Echocardiographic optimization favors greater reduction in left ventricular end-diastolic volume compared to electrocardiographic optimization in patients with cardiac resynchronization therapy

Marija Brestovac^{*},

Blanka Glavaš Konja,
Martina Lovrić
Benčić,

Vlatka Rešković Lukšić,

Kristina Gašparović,
 Jadranka Šeparović
 Hanževački

University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia **KEYWORDS:** cardiac resynchronization therapy, echocardiographic optimization, left ventricular volume. **CITATION:** Cardiol Croat. 2021;16(5-6):203. | https://doi.org/10.15836/ccar2021.203

*ADDRESS FOR CORRESPONDENCE: Marija Brestovac, Klinički bolnički centar Zagreb, Kišpatićeva 12, HR-10000 Zagreb, Croatia. / Phone: +385-99-7742-627 / E-mail: marija.brestovac@gmail.com

ORCID: Marija Brestovac, https://orcid.org/0000-0003-1542-2890 • Blanka Glavaš Konja, https://orcid.org/0000-0003-1134-4856 Martina Lovrić Benčić, https://orcid.org/0000-0001-8446-6120 • Vlatka Rešković Lukšić, https://orcid.org/0000-0002-4721-3236 Kristina Gašparović, https://orcid.org/0000-0002-1191-4831 • Jadranka Šeparović Hanževački, https://orcid.org/0000-0002-3437-6407

Introduction: Cardiac resynchronization therapy (CRT) is a widely used method in the treatment of symptomatic patients with advanced heart failure and LBBB. Its beneficial impact on the reduction of left ventricular (LV) volumes has already been shown.¹² The aim of this study was to determine if echocardiographic optimization of CRT pacing intervals (ECHO) after CRT device implantation has a favorable impact on LV volume change compared to electrocardiographic optimization (ECG).

Patients and Methods: An overall of 147 patients with implanted CRT according to guidelines were included in this study and divided into two groups according to the CRT optimization method (N=70 in ECG arm an N=77 in ECHO arm). ECG optimization was performed using 12-lead electrocardiogram, fusion-optimized intervals, intracardiac electrogram-based algorithms and electrocardiographic imaging. ECHO optimization implied correction of atrioventricular, inter- and intraventricular dyssynchrony using echocardiographic imaging. The change in LV end-diastolic (EDV), end-systolic (ESV) and stroke volume (SV) as well as LV ejection fraction (EF) was compared between groups, before and 6 months after CRT implantation.

Results: EDV and ESV significantly decreased and EF increased in both groups. In the ECHO a statistically significant reduction in EDV compared to ECG was present (p=0.028). According to greater EDV reduction, SV significantly decreased in ECHO (p=0.026). No significance was observed in ESV change between groups (p=0.063) (**Table 1**).

Conclusion: ECHO optimization of CRT leads to a more significant reduction of EDV compared to ECG optimization after 6 months of follow up.

TABLE 1. Left ventricle volumes and ejection fraction change before and 6 months after cardiac resynchronization therapy between the analyzed groups.

	ECG (N=70)				ECH0 (N=77)		
	Before CRT	6 months after CRT	Mean change, SD	Before CRT	6 months after CRT	Δ	
EDV (ml)	218.81	167.48	51.32 (±64.25)	231.81	157.53	74.28 (±80.25)	p= 0.028
ESV (ml)	162.27	112.25	50.01 (±59.38)	169.67	102.57	67.1 (±75.02)	p= 0.063
SV (ml)	56.54	55.23	1.31 (±16.46)	62.14	54.96	7.18 (±19.66)	p= 0.026
EF (%)	26.67	36.79	10.11 (±8.39)	26.97	39.13	12.16 (±10.80)	p= 0.1

EDV - left ventricular end-diastolic volume, ESV - left ventricular end-systolic volume, SV - left ventricular stroke volume, EF - left ventricular ejection fraction, SD - standard deviation.

St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, et al; Multicenter InSync Randomized Clinical Evaluation (MIRACLE) Study Group. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003 Apr 22;107(15):1985-90. https://doi.org/10.1161/01.CIR.0000065226.24159.E9

 St John Sutton M, Cerkvenik J, Borlaug BA, Daubert C, Gold MR, Ghio S, et al. Effects of Cardiac Resynchronization Therapy on Cardiac Remodeling and Contractile Function: Results From Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE). J Am Heart Assoc. 2015 Sep 11;4(9):e002054. https://doi.org/10.116i/JAHA.115.002054

RECEIVED: March 28, 2021 ACCEPTED: April 2, 2021

11th Croatian Biennal Echocardiography Congress with International Participation / 11. hrvatski dvogodišnji ehokardiografski kongres s međunarodnim sudjelovanjem Virtual Congress, May 6-8, 2021

CroEcho2021