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ABSTRACT 

The latest progress in robotics includes the development of so-called soft robots. When it comes to 

actuation, most of the research in this field is strictly experimental, meaning that performance is 

observed a posteriori, on previously manufactured specimens. Although significant, results are often 

incidental and without a proper understanding of how the structure dictates properties of the soft 

robot. In this article, we propose a parametric modelling procedure of pneumatic soft actuator, in 

particular the Bellows-type actuator. Finite element method is used to analyse responses of the 

actuator to different topological changes in the structure. The initial structure of the actuator is 

represented with a set of parameters upon which simulation is performed. Results of these simulations 

give us insight into the nature of parameters, revealing which changes are desirable and which are not, 

depending on the different objectives set. By combining different parameters, the structure is 

improved in the sense of bending capability while stress in the material is even reduced. Particular 

attention was paid to the material modelling to achieve realistic results in the simulations. 

KEY WORDS 

soft robots, design, optimization, FEM analysis, 3D printing 

CLASSIFICATION 

ACM:  B.4.2 

JEL: Z00 

mailto:petar.curkovic@fsb.hr


Improving structural design of soft actuators using finite element method analysis 

491 

INTRODUCTION 

Soft robotics is a growing field that focus on constructing robots out of soft materials. The 

term soft refers to materials that share similar stiffness as materials found in natural 

organisms. While traditional robots are made of hard materials such as metals, with Young’s 

modulus in a range of 10
9
-10

12 
Pa, biological materials such as skin and muscles have 

Young’s modulus of much lower magnitude, typically around 104-109 
Pa [1]. Engineering 

materials such as silicones, rubber, hydrogels etc. fit well into this range which makes them 

considered as soft materials and capable for use in soft robotics. Today, additive technologies 

are advantageously used to manufacture very complex designs with unintuitive mechanical 

properties [2, 3]. 

Using materials with low stiffness means that they will be subjected to large strains during use. In 

case of soft robots, this property is desirable because it enables different applications such as 

grasping [4, 5], locomotion [6-9], and sensing [10-12]. Unlike conventional robots which are 

functional only in highly defined environment, soft robots provide much more flexibility when it 

comes to grasping objects. They conform to the shape, excluding possibility of concentrated 

pressure that can damage object which makes them safe for grasping soft and sensitive objects as well 

as objects which shape is originally unknown. Large deformations and ability to adapt brings to 

conclusion that soft robots can achieve theoretically infinite degrees of freedom with only one 

input [13]. 

Compatibility in stiffness between soft and natural materials makes them able to resemble 

movements of natural organisms. This property is highly exploited in the field of biomimetics where 

soft robots proved successful to mimic locomotion of various animals, e.g.: fish [6], worm [7], 

snake [8], octopus [9], artificial muscles [14] etc. These extraordinary movements require new 

sensors that can follow the large deformations of a soft body. A breakthrough in this field is 

already made with so called soft sensors [10, 12]. Absence of rigid component makes soft robots 

inherently safe for interactions with humans. In the area of medical robotics, soft robots are used 

for wearable devices that improve rehabilitation process for patients with musculoskeletal 

diseases such as arthritis, cerebral palsy, Parkinson’s disease, and stroke [15, 16]. Continuum 

kinematics and ability to navigate through narrow spaces without damaging the surrounding 

environment makes them ideal candidates for minimally invasive surgery, particularly in the field 

of endoscopy [17]. Appropriate control algorithms for efficient path planning of such robots, when 

sharing environment with other moveable objects, should be developed and tested, similarly 

to the classical robotic field [18-20]. Additionally, there is a lack of formal modelling of in 

soft robotic literature, although some important findings have been made recently [21-25]. 

Soft robots can be actuated in many different ways: using cables or shape memory 

alloys [26, 27], electrically using electroactive polymers [28] or pressure driven, using 

pneumatics [12, 29, 30], or hydraulics [31]. Although there are many different types within 

family of soft pneumatic actuators [32], we focus on Bellows-type [5] of soft pneumatic 

networks. The structure of these actuators is made out of connected chambers which, once 

subjected to pressure, result in bending of entire actuator. Small chambers require less volume 

and less pressure for actuation, making them fast and efficient [33]. When compared to tube 

shaped actuators, Bellows type experience lower strain which suits them better for less 

flexible materials such as TPU. Since the whole structure is modular, by selective actuating of 

single cells, specific motions can be achieved. Bellow type of actuators consist of only one part 

which makes them suitable for 3D printing or casting. 

Despite large popularity of research in the field of soft pneumatic actuators, very few of them 

are occupied with strictly formal modelling. Unlike conventional robots whose links are of 
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correct form, structure of soft robots is often too complex to be expressed by mathematical 

equations, so different approach must be chosen. Additional problems arise because of highly 

nonlinear material behaviour and large strains. In this article we present a procedure for improving 

structure of Bellows-type of soft pneumatic actuators, using finite element analysis (FEA). 

MATERIALS AND MODELLING 

Soft pneumatic networks are usually made out of two materials: silicone rubber and 

thermoplastic polyurethane (TPU). The first one shows more flexibility and is more often 

used as material for pneumatic actuators but can be fabricated only by casting. Since we plan 

to use direct 3D printing process, we will rely on TPU. This material belongs to the class of 

thermoplastic elastomers that shares both thermoplastic and elastomeric properties. 

Combination of properties gives them ability to be stretched to moderate elongations and at 

the same time to be processed by melting. From many available TPU filaments, we have 

chosen to use NinjaFlex because it is most widely known and commercially available. As it 

can be seen from Table 1, it offers great flexibility and tensile strength. [34].  

Table 1. Basic mechanical parameter for NinjaFlex filament, given by the manufacturer. 
Mechanical property Value 

Yield strength 4MPa 

Youngs modulus 12MPa 

Tensile strength, ultimate  26MPa 

Elongation at break 660 % 

We begin improving process with designing initial structure.  

 

 

Figure 1. Testing structure. 

Three requirements have been chosen for design of actuator: (1) it should withstand maximum 

pressure of 1 bar, (2) maximum stress should not be higher than yield strength of material which is 

4MPa, (3) cross section should not exceed 20x20 mm. This last requirement is added so that 

dimension of actuator approximately fit dimensions of human finger. The 3D model is made 

in CATIA using parametric design which allows instantaneous redefinition of complete 

structure with change of a single parameter. Initial design is displayed in Figure 1. Entire 

structure can be described with a total of 12 parameters whose initial value are given in Table 2. 
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Length and Offset are not meant to be changed while other 10 parameters will be, one by one, 

subjected to FEM analysis. 

For any kind of structural analysis, it is necessary to have an accurate material model. In the 

most basic form, it implies knowing relations between stress and strain. Most common 

engineering materials such as metals show linear elasticity below yield strength which makes 

them easy to model according to Hooke’s law, using only Young modulus as a parameter. 

Table 2. Prototype values: 1- Initial structure; 2 – Improved structure. 

Parameter Prototype 1 [mm] Prototype 2 [mm] 

Bubble Width 20 20 

Bubble Height 20 20 

Bubble Thickness 1,5 1,2 

Tendon Width 12 6 

Tendon Height 5 6 

Tendon Thickness 1,5 1,6 

Chamber Length 2 6 

Bubble Distance  1,5 1,6 

Inner Filet 0,5 0,7 

Outer Fillet 1,5 1,9 

Length 50 50 

Offset 5 5 

On the other hand, rubberlike materials, such as TPU belong to the class of hyperelastic 

materials which exhibit nonlinear stress-strain behaviour even in the zone below yield 

strength. In this case Youngs modulus can be relevant only for near-zero values of stress and strain 

and since we aim to achieve large deformations, it cannot apply. Furthermore, there are 

numerous factors that affect properties of polymers, such as molecular weight, processing, 

etc. meaning that same material can have differing properties within different manufacturers. 

For this reasons, only reliable way to determine needed relations between stress and strain is to 

obtain them as a result of tensile testing for exact material. Most filament manufacturers do not 

offer this data and situation is no different for NinjaFlex. Luckily, a work of T. Reppel and K. 

Weinberg [35] is all about determining stress-strain relations of a 3D printed NinjaFlex so we 

will use data from their experiments. 

Defining a hyperelastic material in Abaqus can be done in two ways. First, by entering table 

data of tensile tests. Up to 4 different test data can be entered: uniaxial, biaxial, planar and 

volumetric. For an incompressible isotropic material, uniaxial test data is often enough to get 

decent results, although Abaqus documentation recommends combining multiple tests for 

better accuracy [36]. Secondly, by setting a strain energy density function with necessary 

parameters. User can select between several different formulations but we focus on Ogden 

model since it generates the best fit [35, 37]. 

Ogden model is a function that describes nonlinear stress-strain behaviour of rubberlike 

solids. Essentially it is a compact way to approximate results obtained from uniaxial test, 

using only couple of parameters that define material. Since we do not have tensile test data at 

disposal, for our simulation, we will use parameters that T. Reppel and K. Weinberg 

calculated in [35]. Nevertheless, for completeness of this article, procedure of acquiring these 

parameters is described in following section. 

Ogden’s formulation express strain energy density W in terms of principal stretches 

𝜆𝑗;  𝑗 = 1, 2, 3. 



P. Ćurković and A. Jambrečić 

494 

    1 2 3 1 2 3

1

, 3, p p p

N
p

p p

W
  

     


    . (1) 

where W represents strain energy density, N represents strain energy order while 𝜇𝑃 and 𝛼𝑝 are 

material parameters. Next step is to make reasonable assumptions that will simplify (1). 

Rubberlike materials experience very little compressibility compared to their shear flexibility so 

in applications where material is not highly confined to small spaces, assumption of 

incompressibility gives satisfactory results [36]. For incompressible materials, constraint (2) 

must be satisfied.  

 
1 2 3 1    . (2) 

Although rubberlike materials generally show isotropic properties, because of our production 

method, 3D printing, one has to be careful. As it is shown in [37], using diagonal infill with 

one line of shell brings us close to isotropic properties. Under assumption of isotropic 

material and uniaxial tensile stress, principal stretches can be expressed as:  

 1 2 3,       . (3) 

From (2) and (3) we get relation between stretches: 
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Inserting (4) into (1) gives us Ogden model for incompressible isotropic material under 

uniaxial stress: 
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Finally, partial derivation of stain energy density with respect to stretch give us stress strain 

relation for uniaxial case [26]: 
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By combining test data, (6) and numerical algorithms for curve fitting we can derive constants 𝜇𝑃 

and 𝛼𝑝  of hyperelastic material. Usual practice is to start curve fitting with strain energy 

order N = 1 and gradually rise it if results are not satisfactory. Hill’s criterion should apply to 

ensure material stability [38]: 

 0, 1, ,p p p N     . (7) 

Ogden model in Abaqus is defined slightly different than (1) so after calculating 𝜇𝑃 and 𝛼𝑝, 

adjustment needs to be made.  

 
2

p p


 
 . (8) 

In the simulations presented in this article, we used second order Ogden with parameters as 

given in Table 3. Parameters D1 and D2 are left 0 for incompressible materials [36]. Resulting 

stress-strain curve is shown on Figure 2.  

Table 3. Parameters for Ogden model of NinjaFlex, as defined in Abaqus. 

𝜇1, Pa 𝛼1 𝜇2, Pa 𝛼2 𝐷1 𝐷2 

198 250 3,05 3 277 800 –0,0054 0 0 
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Due to high strains, “geometrically nonlinear analyses” option must be selected in Abaqus. 

Meshing is performed using quadratic tetrahedral hybrid elements (C3D10H). Hybrid 

formulation is recommended for incompressible or close to incompressible materials. Seed 

size is set to 1mm and lowered if needed, ensuring that there is always two layers of elements 

along structure walls. Above setting typically generated around 50 000 elements. Every 

model was subjected to pressure of 1 bar. 

 

Figure 2. Stress-Strain curve for NinjaFlex, as a result of parameters from Table 3. 

RESULTS AND CONCLUSIONS 

With respect of material and above-mentioned settings, FEM analysis was performed 11 

times. First, to get result for Prototype 1 which serves as a reference, and then for every other 

parameter separately. Changing only one parameter at the time allows us to observe its 

impact on the structure. Two features were measured – maximum stress in the volume, and 

bending angle of the whole structure. Increase in bending angle is considered positive change 

while increase of maximum stress is considered negative. These values for the Prototype 1 

are: Bending angle: 220
º
, and Maximum stress is 4.547 MPa., Results of the initial simulation 

and parametric study are illustrated on Figure 3.  

From Table 4 we can observe that some parameters have strong influence while others are 

less significant. Usually positive impact on one feature follows negative impact on other but 

there are also features that have both positive and both negative impacts. 

Table 4. Impact of parameters and comparison with Prototype 1. 

Parameter 
Initial Value, 

 mm 
Tested value, 

mm 
Bending 

angle 
Max. Stress, MPa 

Bubble Width 20 16 100° (-54,3 %) 3,150 (-30,7 %) 

Bubble Height 20 16 175° (-20,5 %) 4,142 (-8,9 %) 

Bubble Thickness 1,5 1,2 335° (+52,3 %) 5,211 (+14,6 %) 

Chamber Length 2 1,2 240° (+9,1 %) 4,720 (+3,8 %) 

Bubble Distance 1,5 1 230° (+4,5 %) 4,544 (-0,1 %) 

Tendon Width 12 6 290° (+31,8 %) 3,607 (-20,7 %) 

Tendon Height 5 4 230° (+4,5 %) 4,713 (+3,7 %) 

Tendon Thickness 1,5 1,2 230° (+4,5 %) 5,678 (+24,9 %) 

Inner Fillet 0,5 1 200° (-9,1 %) 2,742 (-39,7 %) 

Outer Fillet 1,5 2 220° (+0,0 %) 4,530 (-0,4 %) 
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More often is that one parameter has bigger impact (positive or negative) on one feature and less 

on the other. Idea is to always choose properties that have more pronounced positive impact. 

From what we learned in Table 4, a new set of parameters is defined (Table 2, Column 3 – 

Prototype 2. Reducing Bubble Width and Bubble Height proved to have a strong negative 

effect on bending angle while decrease in stress less notable. Increasing these dimensions 

could make an opposite effect but because of our requirement on the cross section, these 

dimensions remained the same. Reducing Bubble Thickness has major impact on increase of 

bending angle so this value is reduced to 1,2 mm which is a theoretical minimum bounded 

by the nozzle  

 

Figure 3. Results of FEM analysis: Prototype 1 compared to a set of design modifications. 

diameter, of the 3D printer used (Prusa I3). Since we plan to use 3D printer, we have to think 

about layers when deciding about the thickness property. According to [39], thickness should 

be in multiples of the nozzle size and there should be at least three layers to ensure 

airtightness. Since we plan to use 0,4 mm nozzle, we will stick to values of 1,2 mm and 1,6 

mm when choosing thickness property. Dimensions that are longitudinal, Chamber Length 

and Bubble Distance do not have strong effects so they are decreased in order to fit another 

two bubbles on the structure. Higher density of bubbles will increase the bending angle. 

Decreasing Tendon Width has the most positive impact of all properties – at the same time it 

increases bending angle and decreases maximum stress. Since we decreased it to 6 mm, we 

increased Tendon Height, whose impact is insignificant, to ensure good air flow. Reducing 

Tendon Thickness proved to increase stress in material so to achieve an opposite effect we 

increased this value to 1,6 mm. Increase of Inner Fillet has the strongest impact on reducing 

stress so it is set to the maximum value – half of the chamber length. 

After FEM analysis was run for Prototype 2, we can observe large increase of bending angle. 

Overlap is allowed to measure this increase. Bending angle increased almost double: +90,9 % 

while stress is lowered for –13,2 %. 

By observing a detail view, Figure 4, we noticed that maximum stress values are always 

concentrated on the bottom wall, underneath the chamber. This is also a point where largest 

Prototype 1 

Bubble 
Width 

16 mm 

Bubble 

Height 

16 mm 
Bubble 

Thickness 

1,2 mm 

Bubble 

Length 

1,2 mm 

Bubble 

Distance 

1 mm 

Tendon 
Width 

6 mm 
Tendon 

Height 

4 mm 

Tendon 

Thickness 

1,2 mm 

Inner 

Fillet 

1 mm 

Outer 

Fillet 

2 mm 



Improving structural design of soft actuators using finite element method analysis 

497 

 

 

Figure 4. FEM analysis for parameters from Table 2, Prototype 2. Detail view on right, arrow 

pointing to an area with maximum stress in material. 

 

 

Figure 5. Small indent as a final improvement and results from FEM analysis. 

strains are expected and consequently a point where structure will break most likely. By 

removing material from this point, structure is able to bend more freely resulting in lower 

strains. 

As it can be seen on Figure 5, making an indent on the place of maximum stress improved 

our structure even more. When compared to Prototype 1, bending angle is increased by 

+113,6 % while stress is lowered by –18,8 %. 

Final confirmation of the approach presented in the study will be upon conduction a thorough 

experimental validation for the specimens proposed. In this article, the authors have tried to 

give important aspects to consider when trying to improve the structure of a soft actuator based 

on the Bellows structure. Some of the correlations between different parameters and their impact 

to the actuators’ behaviour are revealed. It would be interesting to formally describe the 

dependency between the parameters and the response of the actuator, in order to reveal the 

nature of different parameters. This requires additional experimental validation and will be 

included in our future research. and These actuators are becoming largely present in 

mainstream robotics and will be even more in the future, so insight in their structural 

properties is essential.  
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