Sn(Y ) ≤ Sn(X) ∧ Sn(X) ≤ Sn(Y )),

(S+
n (Y ) = S+

n (X))⇔ (S+
n (Y ) ≤ S+

n (X) ∧ S+
n (X) ≤ S+

n (Y )).

Further, according to Lemma 2. of [9], the following implications hold:

(Sn+1(Y ) ≤ Sn+1(X))⇒ (S+
n (Y ) = S+

n (X)),

(S+
n (Y ) ≤ S+

n (X))⇒ (Sn(Y ) = Sn(X)).

Furthermore, S(Y ) = S(X) if and only if, for every n ∈ {0} ∪ N, Sn(Y ) = Sn(X)
(or, equivalently, S+

n (Y ) = S+
n (X)). Analogous statements hold for compacta

as well. Consequently, the following sequence of implications (of equivalences of
compacta strictly coarser than the shape type classification - Sh) is established:

S0 ⇐ S+
0 ⇐ S1 ⇐ · · · ⇐ Sn ⇐ S+

n ⇐ Sn+1 ⇐ · · · ⇐ S ⇐ S∗ ⇐ Sh.

Observe that the S0-domination is a trivial relation, i.e. for every pair X (�= ∅),
Y of compacta, S0(Y ) ≤ S0(X) holds. Also, S0(∅) ≤ S0(∅). The S0-equivalence
is the trivial equivalence relation, i.e. for every pair X , Y of nonempty compacta,
S0(Y ) = S0(X) holds. Also, S0(∅) = {∅}. The S1-equivalence strictly implies
S0-equivalence (Theorem 1. and Example 1. of [9]), and the S2-equivalence strictly
implies S1-equivalence (Theorem 2. and Example 2. of [9]). The S+

0 -equivalence
is not trivial because S+

0 ({∗}) ≤ S+
0 ({∗} � {∗}) and S+

0 ({∗} � {∗}) � S+
0 ({∗}).

Further, the S1-equivalence strictly implies S+
0 -equivalence. Namely, by Theorem

6. and Example 3. of [9], S+
0 (C) = S+

0 (L) and S1(C) �= S1(L), where C is the
Cantor set and

L = { 1
n | n ∈ N} ∪ {0} ⊆ R.

Moreover, by Theorems 1. and 5. of [9], every two compacta, such that each of
them is shape dominated by the other, are S+

0 -equivalent. Example 1. of [9] shows
that there exists a pair of mutually homotopy dominated compacta which are not
S1-equivalent. By Theorem 2. and Example 2. of [9], the S+

1 -equivalence strictly
implies S1-equivalence. Indeed, S+

1 (L) ≤ S+
1 (L � L), while S+

1 (L � L) � S+
1 (L).

Finally, as we mentioned before, Sh strictly implies S∗ (see [7] and [8]). Hence, the
next implications are strict:

S0 ⇐ S+
0 ⇐ S1 ⇐ S+

1 , S1 ⇐ S and S∗ ⇐ Sh.

3. Construction of the categories and functors

We are following the basic idea for a “subshape” category construction described
in Section 2. of [8]. However, in this setting we have to abandon the “uniformity”
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conditions for the morphisms and their homotopy relation (see Definitions 2.4. and
2.7. of [8]). We only need a slight control over the index functions. First of all,
recall the notion of an n-ladder ([8], Definition 2.1.). For a given n ∈ N and any
j1, . . . , jn+1 ∈ N such that j1 < · · · < jn+1, the corresponding ordered (n+1)-tuple
(j1, . . . , jn+1) is denoted by jn. The set of all such (n+ 1)-tuples jn is denoted by
J(n). Let X and Y be inverse sequences of compact metric spaces, let n ∈ N and
let jn ∈ J(n). An ordered pair (f, fj) consisting of an increasing (index) function

f :
n∪
λ=1

[jλ, αλ]N → [j1, jn+1 − 1]N, jλ ≤ αλ < jλ+1,

and of a set of mappings

fj : Xf(j) → Yj , j ∈
n∪
λ=1

[jλ, αλ]N,

is said to be an n-ladder of X to Y over jn, denoted by fjn : X → Y , provided
the two following conditions are satisfied:

(∀λ ∈ [1, n]N) f(jλ) ≥ jλ ∧ f(αλ) < jλ+1;

(∀j, j′ ∈ n∪
λ=1

[jλ, αλ]N) j ≤ j′ ⇒ fjpf(j)f(j′) � qjj′fj′ .

An n-ladder fjn having an empty λ-block, i.e. with no mapping for any j ∈
[jλ, jλ+1 − 1]N, is allowed. We also admit the empty n-ladder of X to Y over jn,
i.e. the empty set of mappings for a given jn.
If fjn : X → Y and gkn = (g, gk) : Y → Z are n-ladders, then we compose them
only in the case jn = kn by using the ordinary rule, i.e.

gknfkn ≡ ukn = (u, uk),

such that u = fg (wherever it is defined) and uk = gkfg(k), k ∈
n∪
λ=1

[kλ, γλ]N,

γλ ≤ βλ. Clearly, gknfkn : X → Z is an n-ladder of X to Z over kn. Notice
that its λ-block is empty whenever the corresponding block of fkn or gkn is empty,
or g(kλ) > αλ. It is obvious that the composition of n-ladders is associative.
Let 1Xin be the restriction of the identity morphism (of the inv-category (cM)N)
1X = (1N, 1Xi) : X → X to in ∈ J(n). Clearly, 1Xin is an n-ladder of X to
X over in. Notice that fjn1Xjn = fjn and 1Xingin = gin hold for all n-ladders
fjn : X → Y and gin : Z →X.

Let n = 1 and j1 ∈ J(1), and let fj1 , f ′
j1 = (f ′, f ′

j) : X → Y be 1-ladders over
the same j1. Then fj1 is said to be homotopic to f ′

j1 (compare Definition 2.3. of
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[8]) provided they both are empty or there exists an i1 ∈ [j1, j2 − 1]N such that

fj1pf(j1)i1 � f ′
j1pf ′(j1)i1 .

In the general case of a pair of n-ladders the definition of being m-homotopic,
m ≤ n, is as follows: Let n,m ∈ N ∪ {ω}, m ≤ n, and let fjn , f ′

jn : X → Y be
n-ladders over the same jn. Then fjn is said to be m-homotopic to f ′

jn , denoted
by fjn �m f ′

jn , provided, for every λ ∈ [1,m]N, the both fjn and f ′
jn have the

λ-block empty or there exists an iλ ∈ [jλ, jλ+1 − 1]N such that

fjλpf(jλ)iλ � f ′
jλpf ′(jλ)iλ .

Notice that fjn �m′ f ′
jn implies fjn �m f ′

jn whenever m ≤ m′. Clearly, the
m-homotopy relation of n-ladders is an equivalence relation on the corresponding
set. In the case of m = n, we simply write fjn � f ′

jn .
Definition 2. Let X and Y be inverse sequences of compact metric spaces and

let n ∈ N. A free n-hyperladder of X to Y , denoted by Fn : X → Y , is any
family Fn = (fjn) of n-ladders fjn : X → Y indexed by all jn ∈ J(n). The set of
all free n-hyperladders Fn of X to Y is denoted by Ln(X,Y ).

If Fn = (fjn) : X → Y and Gn = (gkn) : Y → Z, kn ∈ J(n), are free n-
hyperladders, then we compose them by composing the appropriate n-ladders fjn

and gkn such that jn = kn. Hence,

GnFn ≡ Un = (ukn) : X → Z

is a free n-hyperladder, where ukn ≡ gknfkn , kn ∈ J(n). Since the composition
of n-ladders is associative, the composition of free n-hyperladders is associative.
Notice that 1Xn = (1Xin), in ∈ J(n), is the identity n-hyperladder on X. Indeed,

Fn1Xn = (fjn)(1Xin) = (fjn1Xjn) = (fjn) = Fn,

1XnGn = (1Xin)(gin) = (1Xingin) = (gin) = Gn

hold for all n-hyperladders Fn : X → Y and Gn : Z → X. Thus, for every n ∈ N,
there exists a category Mn having the object class ObMn, which consists of all
inverse sequences in cM, and the morphism class MorMn, which consists of all
the morphism sets Ln(X,Y ). Further, there exists the corresponding sequential
categoryM = “(Mn)” (see Section 5. below).

For every n ∈ N, let An denote the full subcategory of Mn whose objects are
all inverse sequences X in cANR (compact ANR’s) or cPol (compact polyhedra),
and let A ⊆M be the corresponding sequential (sub)category.
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In order to define a certain equivalence (homotopy) relation on each set Ln(X,Y ),
let us first consider the simplest case n = 1. Recall that fj1 � f ′

j1 : X → Y means

(∃i1 ∈ [j1, j2 − 1]N) fj1pf(j1)i1 � f ′
j1pf ′(j1)i1 .

Let F1 = (fj1), F ′
1 = (f ′

j1) : X → Y be a pair of free 1-hyperladders. Then F1 is
said to be homotopic to F ′

1, provided every j1 ∈ N admits an i1 ∈ N, i1 ≥ j1,
such that, for every j2 > i1, the corresponding 1-ladders fj1 ∈ F1 and f ′

j1 ∈ F ′
1

(assigned to the pair j1 = (j1, j2) ∈ J(1)) are homotopic, fj1 � f ′
j1 with respect to

the chosen index i1. Briefly, F1 � F ′
1 provided

(∀j1 ∈ N)(∃i1 ≥ j1)(∀j2 > i1) fj1 � f ′
j1 (“up to i1”).

In the general case, the definition is as follows (compare Definition 2.7. of [8]):
Definition 3. Let n ∈ N and let Fn = (fjn), F ′

n = (f ′
jn) : X → Y be a pair of

free n-hyperladders. Then Fn is said to be homotopic to F ′
n, denoted by Fn � F ′

n,
provided Fn = F ′

n, or Fn �= F ′
n and

(∀m ≤ n)

(∀j1 ∈ N)(∃i1 ≥ j1)(∀j2 > i1) · · · (∀jm > im−1)(∃im ≥ jm)(∀jm+1 > im)
(∀jm+2 > jm+1) . . . (∀jn+1 > jn)

the corresponding n-ladders fjn ∈ Fn and f ′
jn ∈ F ′

n are m-homotopic, fjn �m fjn

(“up to i1, . . . , im”).
It is readily seen that this homotopy relation is an equivalence relation on each

set Ln(X,Y ). The homotopy class [Fn] of an Fn ∈ Ln(X,Y ) is denoted by
F n : X → Y .

Remark 1. The homotopy relation of free n-hyperladders is not compati-
ble with the composition in the category Mn. Thus, although the quotient sets
Mn(X,Y )/ � exist, there is no appropriate quotient category.

Theorem 1. For every pair n, n′ ∈ N, n ≤ n′, there exists a restriction functor
Rnn′ :Mn′ →Mn (which is not unique) keeping the objects fixed and preserving the
homotopy relation. Rnn is the identity functor. Furthermore, for all n ≤ n′ ≤ n′′,
there exist Rnn′ , Rn′n′′ and Rnn′′ such that Rnn′Rn′n′′ = Rnn′′ . The same holds
for the subcategories An ⊆Mn, n ∈ N.

Proof. Let n ≤ n′ and let Fn′ = (fjn′ ) ∈ Ln′(X,Y ). For every jn
′ ∈ J(n′),

let f jn′

jn denote the restriction of fjn′ ∈ Fn′ to a jn ∈ J(n). Let

ψ : J(n)→ J(n′), ψ(jn) = jn
′
,

be an injective function such that

(∀λ ∈ [1, n+ 1]N) j′λ = jλ.

Notice that ψ induces a certain function Ψ = Ψψ,X,Y of Ln′(X,Y ) to Ln(X ,Y )
given by

Fn′ = (fjn′ ) �→ (fjn) = Fn = Ψ(Fn′),
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where fjn = f
ψ(jn)
jn for every jn ∈ J(n).

Observe that Ψ(1Xn′) = 1Xn. Moreover, since the composition of free hyperladders
is defined coordinatewise (by indices), the following fact is obvious:

If Gn′Fn′ = Un′ �→ Un, Gn′ �→ Gn and Fn′ �→ Fn, then Un = GnFn.
It implies that Ψ(Gn′Fn′) = Ψ(Gn′)Ψ(Fn′). Therefore, the injection ψ induces a
functor Rψnn′ :Mn′ →Mn, keeping the objects fixed, determined by Rψnn′(Fn′) =
Ψ(Fn′). Let F ′

n′ = (f ′
jn′ ) ∈ Ln′(X,Y ) be another free n′-hyperladder such that

F ′
n′ � Fn′ , and let Rψnn′(F ′

n′) = F ′
n = (f ′

jn) ∈ Ln(X,Y ). Then one readily sees
that, for every m ≤ n (≤ n′), the corresponding homotopy condition of Fn′ � F ′

n′

implies the analogous condition forRψnn′(Fn′) � Rψnn′(F ′
n′). Thus, the functorRψnn′ :

Mn′ → Mn preserves the homotopy equivalence relation of free hyperladders.
Notice that n′ = n implies that ψ = 1J(n) is unique. Hence, Ψ1,X,Y as well as the
functor R1

nn = 1Mn
is the unique identity functor. Finally, if n ≤ n′ ≤ n′′ then, for

every pair ψ, ψ′ as above, the functors Rψnn′ : Mn′ → Mn, R
ψ′
n′n′′ : Mn′′ → Mn′

and Rψ
′ψ

nn′′ : Mn′′ → Mn satisfy Rψnn′R
ψ′
n′n′′ = Rψ

′ψ
nn′′ . The last statement is now

obvious. �

Let X and Y be compact metric spaces, and let p : X →X and q : Y → Y be
associated (limits) in cANR or cPol with X and Y respectively. Let p′ : X → X ′

and q′ : Y → Y ′ be an other such a pair. Then there is a (unique) pair of natural
isomorphisms u : X → X ′, v : Y → Y ′ in the pro-category tow-HcANR such
that uH(p) = H(p′) and vH(q) = H(q′), where H is the homotopy functor. Let
us choose a pair of representatives (u′, u′s) : X ′ →X, (v, vj) : Y → Y ′ of u−1 and
v in inv-cANR respectively, such that the index functions u′ and v are increasing
and unbounded and u′v ≥ 1N. Let n ∈ N and let Fn = (fjn) : X → Y be
a free n-hyperladder. We want to show that (u′, u′s), (v, vj) and Fn yield a free
n-hyperladder F ′

n = (f ′
jn) : X ′ → Y ′ obtained by “composing” (u′, u′s), Fn and

(v, vj).

X
(u′,u′

i)←− X ′

Fn ↓ ↓ F ′
n

Y −→
(v,vj)

Y ′

Even more, if Fn � Gn then F ′
n � G′

n. Let us first consider the simplest case
n = 1. Let j1 = (j1, j2) ∈ J(1). Put t1 = v(j1) and t2 = v(j2). Then t1 =
(t1, t2) ∈ J(1), and consider the corresponding 1-ladder ft1 ∈ F1 of X to Y .
We now define the 1-ladder f ′

j1 : X ′ → Y ′ by means of ft1 and the restrictions
of (u′, u′s) to the appropriate subset of [s1, s2]N = [t1, t2]N and of (v, vj) to the
appropriate subset of [j1, j2]N. More precisely, the index function of f ′

j1 is defined
by means of the composition u′fv, where f is the index function of ft1 . Notice
that f ′(j1) = u′fv(j1) ≥ i1 = j1 holds by our assumptions and by f(t1) ≥ s1 = t1.
Obviously, such an f ′

j1 is empty if and only if f ′(j1) ≥ i2 = j2. Let F ′
1 = (f ′

j1),
j1 ∈ J(1), be the family of all such 1-ladders. Then, clearly, F ′

1 : X ′ → Y ′ is a
free 1-hyperladder. Let a free 1-hyperladder G1 = (gt1) : X → Y be given such
that G1 = (gt1) � (ft1) = F1, and let G′

1 = (g′
j1) : X ′ → Y ′ be constructed in the
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same way by means of (u′, u′s), (gt1) and (v, vj), i.e. (g′
j1) = “(v, vj)(gt1)(u′, us)”.

Then a straightforward verification shows that G′
1 = (g′j1) � (f ′

j1) = F ′
1. Namely,

one has to choose an existing index s1 for t1 = v(j1), and then a desired index
i1 ≥ u′(s1) ≥ s1. Then, for every j2 > i1 and t2 = v(j2) ≥ i1, the both relations
ft1 � gt1 and f ′

j1 � g′j1 hold. If n > 1, one applies the same construction on every
λ-block, inductively on λ = 1, . . . , n. Therefore, for every n ∈ N, there exists a
correspondence between the morphisms sets

h = h
(u′,u′

s)

(v,vj)
: An(X ,Y )→ An(X ′,Y ′), h(Fn) = F ′

n,

where (shortly writing) F ′
n = “(u′, u′s)Fn(v, vj)”. Moreover, there is a correspon-

dence between the quotient sets

h = hu−1

v : An(X,Y )/ �→ An(X ′,Y ′)/ �, h([Fn]) = [F ′
n],

where (shortly writing) [F ′
n] =“v[Fn]u−1”. Let us observe that by the same con-

struction (using the appropriate representatives (u, ui) and (v′, v′t) of u and v−1

respectively), every F ′
n : X ′ → Y ′ gives an Fn : X → Y preserving the homo-

topy relation. More precisely, every free n-hyperladder F ′
n : X ′ → Y ′ (homo-

topy class [F ′
n]) yields a free n-hyperladder Fn : X → Y (homotopy class [Fn]),

Fn =“(v′, v′t)F
′
n(u, ui)”, ([Fn] =“v−1[F ′

n]u”).
It is readily seen that hu−1

v is a bijection, and that hu−1

u preserves the identity.
However, one can not well define the value of such a bijection on a composite,
because the composition of homotopy classes can not be well defined (Remark 1.).

According to the above consideration, we may state the following theorem:
Theorem 2. Let X and Y be compact metric spaces, and let p : X → X,

p′ : X → X ′, q : Y → Y and q′ : Y → Y ′ be inverse limits in tow-cANR. Then,
for every n ∈ N, there exists a bijection

h ≡ hu−1

v : An(X,Y )/ �→ An(X ′,Y ′)/ �, h[Fn] = “v[Fn]u−1”,

where u : X → X ′ and v : Y → Y ′ are the unique isomorphisms in the pro-
category tow-HcANR satisfying uH(p) = Hp′ and vH(q) = Hq′. If v = u, then
hu−1

u ([1Xn]) = [1X′n].
The next definition brings a useful notion (at least for a brief writing).
Definition 4. Let n ∈ N and let X and Y be inverse sequences in cM. Then

X is said to be n-alike Y , denoted by X
n↔ Y , provided there exists a pair of

free n-hyperladders Fn ∈ Mn(X ,Y ), Gn ∈ Mn(Y ,X) such that GnFn � 1Xn

and FnGn � 1Y n. If X and Y are compacta, then X
n↔ Y is defined by means

of X
n↔ Y in An, for any choice of the associated X and Y in cANR or cPol.

Further, X is said to be alike Y (X is said to be alike Y ), denoted by X ↔ Y

(X ↔ Y ), provided X
n↔ Y (X n↔ Y ) for every n ∈ N.

It is obvious that the relations n↔, n ∈ N, are reflexive and symmetric. We do
not know whether they are transitive (compare Corollary 1. below). However, each
of them generates an equivalence relation on the object class. On the other hand,
the both relations↔ are equivalence relations (see Corollary 2. below). In the next
section we shall relate m↔ to the Sn- and S+

n -equivalence and vice versa.
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4. The Sn- and S+
n -equivalence in the category Am

According to Lemma 4.1. of [8], S(X) = S(Y ) is equivalent to the following two
conditions:
(1) For every m ∈ N, there exists a pair (fm, (Fmj )j∈N) consisting of a strictly
increasing function fm : N → N and, for every j ∈ N, of a family Fmj of mappings
fmαj : Xfm(j) → Yj , α ∈ Amj , such that

(i) (∀j ∈ N) fm(j) ≥ j;
(ii) (∀j1 < · · · < jm in N)(∀λ ∈ [1,m]N)(∃fmjλ ∈ Fmjλ )

λ ≤ λ′ ⇒ fmjλpfm(jλ)fm(jλ′ ) � qjλjλ′ f
m
jλ′ ;

(2) For every m > 1 there exists a pair (gm, (Gmi )i∈N) having properties (i)′ and (ii)′

analogue to (i) and (ii) respectively, where gm : N→ N is increasing, gmβi : Ygm(i) →
Xi is a mapping, β ∈ Bmi , and

(iii) (∀j1)(∀i1 ≥ fm(j1))(∀j2 ≥ gm(i1)) · · · (∀jm ≥ fm(jm−1))

there exist mappings fmj1 ∈ Fmj1 , . . . , fmjn ∈ Fmjn , gmi1 ∈ Gmi1 ,. . . , gmin−1
∈ Gmin−1

such that the corresponding diagram

Xfm(j1) ← Xi1 ← Xfm(j2) ← · · · ← Xin−1 ← Xfm(jn)

↓ fmj1 ↑ gmi1 ↓ fmj2 ↑ gmin−1
↓ fmjn

Yj1 ← Ygm(i1) ← Yj2 ← · · · ← Ygm−1(in−1) ← Yjn

commutes up to homotopy.

Further, we may assume that fm, gm ≥ 1N. Clearly, for a fixed m = 2n + 1, the
conditions from above characterize condition Sn(X,Y ), n ∈ {0} ∪ N. In a quite
similar way one can characterize condition S+

n (X,Y ).
Our first goal is to describe the Sn- and S+

n -equivalence in terms of the category
Mm (Am), i.e. by the m-alikeness, for some (possible maximal) m ∈ N. Since
the S0-domination and S0-equivalence are trivial, we are beginning with the S+

0 -
domination. More general, in the case of the S+

n -domination the following fact
holds:

Lemma 1. Let n ∈ {0} ∪ N and let S+
n (Y ) ≤ S+

n (X). Then there exist an
Fn+1 ∈ Ln+1(X,Y ) and a Gn+1 ∈ Ln+1(Y ,X) such that Fn+1Gn+1 � 1Y n+1 in
Mn+1.

Proof. Let S+
n (Y ) ≤ S+

n (X), i.e. let condition S+
n (X,Y ) be fulfilled, n ∈ {0}∪

N. Then condition (D2n+2) gives rise of the appropriate homotopy commutative
diagrams. First, consider the simplest case n = 0. A typical diagram corresponding
to (D2) is given below.
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Namely, condition (D2) implies that, for every t1 there exists an s1, and for
every s′1 ≥ s1 there exists a t′1 ≥ t1, and there exist appropriate mappings f1
and g1. Thus, given an ordered pair j1 < j2, i.e. a j1 ∈ J(1), there exists a
nonempty 1-ladder fj1 : X → Y consisting of an existing mapping f1 : Xi′1 → Yj1
(t1 = j1, s1 = i′1) whenever i′1 < i2 = j2. Also, there exists a nonempty 1-ladder
gi1 : Y →X, i1 = j1, consisting of mappings gi = g1pii′1 : Xi → Yj′1 , i = i1, . . . , i

′
1,

(s′1 = s1 = i′1, t
′
1 = j′1), whenever i′1 < i2 = j2 and j′1 < j2, where a mapping

g1 : Yj′1 → Xi′1 exists by the assumption.

Otherwise, let those 1-ladders be empty. Let F1 = (fj1) and G1 = (gi1), j1, i1 ∈
J(1), be the families obtained by all such 1-ladders. Then, clearly, F1 : X → Y
and G1 : Y →X are free 1-hyperladders, i.e. F1 ∈ L1(X,Y ) and G1 ∈ L1(Y ,X).
By construction, given a j1, one may put j1 = j′1. Then, for every j2 > j1,
the homotopy condition for F1G1 and 1Y 1 obviously holds, i.e. F1G1 � 1Y 1 in
M1(Y ,Y ).
Let us now consider the general case. Let S+

n (Y ) ≤ S+
n (X), i.e. let condition

S+
n (X,Y ) be fulfilled, n > 0. Then the diagrams corresponding to condition

(D2n+2) give rise of mappings to obtain a pair of free (n+ 1)-hyperladders Fn+1 ∈
Ln+1(X,Y ), Gn+1 ∈ Ln+1(Y ,X). Indeed, given a jn+1 ∈ J(n+ 1), one can con-
struct the (n+ 1)-ladder fjn+1 : X → Y by means of the mappings fλ : Xi′

λ
→ Yjλ

(tλ = jλ, sλ = i′λ) whenever i′λ < iλ+1 = jλ+1, λ = 1, . . . , n + 1. Otherwise,
let the λ-block of fjn+1 be empty. Also, let the (n + 1)-ladder gin+1 : Y → X,
in+1 = jn+1, consist of the mappings gλ : Yj′

λ
→ Xi′1 (s′λ = sλ = i′1, t

′
λ = j′λ),

whenever i′λ < iλ+1 = jλ+1 and j′λ < jλ+1, λ = 1, . . . , n + 1. Otherwise, let the
λ-block of gin+1 be empty. (One can also use the characterization from above:
The nonempty λ-blocks are those that satisfy fn(jλ) < jλ+1 - for fjn+1, and
gnfn(jλ) < jλ+1 - for gin+1 , in+1 = jn+1.) Now, a straightforward verification
shows that Fn+1Gn+1 � 1Y n+1 in Mn+1(Y ,Y ). Namely, given an m ≤ n+ 1, for
every j1 put j1 = j′1, for every j2 > j1 put j2 = j′2, . . . , for every jm > jm−1 put
jm ≥ j′m. And then, for every choice of jn+2 > · · · > jm+1 > jm, the corresponding
(n + 1)-ladders fjn+1gjn+1 ∈ Fn+1Gn+1 and 1Y jn+1 ∈ 1Y n+1 are m-homotopic,
fjn+1gjn+1 �m 1Y jn+1 . �

Lemma 2. Let n ∈ N and Sn(Y ) ≤ Sn(X). Then there exist Fn, F ′
n ∈

Ln(X,Y ) and Gn, G
′
n ∈ Ln(Y ,X) such that FnGn � 1Y n and G′

nF
′
n � 1Xn in

Mn.
Proof. Let Sn(Y ) ≤ Sn(X), i.e. let condition Sn(Y ,X) be fulfilled, n ∈ N.

Then the corresponding condition is (D2n+1). We are applying the characteriza-
tion from above. Denote the appropriate index functions gn and fn by g and f
respectively. Let an in ∈ J(n) be given. We define the first blocks of gin and
fjn , jn = in, by means of mappings gni1 , g

n
fg(i1) and fng(i1), and the bonding map-

pings, respectively, whenever gfg(i1) < j2 = i2; otherwise, let their first blocks
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be empty. For every other λ = 2, . . . , n, we define the λ-blocks of gin and fjn

by means of mappings gnf(jλ) and fnjλ , and the bonding mappings, respectively,
whenever gf(jλ) < jλ+1 = iλ+1; otherwise, let their λ-blocks be empty. This con-
struction yields a Gn ∈ Ln(Y ,X) and an Fn ∈ Ln(X,Y ) such that FnGn � 1Y n

in Mn.

On the other hand, for every λ = 1, . . . , n− 1, we can define the λ-blocks of g′in

and f ′
jn , jn = in, by means of mappings gniλ and fng(iλ), and the bonding mappings,

respectively, whenever fg(iλ) < iλ+1 = jλ+1; otherwise, let these blocks be empty.
For λ = n, we define the n-blocks of gin and fjn by means of mappings gnin , gnfg(in)

and fng(in), and the bonding mappings, respectively, whenever gfg(in) < jn+1 =
in+1; otherwise, let their n-blocks be empty.

The construction yields a G′
n ∈ Ln(Y ,X) and an F ′

n ∈ Ln(X,Y ) such that
G′
nF

′
n � 1Xn inMn. �

Lemma 3. If S3n+1(Y ) ≤ S3n+1(X) (or S3n+1(X) ≤ S3n+1(Y )), n ∈ {0}∪N,
then X

2n+1↔ Y .
Proof. Let S3n+1(Y ) ≤ S3n+1(X), i.e. let condition S3n+1(Y ,X) be fulfilled,

n ∈ {0} ∪ N. Recall that the corresponding condition is (D6n+3). As before,
denote the appropriate index functions g3n+1 and f3n+1 by g and f respectively.
Consider a λ-block of an i2n+1 ∈ J(2n + 1), λ ∈ 1, . . . , 2n + 1. If λ is odd and
gfg(iλ) < jλ+1 = iλ+1, let gi2n+1 and fj2n+1 , j2n+1 = i2n+1, on these blocks
be defined by means of the existing mappings g3n+1

iλ
, g3n+1
fg(iλ) and f3n+1

g(iλ) , and the
bonding mappings, respectively; otherwise, let their odd λ-blocks be empty. If
λ is even and fgf(jλ) < iλ+1 = jλ+1, let gi2n+1 and fj2n+1 on these blocks be
defined by means of the existing mappings g3n+1

f(jλ) and f3n+1
jλ

, f3n+1
gf(jλ), and the bonding

mappings, respectively; otherwise, let their even λ-blocks be empty.
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This construction yields a pair of free (2n+1)-hyperladdersG2n+1 ∈ L2n+1(Y ,X),
F2n+1 ∈ L2n+1(X ,Y ). It is readily seen that F2n+1G2n+1 � 1Y 2n+1 and

G2n+1F2n+1 � 1X2n+2 inM2n+1 hold. It means that X
2n+1↔ Y . The proof in the

case S3n+1(X) ≤ S3n+1(Y ) is quite similar. �

Lemma 4. If S+
3n+2(Y ) ≤ S+

3n+2(X) (or S+
3n+2(X) ≤ S+

3n+2(Y )), n ∈ {0}∪N,

then X
2n+2↔ Y .

Proof. Let S+
3n+2(Y ) ≤ S+

3n+2(X), i.e. let condition S+
3n+2(X,Y ) be fulfilled,

n ∈ {0} ∪ N. Recall that the corresponding condition is (D6n+6). Let us apply the
above characterization. Denote the appropriate index functions f3n+2 and g3n+2 by
f and g respectively. Consider a λ-block of a j2n+2 ∈ J(2n+ 2), λ ∈ 1, . . . , 2n+ 2.
If λ is odd and fgf(jλ) < iλ+1 = jλ+1, let fj2n+2 and gi2n+2 , i2n+2 = j2n+2,
on these blocks be defined by means of the existing mappings f3n+2

jλ
, f3n+2

gf(jλ) and
g3n+2
f(jλ) , and the bonding mappings, respectively; otherwise, let their odd λ-blocks

be empty. If λ is even and gfg(iλ) < jλ+1 = iλ+1, let fj2n+2 and gi2n+2 on these
blocks be defined by means of the existing mappings f3n+2

g(iλ) and g3n+2
iλ

, g3n+2
fg(iλ), and

the bonding mappings, respectively; otherwise, let their even λ-blocks be empty.

In this way a pair of free (2n+2)-hyperladders F2n+2 ∈ L2n+2(X,Y ), G2n+2 ∈
L2n+2(Y ,X) is constructed. It is readily seen that G2n+2F2n+2 � 1X2n+2 and

F2n+2G2n+2 � 1Y 2n+2 in M2n+2 hold. Thus, X
2n+2↔ Y . The proof in the case

S+
3n+2(X) ≤ S+

3n+2(Y ) is quite similar. �

Remark 2. It seems that, in general circumstances, the estimation integers
m ∈ N of Mm in Lemmata 1. - 4. are the best possible (maximal).

The next theorems are the obvious consequences of the above lemmata.
Theorem 3. Let X and Y be compact ANR inverse sequences associated with

metric compacta X and Y respectively, and let n ∈ {0} ∪ N.

(i) If Sn(Y ) ≤ Sn(X) and n > 0, then there exist Fn, F ′
n ∈ An(X ,Y ) and

Gn, G
′
n ∈ An(Y ,X) such that FnGn � 1Y n and G′

nF
′
n � 1Xn in An.

(ii) If S3n+1(Y ) = S3n+1(X), then X
2n+1↔ Y .

Proof. The proof follows immediately by Lemmata 2. and 3. �

Theorem 4. Let X and Y be compact ANR inverse sequences associated with
metric compacta X and Y respectively, and let n ∈ {0} ∪ N.

(i) If S+
n (Y ) ≤ S+

n (X), then there exist an Fn+1 ∈ An+1(X ,Y ) and a Gn+1 ∈
An+1(Y ,X) such that Fn+1Gn+1 � 1Y n+1 in An+1.

(ii) If S+
3n+2(Y ) = S+

3n+2(X), then X
2n+2↔ Y .
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Proof. The proof follows immediately by Lemmata 1. and 4. �

Let us now consider the converse problem: How do the appropriate homotopy re-
lations (m-alikeness) in the category Am, m ∈ N, imply the Sn- and S+

n -domination
(the Sn- and S+

n -equivalence) of compacta?
Lemma 5. If there exist an Fn ∈ Mn(X,Y ) and a Gn ∈ Mn(Y ,X), n > 1,

such that FnGn � 1Y n, then S+
0 (Y ) ≤ S+

0 (X).
Proof. According to Theorem 1., it suffices to prove that F2G2 � 1Y 2 implies

S+
0 (Y ) ≤ S+

0 (X). By our assumption (see Definition 3.), for m = n = 2,

(∀t1)(∃t1 ≥ t1)(∀t2 > t1)(∃t2 ≥ t2)(∀t3 > t2) ft2gt2 � 1Y t2

holds. Now, given a j1 ∈ N, take t1 = j1 and put i1 = t1. Let i′1 ≥ i1. Take
t2 = i′1 (or any t2 > i′1 if t1 = t1 happens), and put j′1 = t2. Let t3 > t2. Then the
corresponding homotopy relation ft2gt2 � 1Y t2 yields a mapping f1 = f2

t1pf(t1)i1 :
Xi1 → Yt1 = Yj1 and a mapping g1 = pi′1f(t2)g

2
f(t2)

qgf(t2)j′1 : Yj′1 = Yt2 → Xi′1 such
that f1pi1i′1g1 � qj1j′1 .

Thus, condition S+
0 (X,Y ) holds, i.e. S+

0 (Y ) ≤ S+
0 (X). �

Lemma 6. If X
2n+1↔ Y in M2n+1, n ∈ {0} ∪ N, then Sn(Y ) = Sn(X).

Proof. If n = 0, the claim is trivial. Let n = 1, and let there exist an
F3 ∈ M3(X ,Y ) and a G3 ∈ M3(Y ,X) such that G3F3 � 1X3 and F3G3 � 1Y 3.
By the procedure similar to the one used in the proof of Lemma 5. (m = n = 3),
one obtains the following homotopy commutative diagram:
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More precisely,

(∀t1)(∃t1 ≥ t1)(∀t2 > t1)(∃t2 ≥ t2)
(∀t3 > t2)(∃t3 ≥ t3)(∀t4 > t3) ft3gt3 � 1Y t3

and

(∀s1)(∃s1 ≥ s1)(∀s2 > s1)(∃s2 ≥ s2)
(∀s3 > s2)(∃s3 ≥ s3)(∀s4 > s3) gs3fs3 � 1Xs3

Thus,

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1)
and there exist mappings f1, g1 and f2 (dotted arrows - compositions of the ap-
propriate fs and gt with the bonding mappings) such that the corresponding di-
agram commutes up to homotopy. It proves that condition S1(X,Y ) holds, i.e.
S1(X) ≤ S1(Y ). Since the assumptions are symmetric, S1(Y ) ≤ S1(X) also holds.
Thus, S1(Y ) = S1(X). If n > 1, the proof works in the same way. �

Lemma 7. If X
2n↔ Y in M2n, n ∈ N, then S+

n−1(Y ) = S+
n−1(X).

Proof. If n = 1, then by Definition 4. and Lemma 5., S+
0 (Y ) ≤ S+

0 (X)
and S+

0 (X) ≤ S+
0 (Y ). (We do not even need a unique pair F2, G2!) Hence,

S+
0 (Y ) = S+

0 (X). Let n > 1. First, consider the case n = 2. By applying the
both homotopy relations F4G4 � 1Y 4 and G4F4 � 1X4 simultaneously (starting
with F4G4 � 1Y 4), for m = n = 4, the following procedure is possible: Given a
j1, take t1 = s1 = j1 and put i1 = max{t1, s1}; let i′1 ≥ i1; take t2 = s2 = i′1, and
put j′1 = max{t2, s2}; let j2 ≥ j′1; take t3 = s3 = j2, and put i2 = max{t3, s3}; let
i′2 ≥ i2; take t4 = s4 = i′2, and put j′2 = max{t4, s4}, finally, let t5 = s5 > j′2.

Since ft4gt4 � 1Y t4 and gs4fs4 � 1Xs4 , s4 = t4, the needed mappings (dotted
arrows) exist such that condition S+

1 (X,Y ) holds, i.e. S+
1 (Y ) ≤ S+

1 (X). In the
same way, beginning with G4F4 � 1X4, one can prove that S+

1 (X) ≤ S+
1 (Y ) holds.

Therefore, S+
1 (Y ) = S+

1 (X). If n > 2, the proof is quite similar. �

The next theorems follow by the above Lemmata 6. and 7. respectively.
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Theorem 5. Let X and Y be metric compacta, and let n ∈ {0} ∪ N. If
X

2n+1↔ Y , then Sn(Y ) = Sn(X).

Theorem 6. Let X and Y be metric compacta, and let n ∈ N. If X 2n↔ Y , then
S+
n−1(Y ) = S+

n−1(X).
Corollary 1. Let X, Y and Z be metric compacta, and let n ∈ N, n ≥ 3. If

X
n↔ Y and Y n↔ Z, then X

[ n
3 ]↔ Z.

Proof. Let n ∈ N, n ≥ 3, and let X n↔ Y and Y
n↔ Z. If n is odd, i.e. n =

2k+1, k ∈ N, then Theorem 5. implies Sk(Y ) = Sk(X) and Sk(Z) = Sk(Y ). Thus,
Sk(Z) = Sk(X). By Theorem 3.(ii), Sk(Z) = Sk(X) implies X l↔ Z whenever
l ≤ [2k+1

3 ] = [n3 ]. If n is even, i.e. n = 2(k + 1), k ∈ N, then Theorem 6. implies
S+
k (Y ) = S+

k (X) and S+
k (Z) = S+

k (Y ). Thus, S+
k (Z) = S+

k (X). By Theorem 4.(ii),

S+
k (Z) = S+

k (X) implies X l↔ Z whenever l ≤ [2(k+1)
3 ] = [n3 ]. �

Remark 3. By Theorem 1., there are functors of An′ to An, n ≤ n′, keeping
the objects fixed and preserving the homotopy relation. One can easily construct a
functor of An to An′ keeping the objects fixed. For instance, let n = 1 and n′ = 2.
First, given a free 1-hyperladder F1 = (fj1) : X → Y , one has to construct a free 2-
hyperladder F2 = (fj2) : X → Y by means of F1. Let j2 = (j1, j2, j3) ∈ J(2). Put
t1 = j1 and t2 = j3, and consider the 1-ladder ft1 ∈ F1, where t1 = (t1, t2) ∈ J(1).
Now define the 2-ladder fj2 : X → Y by using the maximal admissible restriction of
ft1 to first and second block of j2. It is readily seen that this construction preserves
the identities and composition. If n′ > n > 1, the construction is quite similar
(but not unique). Let us observe that these functors do not preserve the homotopy
relation. Namely, if they would preserve it, then all the Sn- and S+

n -equivalences
would coincide, contradicting to the known examples.

5. The category characterization of the S-equivalence

Let us observe that there exists a sequential categoryM having the “coordinates”
all the categoriesMn, n ∈ N. That means, Ob(M) = Ob(Mn), for any n, i.e. the
objects are all inverse sequences of compacta, while

M(X ,Y ) = {F = (Fn) | Fn ∈Mn(X ,Y ) = Ln(X,Y ), n ∈ N}.

The composition is defined coordinatewise, and the identity on an X is 1X = (1Xn).
There also exists its full subcategoryA ⊆M determined by all the inverse sequences
of compact ANR’s (or compact polyhedra).

Let F = (Fn), F ′ = (F ′
n) ∈ M(X ,Y ). Then F is said to be homotopic

to F ′, denoted by F � F ′, provided Fn � F ′
n in Ln(X,Y ), for every n ∈ N.

Clearly, this homotopy relation is an equivalence relation on every set M(X,Y ).
The equivalence class [F ] of an F is denoted by F .

Theorem 7. Let X and Y be inverse sequences in cM. Then S(Y ) = S(X)
if and only if there exists a pair of morphisms F ∈M(X,Y ), G ∈M(Y ,X) such
that GF � 1X and FG � 1Y in M. Let X and Y be compact metric spaces, and
let X, Y be associated with X, Y respectively. Then S(Y ) = S(X) if and only if
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there exists a pair of morphisms F ∈ A(X,Y ), G ∈ A(Y ,X) such that GF � 1X

and FG � 1Y in A.
Proof. Recall that S(Y ) = S(X) is equivalent to Sn(Y ) = S(X)n (or

S+
n (Y ) = S+(X)n) for every n ∈ {0} ∪ N. Notice that one may formally re-

duce the statement to n ≥ n0, for an arbitrary n0. According to Definition 4.,
Lemmata 3. and 4. imply that, for every n ∈ N, there exists a pair of morphisms
Fn ∈ Mn(X,Y ), Gn ∈ Mn(Y ,X) such that GnFn � 1Xn and FnGn � 1Y n.
Therefore, there exist an F = (Fn) ∈ M(X,Y ) and a G = (Gn) ∈ M(Y ,X) such
that GF � 1X and FG � 1Y inM. Conversely, if GF � 1X and FG � 1Y inM,
then GnFn � 1Xn and FnGn � 1Y n in Mn, for every n ∈ N. Now, according to
Definition 4., Lemmata 6. and 7. imply Sn(Y ) = Sn(X), for every n ∈ N. Thus,
S(Y ) = S(X). The claim concerning compacta follows by Theorems 3. and 4. as
well as by Theorems 5. and 6. �

An elegant reformulation of Theorem 7. is as follows:
Corollary 2. Let X and Y be inverse sequences in cM. Then S(Y ) = S(X) if

and only if X ↔ Y , i.e. X is alike Y . Consequently, for a pair X, Y of compacta,
S(Y ) = S(X) if and only if X ↔ Y , i.e. X is alike Y .

Remark 4. (a) The established category characterization of the S-equivalence
is not full, i.e. it is not described by means of the isomorphisms. Thus, there is no
desired functor of the shape category to A.
(b) It is clear that, in general, the homotopy relation F � F ′ in M (A) is not
compatible with the category composition. Nevertheless, since the S-equivalence is
an equivalence relation, Theorem 7. (Corollary 2.) implies that the alikeness is an
equivalence relation too. Thus, the following useful fact holds: If F ∈ M(X,Y ),
G ∈ M(Y ,X), F ′ ∈M(Y ,Z) and G′ ∈M(Z,Y ) such that GF � 1X , FG � 1Y ,
G′F ′ � 1Y and F ′G′ � 1Z in M, then there exist an F ′′ ∈ M(X,Z) and a
G′′ ∈M(Z,X) such that G′′F ′′ � 1X and F ′′G′′ � 1Z in M.
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[4] S. Mardešić, Comparing fibres in a shape fibration, Glasnik Mat.
13(33)(1978), 317-333.
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[6] S. Mardešić, J. Segal, Shape Theory, North Holland, Amsterdam, 1982.
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