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Abstract 
Electrochemical oxidation of paracetamol on boron-doped diamond (BDD) anode has been 
studied by cyclic voltammetry and preparative electrolysis. Quantification of paracetamol 
during electrolysis has been mainly realized by differential pulse voltammetry technique in 
the Britton-Robinson buffer solutions used as the supporting electrolyte. Various 
parameters such as current intensity, nature of the supporting electrolyte, temperature, and 
initial concentration of paracetamol have been investigated. The electrochemical 
characterization by the outer sphere Fe(III)/Fe(II) redox couple has also been performed, 
showing the metallic character of BDD electrode. The obtained linear dependency of the 
oxidation peak current intensity and paracetamol concentration indicates that BDD 
electrode can be used as an electrochemical sensor for the detection and quantification of 
paracetamol. The investigation of paracetamol degradation during preparative electrolysis 
showed that: (i) the degradation rate of paracetamol increases with increase of current 
intensity applied; (ii) for the initial concentrations of 10, 6 and 1 mM of paracetamol, its 
oxidation rate reaches 60, 78 and 99 % respectively, after 1 h of electrolysis in 0.3 M H2SO4 
(pH 0.6) at applied current density of 70 mA cm-2; (iii) at temperatures of electrolyte solution 
of 28, 55 and 75 °C, paracetamol oxidation rate reached 85, 92 and 97 % respectively, after 
2 h at applied current density of 70 mA cm-2. From the investigation of the effect of pH value 
of electrolyte solution, it appears that oxidation of paracetamol is more favorable in acidic 
solution at pH 3 than solutions of higher pH values. 

Keywords 
Boron-doped diamond; paracetamol; electrolysis; voltammetry; oxidation; degradation. 

 

http://dx.doi.org/10.5599/jese.933
http://dx.doi.org/10.5599/jese.932
http://www.jese-online.org/
mailto:ouatlassine@yahoo.fr


J. Electrochem. Sci. Eng. 11(2) (2021) 71-86 OXIDATION OF PARACETAMOL ON B-DOPED DIAMOND ELECTRODE. 

72  

Introduction 

Paracetamol, known also as acetaminophen, is one of the most commonly used analgesics (pain 

relievers) and antipyretics (anti-fever) for humans today [1-3]. It is present in Doliprane, 

Efferalgan or Di-antalvic, which are the most sold drugs in pharmacies. Efficacy, good tolerance, 

pharmacokinetic profile, cost and acceptability make paracetamol to be the first-line drug for 

treatment of mild to moderate pains. Paracetamol is generally available in 500 mg tablets, and also 

in the soluble form (sachets, effervescent tablets), or liquid preparations for young children [2,4]. 

The intensive use of paracetamol leads to its presence in the environment, and more specifically in 

the surrounding waters. This makes a real problem for humans and other living things, since 

paracetamol breaks down into very toxic metabolites [5-8]. A general awareness is therefore 

necessary in order to propose effective methods for detection, quantification and decontaminating 

wastewaters containing paracetamol.  

According to the literature [9-12], physical, biological and chemical methods are usually used in 

wastewaters treatment. Thus, activated carbon is widely used to treat organic and inorganic 

pollutants [13,14] and also, to immobilize metal ions such as copper, zinc, cadmium or chromium 

[15]. The main limitation of such treatment lies in the fact that in any case, pollutants are not 

degraded, but concentrated on the activated carbon which must be subsequently treated in order 

to regenerate it. Biological methods for wastewater treatment are based on the use of 

microorganisms under aerobic or anaerobic conditions [16]. Faced with toxic compounds that are 

difficult to biodegrade, however, these microorganisms proved to be rather inefficient. 

Due to shortcomings of these treatment methods, over the past decade much research was 

focused on the new class of oxidation techniques, known as the advanced oxidation processes (POA). 

POA is designed to remove organic and inorganic materials in water and wastewater by the oxidation 

process. This technology has already shown its effectiveness in the treatment of toxic and biologically 

refractory organic pollutants. Along to all these treatments, the electrochemical treatment must also 

be considered.  Compared to other conventional processes such as Fenton process for water and 

wastewater treatment and processes using ultraviolet radiation [17-19], the electrochemical 

treatment has three major advantages: high efficiency, rapid reaction, and easy implementation. In 

addition, electrochemical oxidation processes consume few chemicals and produce no waste. 

According to the literature, the electrochemical method has shown its effectiveness in the 

treatment of wastewater containing organic pollutants [20-22]. The effectiveness of the electro-

chemical treatment depends strongly on the properties of electrode used as the anode in the case 

of electrolysis [10,23,24]. In this work, the boron-doped diamond (BDD) electrode is used. BDD has 

remarkable optical, electronic, and mechanical qualities, thus showing a great aptitude for various 

applications in different fields. According to literature, BDD can allow complete mineralization of 

organic compounds [21,24]. 

Electrochemical methods such as square wave voltammetry (SWV), cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV) have already been used for the determination of concentrations 

of organic compounds [1,25-29]. Also, it was already shown that DPV provides good limit of detection 

for paracetamol using boron-doped diamond electrode [1,25]. In this study, the follow-up of 

paracetamol concentration during its oxidation will be performed by DPV technique, using BDD 

electrode as the sensor. 

https://en.wikipedia.org/wiki/Wastewater
https://en.wikipedia.org/wiki/Oxidation
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Experimental  

Electrochemical measurements  

The voltammetric measurements were performed using an Autolab PGSTAT 20 (Ecochemie) 

connected to a potentiostat equipped with USB electrochemical interface. This system is connected 

to a three-electrode single compartment glass cell and a computer for data storage and processing. 

GPES 4 software was employed to get voltammograms. The glass electrochemical cell consisted of 

saturated calomel electrode (SCE) and platinum wire as the reference and counter electrode, 

respectively. BDD electrode with a surface of 1 cm2 was used as the working electrode. All pH values 

were measured with a pH meter. All potential values are reported against standard hydrogen 

electrode (SHE), calculated according to the following relation:  

ESHE = ESCE + 0.25 (1) 

Electrodes 

Boron doped diamond (BDD) electrodes were prepared by hot-filament chemical vapor 

deposition (HF-CVD) on low resistivity (1-3 mΩ cm) p-Si wafers (siltronix, diameter 10 cm, 

thickness 0.5 mm). The process gas was a mixture of 1 % CH4 in H2 containing trimethylboron. Film 

was grown at a rate of 0.24 μm h-1. The film thickness was about 1 μm.  

Chemicals  

Paracetamol was purchased from a pharmacy in Abidjan. All chemicals used in the experiments 

were reagent grade or higher, and used as received without any further purification. Sulfuric 

acid (96 %), iron (II) sulfate (99 %) and sodium hydroxide (98 %) were obtained from PanReac 

Quimica Sau. Orthophosphoric acid (85 %) and boric acid (99. 5 %) were obtained from Emsure 

brand. Ammonium iron (III) sulfate (99 %) was obtained from Merck, while acetic acid (99.7 %) was 

obtained from Emparta. The working solutions for voltammetric investigations were prepared by 

dilution of the stock solution. All solutions were protected from light and used within 24 h to avoid 

decomposition. Distilled water was used to prepare supporting electrolytes. 

Britton-Robinson buffer solution preparation  

Britton-Robinson buffer solution, 0.04 M, was prepared in order to maintain pH value of the 

samples taken during the electrolysis within a very restricted range. For this purpose, acetic acid, 

orthophosphoric acid and boric acid were used in the respective amounts of 4.6 mL, 5.4 mL, and 

4.9713 g per 2 L of solution 30. 

The preparation of this buffer solution was done as follows: a certain amount of water in a glass 

beaker was heated to a temperature of around 70 °C using a water bath. Then, boric acid was added 

into heated water and left to cool. The cooled solution of boric acid was transferred into 2000 mL 

flask containing above-mentioned quantities of acetic acid and orthophosphoric acid, filled with 

distilled water to mark and homogenized. In 99 mL of this Britton-Robinson buffer solution, 1 mL of 

paracetamol samples taken from electrolysis at pre-established time intervals were added. After 

homogenization of solution, differential pulse voltammograms (DPVs) were recorded using 

electrochemically pretreated BDD electrode, in order to determine paracetamol concentrations. 

Preparative electrolysis 

For preparative electrolysis, BDD was used as the anode and zirconium plate as the cathode. 

These two electrodes of 16 cm2 each were separated by 2 cm, what delimited the cell-volume to 

32 cm3. The solution was recirculated using a mini peristaltic pump of the Watson Marlow 505U 

http://dx.doi.org/10.5599/jese.907
https://en.wikipedia.org/wiki/Ammonium_iron(III)_sulfate
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type. The flow rate of the solution was 2.7 mL s-1. Fabrimex 141 type voltage generator allowed to 

keep the current constant during the electrolysis. Batch mode setup was used for electrolysis.  

Setup for analytical measurements  

Prior to the application of differential pulse voltammetry, BDD electrode was electrochemically 

pretreated. Cyclic voltammetry was applied by seven cycles aiming to purify BDD in 0.5 M sulfuric acid 

with previously cathodically pretreated BDD electrode at −2 V during 90 s [31]. Well cleaned electrode 

was immersed in the Britton-Robinson buffer solution without paracetamol and anodically pretreated 

at 2 V for 15 s. Finally, the pretreated BDD electrode was used to analyze the content of paracetamol 

using DPV technique in different supporting electrolytes after homogenization via a magnetic bar 

coupled to a magnetic stirrer. DPV curves were obtained under the following conditions: Ep = -2 V; 

tp = 90 s; modulation time ≥ 0.05 s; potential scan rate = 70 mV s-1. 

For the determination of limits of detection (LOD) and quantification (LOQ) of paracetamol, the 

following equations were used:  

LOD = 3 SD / b (2) 

LOQ = 10 SD / b   (3) 

where SD is the standard deviation of blank current signals and b is the slope of the calibration 

curve [26]. 

Results and discussion  

Electrochemical characterization of BDD electrode 

In order to investigate the electrochemical behavior of the prepared BDD electrode, Fe(III)/Fe(II) 

redox couple was used, and the influence of its concentration (20-50 mM) on the electrode response 

was studied in 0.3 M sulfuric acid solution as the supporting electrolyte. The obtained results are 

presented in Figure 1(a), showing oxidation peak in the forward potential scan and reduction peak 

in the backward potential scan. The anodic and cathodic peaks correspond to the oxidation and 

reduction of the redox couple considered. The peaks observed are typical for electrodes that are 

good electronic conductors [24,31,32]. 
 

 
Figure 1. (a) Cyclic voltammetry (50 mV/s) of BDD electrode at different concentrations of Fe(III)/Fe(II) redox 

couple in 0.3 M H2SO4; (b) anodic and cathodic peak current intensity against Fe(III)/Fe(II) concentration;  
T = 25 °C 

Figure 1(a) also shows that the current intensities of the anodic and cathodic peak increase in 

absolute values with increase of the concentration of redox species. Anodic and cathodic peak 

current intensities plotted as a function of redox species concentration, led to straight lines passing 
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through the origin of the axes (Figure 1(b)). These results show that oxidation and reduction 

reactions of redox species are responsible for the appearance of these peaks. The results are similar 

to that obtained with good electronic conductor electrodes such metallic electrodes. Thus, the 

metallic character of the used BDD electrode is generally approved [24,31]. The proportionality 

observed between the current intensity and concentration of the redox couple studied suggests that 

BDD electrode can principally be used as an electrochemical sensor for detection and quantification 

of paracetamol, and possibly other pharmaceutical organics in aqueous solutions [1,31]. 

Cyclic voltammetry investigations were carried out at several potential scan rates for an 

equimolar concentration (50 mM) of the redox couple Fe(III)/Fe(II). Figure 2(a) shows the obtained 

cyclic voltammograms. In this figure, the current intensities of the anode and cathode peak increase 

in absolute values with increase of potential scan rates. In Figure 2(b), the anodic and cathodic peak 

current intensities have been represented as a function of the square root of the potential scan rate. 

It appears that the peak current intensities are proportional to the square root of the potential scan 

rates, since straight lines passing through the origin of the axes were obtained. This confirms the 

quasi-reversible nature of Fe(III)/Fe(II) redox reaction on BDD, what has already been observed 

previously in our laboratory [24,31]. The linearity between the peak current intensity and the square 

root of the potential scan rates indicates that the oxidation-reduction kinetics at the electrode is 

diffusion-controlled [24]. 

 

 
 E / V vs. SHE v½ / mV½ s-½ 

Figure 2. (a) Cyclic voltammetry of Fe(III)/Fe(II) redox couple (50 mM) in 0.3 M H2SO4 on BDD at 
different potential scan rates; (b) anodic and cathodic peak current intensities against square 

root of the scan rate; T = 25 °C 

Cyclic voltammetry of paracetamol oxidation   

The electrochemical behavior of BDD in 0.3 M sulfuric acid solution in the presence of several 

paracetamol concentrations at the potential scan rate of 100 mV s-1 is presented in Figure 3(a). This 

figure shows increase in the current values around 0.9 V, followed by an irreversible oxidation peak 

at 1.05 V. This peak characterizes the anodic oxidation of paracetamol.  

Figure 3(a) shows that as the paracetamol concentration increases, the current intensity of the 

oxidation peak also increases. This indicates the direct oxidation of paracetamol on BDD electrode. 

The plot of the oxidation peak current intensity against the concentration of paracetamol shown in 

Figure 3(b), led to the straight line passing through the origin of the axes. The slope of this straight 

line is about 0.4 mA mol-1, with determination coefficient of 0.99. Hence, BDD electrode can be a 

good candidate for detection and quantification of paracetamol.   

http://dx.doi.org/10.5599/jese.907
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Figure 3. (a) Cyclic voltammograms (100 mV s-1) of BDD electrode at different concentrations of 

paracetamol in 0.3 M H2SO4 solution; (b) anodic peak current intensity as a function of paracetamol 
concentration; T = 25 °C 

Effect of the supporting medium 

In order to determine the ideal supporting electrolyte for the quantification of paracetamol 

during electrolysis, calibration curves of paracetamol in sulfuric acid, orthophosphoric acid and 

Britton-Robinson buffer solutions were carried out. 

Figure 4(a) represents DPV curves for paracetamol concentrations varying from 2 to 91 µM in 

0.3 M sulfuric acid solution. It can be noticed in Figure 4(a) that the peak potential values of 

paracetamol oxidation are approximately equal, whereas the intensity of the oxidation peak current 

increases with the increase of paracetamol concentration. In Figure 4(b), the peak current intensity 

is plotted against the concentration of paracetamol, showing two linear regions. One linear region 

is characteristic for low concentrations of paracetamol below 10 μM, and the other for 

concentrations of paracetamol higher than 10 μM. In the insert of Figure 4(b), the straight line 

determined in the low concentration range of paracetamol is shown. Its equation was evaluated as: 

I =2.4698 C + 1.3764 with determination coefficient of R2 = 0.972. The limits of detection and 

quantification were determined using equations (2) and (3), and the obtained values LOD = 0.37 μM 

and LOQ= 1.23 μM. 
 

 
Figure 4. (a) Differential pulse voltammograms of BDD electrode for different concentrations of 

paracetamol in 0.3 M H2SO4; (b) current intensity calibration curve as a function of 
paracetamol concentration; T = 25 °C 

Orthophosphoric acid (0.3 M) was also chosen as the supporting electrolyte containing several 

concentrations of paracetamol. The obtained DPV results are shown in Figure 5(a). Here also, the 
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current intensity of paracetamol oxidation peak increases with the increase of concentration of 

paracetamol. Figure 5(b) presents the peak current intensity as a function of paracetamol 

concentration. The obtained results are quite similar to these obtained in sulfuric acid. In 

orthophosphoric acid supporting electrolyte, two linear regions, one for low concentrations and the 

other for high concentrations of paracetamol, were also obtained. In the low paracetamol 

concentration range (insert of Figure 5(b)), the straight line is characterized by the following equation: 

I = 1.9232 C + 4.6364 with R2 = 0.997. In orthophosphoric acid supporting electrolyte containing 

paracetamol, LOD and LOQ of paracetamol were estimated as 0.47 and 1.57 µM, respectively. 
 

 
Figure 5. (a) Differential pulse voltammograms of BDD electrode for different concentrations of 
paracetamol in 0.3 M H3PO4; (b) current intensity calibration curve as a function of paracetamol 

concentration; T = 25 oC 

Figure 6(a) highlights DPV curves obtained in 0.04 M Britton-Robinson buffer solution.  
 

 
Figure 6. (a) Differential pulse voltammograms of BDD electrode for different concentrations of 
paracetamol in 0.04 M Britton-Robinson buffer solution; (b) current intensity calibration curve 

as a function of paracetamol concentration; T = 25 oC 

Here also, the oxidation peak potential values associated with each concentration of paracetamol 

are equal, while the peak current intensity increases linearly with paracetamol concentration 

(Figure 6(b)). This straight line passes through the origin of the axes and its equation is evaluated as: 

I = 0.8615 C + 2.7177 with determination coefficient of 0.999. LOD and LOQ values for paracetamol 

in Britton-Robinson buffer solution were calculated as 0.167 and 0.559 μM, respectively. 

http://dx.doi.org/10.5599/jese.907
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From the results presented in Figures 4-6, it appears that the Britton-Robinson buffer solution 

leads to the best calibration curve, which explores the highest paracetamol concentration range 

(2.0-130.66 μM) and shows the lowest LOD and LOQ values (0.167 and 0.559 μM). As have already 

been shown for electroanalytical determinations of some other drugs [33,34], Britton-Robinson 

buffer solution is confirmed also in our experimental conditions as the most suitable solution for 

monitoring concentrations of paracetamol during its electrolysis. 

Up to now, paracetamol was determined by various electrochemical methods using various 

electrode materials. A comparison of our findings with some literature data [31,35-44] is presented 

in Table 1.  

Data in Table 1 clearly show that the detection limit of 0.167 M determined in this work is in 

accordance or even better than other literature data, indicating that our determination method 

could be a reliable method for the determination not only of paracetamol, but also traces of some 

other organic pharmaceutical compounds present in wastewaters. In further experiments, this 

method will be used to follow the evolution of paracetamol concentration during its degradation. 

Table 1. Efficiency of some modified electrodes in determination of paracetamol by various 
 voltametric methods 

Electrode Method 
Linear working range of para-

cetamol concentration, μM 
Detection limit of para-

cetamol concentration, μM 
Reference 

PANI/MWCNT/GCE SWV 1 - 100 0.25 [35] 
C60/GCE DPV 50 - 1500 5 [36] 

Nafion/TiO2-graphene/GCE DPV 1 - 100 0.21 [37] 

AuNP-PGA/SWCNT DPV 8.3 - 145.6 1.18 [38] 

PAY/nano-TiO2/GCE DPV 12 - 120 2.0 [39] 

MIP  DPV  1 - 4000  0.33  [40] 

Nevirapine/CPE DPV  20 - 250  0.77  [41] 

GR–CS/GCE DPV 1-100 0.3 [42] 

CS/CPE SWV 0.8 to 200 0.51 [43] 

PMMCNTPE CV 2.0-50 0.38 [44] 

BDD  DPV  1.98 - 13.87  0.16  [31] 

BDD DPV 2.0-130.66 0.167 This work 
GCE: glassy carbon electrode; CPE: carbon paste electrode; BDD: boron doped diamond electrode; DPV: differential pulse 
voltammetry; SWV: square-wave voltammetry; CV: cyclic voltammetry; PGA: poly (glutamic acid); PAY: poly (acid yellow 9); SWCNT: 
single-walled carbon nanotubes; PANI-MWCNT: polyaniline-multi-walled carbon nanotubes composite; MIP: molecular imprinted 
polymeric micelles; GR-CS: graphene-chitosan composite; CS: chitosan; PMMCNTPE: poly(methyl) orange modified carbon nanotube 
paste electrode. 

Electrolysis of paracetamol 

The effect of current density on paracetamol oxidation during electrolysis was also studied. For 

such a purpose and in order to determine the optimal current density, the electrolysis experiments 

were conducted in 0.3 M H2SO4 solution under current densities of 20, 50, 70 and 100 mA cm-². DPVs 

of paracetamol samples in Britton-Robinson buffer solution, subjected previously (10 mM) to 

electrolysis in 0.3 M H2SO4 at different current density values and taken after different electrolysis 

time, are shown in Figure 7. In this figure, differential pulse voltammograms show a decrease of 

oxidation current peak intensities of paracetamol with the electrolysis time. The decrease of the 

peak current intensity is rapid and highly marked as the applied current density increases. The 

oxidation peak current of paracetamol is observed at around 0.9 V. At higher electrolysis time, 

however, another current peak appears at 0.55 V. This new peak firstly increases in intensity and 

then decreases until it disappears. 
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Figure 7. Differential pulse voltammograms of BDD electrode in Britton-Robinson buffer solution containing 

paracetamol (10 mM) subjected to electrolysis in 0.3 M H2SO4 at: (a) 20 mA cm-2; (b) 50 mA cm-2;  
(c) 70 mA cm-2; (d) 100 mA cm-2; T = 25 °C flow rate = 2.7 mL s-1 

The effect of the current density on the change of paracetamol concentration during electrolysis 

was also determined. Figure 8(a) shows the normalized concentration (C/C0) of paracetamol as a 

function of the electrolysis time for each of the current density explored. Note that C/C0 denotes 

paracetamol concentration at any time to that at the initial time. Exponential decrease of the 

normalized paracetamol concentration versus the electrolysis time is observed, regardless of the 

applied current density. The shapes of these curves are in accordance with these described in 

literature [24] insofar the applied current densities are higher than the initial limiting current density 

which is equal to 6 mA cm-2. In this case, the oxidation process paracetamol is under mass transfer 

control. According to our results, the oxidation of paracetamol becomes more rapid as the current 

density increases from 20 to 100 mA cm-2. The evolution of the current ratio I/Im of oxidation peak 

currents of intermediates during the electrolysis was determined for all applied current densities. 

Figure 8(b) presents the obtained results, showing that at 20 mA cm-2 the production of secondary 

species is very low compared to those obtained under 50, 70 and 100 mA cm-2. As shown in 

Figure 8(b), higher is the current density, the greater is the production of these species and quicker 

is their complete mineralization.  

http://dx.doi.org/10.5599/jese.907
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Figure 8. (a) Influence of current density on paracetamol oxidation (10 mM) in 0.3 M sulfuric acid; (b) 

influence of current density on oxidation of reaction intermediates; T = 28 °C; flow rate = 2.7 mL s-1 

Figure 9 highlights the evolution of solution color during the electrolysis. Starting from the 

colorless solution at the beginning of the experiment, the solution became colored during the 

experiment, and returned to the colorless solution at the end of the electrolysis. The total 

discoloration of the solution after 2.5 h of electrolysis may indicate the effectiveness of the 

treatment at 70 mA cm-2. As mentioned above, before electrolysis, paracetamol solution was 

colorless and after 0.5 h it becomes colored (yellow color) with an increasing intensity after 1 h of 

electrolysis. This is followed by a gradual discoloration of the solution, and after 2.5 h, the complete 

discoloration occurred. Appearance and disappearance of the yellow color during electrolysis could 

be related to the production of intermediates which undergoes additional oxidation. 
 

 0 h 0.5 h 1.0 h 1.5 h 2.0 h 

     
Figure 9. Photos of the evolution of the solution color due to oxidation of intermediates during 

electrolysis of paracetamol in 0.3 M H2SO4 at 70 mA cm-2; flow rate = 2.7 mL s-1 

Current efficiencies of paracetamol oxidation were evaluated as a function of the electrolysis time. 

The obtained results are presented in Figure 10, showing decrease of oxidation current efficiency with 

time. The oxidation current efficiencies obtained after 2.5 h of electrolysis at 20, 50, 70 and 

100 mA cm-2 were 52, 27.5, 22.85 and 19.11 %, respectively. These data show that as the current 

density increases, a significant part of the current is lost by the production of some side reactions. Low 

current efficiencies obtained at high current density can be explained by a limitation by mass transport 

of paracetamol due to parallel formation and oxygen bubbles evolvement during electrolysis. The 

paracetamol oxidation is therefore more and more favorable as the current density decreases. 

The influence of paracetamol concentration on the extent of its oxidation during electrolysis was 

also studied. Figure 11(a) illustrates the results obtained under the current density of 70 mA cm-2 at 

pH 0.6. It is obvious from this figure that the ratio of paracetamol concentration at any time to that 

at the initial time (C/C0t) decreases with time. After 1 h of electrolysis, the determined oxidation 

efficiencies for 10, 6 and 1 mM of paracetamol, were found to be 60, 78 and 99 %, respectively.   

I 
/ 

I m
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Figure 10. Influence of current density on current efficiency for paracetamol oxidation (10 mM) 

in 0.3 M H2SO4, pH = 0.6; T = 25 °C; flow rate = 2.7 mL s-1 

 

The paracetamol conversion (degradation) rate (0) is followed at any time of the electrolysis by 

the following equation:  

 = −
 
 
 o

1 100
o

C

C
 (4) 

The histogram presented in Figure 11(b) shows that oxidation of paracetamol is more favored at 

low concentrations, suggesting thus more difficult oxidation at increased concentrations of 

paracetamol. Increase in paracetamol concentration implies increase in the number of collisions 

between the molecules itself, decreasing at the same time their interaction with hydroxyl radicals 

(OH∙) that are mediators in the oxidation process. The produced quantity of OH∙ becomes 

insufficient for total mineralization of paracetamol molecules present on the electrode surface, 

because of very short lifetime and possible recombination of hydroxyl radicals [21]. 
 

  
Figure 11. (a) Influence of paracetamol concentration on oxidation by electrolysis in 0.3 M sulfuric acid, 

pH 0.6, (b) degradation rates for different paracetamol concentrations after 1 h of electrolysis; 
j = 70 mA cm-2; T = 28  °C; flow rate = 2.7 mL s-1 

The influence of the concentration of paracetamol on the current efficiency of oxidation is also 

studied and the results are presented in Figure 12. This figure shows that when the concentration of 

paracetamol decreases, the current efficiency of oxidation increases. Quick reactions take probably 

place in the reaction medium between paracetamol molecules and oxidative species (OH∙ in this case), 

because of high availability of the organic compound. Therefore, the competitiveness of unwanted 

reactions becomes weak, and several hydroxyl radicals can react with paracetamol molecules. 
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Figure 12. Influence of paracetamol concentration on current efficiency of oxidation at various 
electrolysis time in 0.3 M sulfuric acid, pH 0.6, j = 70 mA cm-2; T = 28 oC; flow rate = 2.7 mL s-1 

Studies focusing on the influence of the initial pH value of the solution were already carried out by 

large number of environmental scientists in order to weigh its importance in the effectiveness of 

degradation of pollutants [45,46]. Conflicting results were generally obtained, what is in large part due 

to the difference in structure of the studied compounds and nature of the electrode material used 

[47]. Therefore, it becomes necessary to investigate, the effect of the solution initial pH on the 

electrochemical oxidation of paracetamol on BDD electrode. Figure 13(a) shows the obtained results 

in the sulfuric acid medium, with initial pH values adjusted to 0.6, 3 and 7 with HCl or NaOH solutions. 

Figure 13(a) shows that paracetamol oxidation reaction is more rapid at pH 3 than at pH 0.6 and 7. 

Mineralization rates of paracetamol determined after 1 h of electrolysis at pH 0.6, 3 and 7 were 79, 

84 and 74 %, respectively. The high performance of BDD electrode observed in the acidic solutions 

could be mainly due to the oxidation of paracetamol by the electrogenerated hydroxyl radicals. In the 

acidic medium, hydrophobicity that results from BDD surface termination changes at high potentials 

and hampers adsorption of hydroxyl radicals on BDD surface. Thus, hydroxyl radicals are left to react 

actively with the organic compounds. Besides this indirect oxidation process of paracetamol with OH∙, 

a direct electron transfer reaction between paracetamol and the surface of BDD occurs [48]. 

Moreover, it is shown in Figure 13(b), that in the course of the electrolysis process of paracetamol, 

high amounts of intermediates are produced. 

 
Figure 13. (a) Influence of pH on paracetamol (10 mM) oxidation by electrolysis in 0.3 M sulfuric acid; (b) 

evolution of the ratio of oxidation peak intensities during electrolysis; j = 70 mA cm-2; T = 28 oC;  
flow rate = 2.7 mL s-1 
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Because of the importance of temperature in the physico-chemical analysis and treatment of 

wastewaters [8,49-51], the effect of temperature on paracetamol oxidation process was also studied 

in this work. Figure 14(a) presents the obtained results, showing that increase of temperature 

promotes paracetamol oxidation. Histogram of paracetamol degradation rates determined after 2 h 

of electrolysis are presented in Figure 14(b). It is obvious that at 28, 55 and 75 oC, 85, 92 and 97 % of 

paracetamol were degraded, respectively. The exponential decrease of paracetamol concentration 

during oxidation at all investigated temperatures is characteristic of a pseudo first order reaction.  

Figure 15 was built on the basis of Figure 14. From the obtained straight lines in Figure 15(a) that 

match the pseudo first order reaction model, the kinetic constants of paracetamol oxidation 

reaction at different temperatures were determined. Thus, at 28, 55 and 75 oC, the determined 

kinetic constants (k) were 0.9474, 1.1789 and 1.8469 h-1, respectively. 
 

 
Figure 14. (a) Influence of temperature on paracetamol concentration during electrolysis in 
0.3 M H2SO4 pH 0.6; (b) degradation rate for different electrolyte temperatures after 2 h of 

electrolysis at j = 70 mA cm-2; flow rate = 2.7 mL s-1 

 
Figure 15. (a) -ln (C/C0) as a function of time of paracetamol electrolysis in 0.3 M H2SO4 at different 

temperatures; (b) influence of temperature on current efficiency of paracetamol oxidation at j = 70 mA cm-2; 
flow rate = 2.7 mL s-1 

These values undoubtedly show that the increase in temperature accelerates and therefore pro-

motes degradation kinetics of paracetamol. It seems that increase in disorder takes place in the 

reaction medium when the temperature increases, and such effect promotes a higher abatement rate 

of paracetamol. This situation leads to an increase in shocks between molecules and interactions 

between species of the medium, accelerating thus paracetamol oxidation by hydroxyl radicals. 

The influence of temperature of the supporting electrolyte on the current efficiency of para-

cetamol oxidation was also investigated. The obtained results are shown in Figure 15(b), suggesting 

 T = 28 oC 

 T = 55 oC 

 T = 75 oC 

 T = 28 oC     T = 55 oC     T = 75 oC 

-l
n

 (
C

 /
 C

0
) 

100 

 
95 

 
90 

 
95 

 
80 

 
75 

http://dx.doi.org/10.5599/jese.907


J. Electrochem. Sci. Eng. 11(2) (2021) 71-86 OXIDATION OF PARACETAMOL ON B-DOPED DIAMOND ELECTRODE. 

84  

that the current efficiency increases with the supporting electrolyte temperature. This result shows 

that increasing the temperature of the support electrolyte helps to reduce the current loss during 

the electrolysis. 

Conclusion 

The electrochemical characterization of BDD electrode showed its almost metallic character, 

indicating that it can be used as the electrochemical sensor for detection and quantification of 

paracetamol in different solutions. Determination of paracetamol using differential pulse 

voltammetry was shown to be more reliable in Britton-Robinson buffer solution than in sulfuric and 

orthophosphoric acids. Oxidation peak of paracetamol was obtained at around 0.9 V vs. SHE, while 

after the electrolysis in 0.3 M H2SO4, another peak related to the oxidation of paracetamol appeared 

at around 0.55 V vs. SHE. Varying the current density of electrolysis from 20 to 100 mA cm-2, the 

total and rapid mineralization of paracetamol was observed at the highest current density and the 

process was under the mass transport control. By varying the initial concentration of paracetamol 

during electrolysis, it was shown that paracetamol oxidation kinetic is rapid at low paracetamol 

concentrations. This study also showed that the oxidation of paracetamol is favored in an acidic 

medium, particularly at pH 3. Thus, the oxidation efficiency reached 99 % for 1 mM of paracetamol 

in 0.3 M H2SO4, pH 3, after 1 h of electrolysis under the current density of 70 mA cm-2. It was also 

found that increase of temperature promotes the degradation rate of paracetamol, reaching 97 % 

at 75 °C after 2 h of electrolysis at the current density of 70 mA cm-2.  
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