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Summary 

In manufacturing system management, the decisions are currently made on the base of 
‘what if’ analysis. Here, the suitability of the model structure based on which a model of the 
activity will be built is crucial and it refers to multiple conditionality imposed in practice. 
Starting from this, finding the most suitable model structure is critical and represents a 
notable challenge. The paper deals with the building of suitable structures for a manufacturing 
system model by data-driven causal modelling. For this purpose, the manufacturing system is 
described by nominal jobs that it could involve and is identified by an original algorithm for 
processing the dataset of previous instances. The proposed causal modelling is applied in two 
case studies, whereby the first case study uses a dataset of artificial instances and the second 
case study uses a dataset of industrial instances. The causal modelling results prove its good 
potential for implementation in the industrial environment, with a very wide range of possible 
applications, while the obtained performance has been found to be good. 

Key words: manufacturing system, causal modelling, ‘what-if’ analysis, instance-based 
learning 

1. Introduction 
The decisions concerning the manufacturing system (MS) management require 

appropriate models. The model construction involves, in general, two stages. The first stage is 
dedicated to the determination of a structure based on which the future model will be built 
(which supposes, at first, the selection of model variables). The second stage consists of 
model formalization (which can be done, for example, by adjusting the parameter values for a 
parametric model). While a large number of techniques for accomplishing the second stage 
are available in literature, e.g. [1]–[5], the first stage of the model construction has been also 
addressed by some researchers. For example, [6] suggests a meta-heuristic method for 
simultaneous identification of the model structure and associated parameters for linear 
systems, which is achieved via a constrained multidimensional particle swarm optimization 
mechanism. The present paper deals with the first stage of model construction. 

As a consequence of recent developments in the manufacturing field, the data related to 
MSs is growing in size and in complexity. This presents new challenges for real-time 
monitoring, diagnostics, and prognostics and it means that there is a lot of work to be done in 
order to gain insights from high-dimensional data of varying types. For example, [7] presents 
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a data-driven holistic approach to fault prognostics in cyclic manufacturing processes 
concerning data generation, acquisition, storage, processing, and prognostics, applied in the 
case of a plastic injection moulding process. In [8], it has been noticed that vast amounts of 
time series data generated by distributed sensors have to be analysed in real-time and 
converted to actionable knowledge that can be fed to process monitoring, control, and 
optimization algorithms. An original approach to the integration of information flow in the 
production process is presented in [9]. 

Some studies have been dedicated to the selection of features of interest  
(‘key-features’) inside available databases, depending on the considered purposes. Related to 
this selection, a novel gradient-enhanced Kriging modelling method was developed [10]. 
Within the framework of this method, a balance between model accuracy and modelling 
efficiency can be achieved. More specifically, the influence of each input (‘condition’) 
variable on the output is estimated and ranked by applying the feature selection technique. In 
the manufacturing field, there are specific approaches concerning feature selection. Thus, [11] 
deals with finding the machining features needed to build relationships between geometry, 
processing technology and monitoring signals in order to provide a basis for cutting tool 
condition identification. In [12], nine types of time-domain features are extracted from the 
milling force signals, after which the sensitive features that can accurately indicate the tool 
wear states are selected by using the correlation analysis. The study [13], addressing the 
assembly process optimization, develops the causal network method, considering multi-
source information to assist in identifying root causes of the dimension variation. Based on 
this method, the diagnosis ability is evaluated, and then the minimal feature number and 
optimal measurement features are selected by using a sensor optimization algorithm. A 
method for selecting an optimum feature subset, with a modified wrapper-based multi-criteria 
approach using genetic algorithms is presented in [14]. The best compound features are used 
to construct fault prediction models. Outside the manufacturing domain, [15] proposes a 
computational method for identifying informative features for predicting pro-inflammatory 
potentials of engine exhausts and applies a principal component regression algorithm for 
developing prediction models. 

In close connection with the individual selection of key features, the action of finding 
clusters of features to underlie the control models of MSs is also of critical importance. Many 
studies from the data mining area present diverse clustering algorithms [16]. Among these, 
being closer to the subject of this paper, [17] introduces a density-based algorithm for 
discovering clusters in large spatial databases with noise, while [18] refers to the dynamic 
data assigning assessment clustering. The authors of [19] propose that the identification of 
key features for accurate prediction of MS outputs be accomplished by using the topological 
data analysis. More specifically, the Mapper algorithm [20] has been applied to two 
benchmark datasets for the chemical process yield prediction and semiconductor wafer fault 
detection, in order to capture intrinsic clusters and connections among the clusters present in 
the datasets, which are difficult to detect using traditional methods. 

Despite the results of the above presented studies, the selection of MS features used for 
its modelling is still a challenge because of the following specificities: 

 MS complexity is permanently increasing due to both evolution of products’ 
features and general technological development. The number of MS features is often 
impressive, as instead of a single feature characterizing the outcome, there are 
several to look for at once (e.g. time span, cost, productivity, consumed energy etc.). 

 MS content changes rapidly and frequently due to market evolution. This is further 
leading to changes in model variable weighting and, sometimes, the number of 
instances available for MS features selection is small. 
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 MS performance is evaluated in a wide range of situations. The evaluation accuracy 
varies from rough to very sharp approximation. The requested speed in evaluation 
may be low but also it may be very high when real-time information is expected. 
The number of condition variables that are available at a given moment for model 
construction is between few and dozens. 

This challenge can be answered by overcoming the following shortcomings of actual 
approaches: 

 Only a unique set of features is selected for MS modelling. 
 The model accuracy level is not correlated to the actually required level. Moreover, 

a variation of this level is not at all taken into account. 
 The difficulties in evaluating MS features or the possible unavailability for some of 

them are often ignored. 
 The features selection based on small past casuistry is not always feasible. 
The present paper proposes that the model structure for MS be found by causal 

modelling (CM). The selection of MS features suitable for its modelling is performed 
according to an original algorithm, which eliminates or, at least, diminishes these 
shortcomings. The MS is approached to as causality and this allows that on the base of the 
causal relationships analysis more sets of features are found, that are seen as causal models 
for each effect variable of interest. Thus, the user can select the causal model that is best 
fitting to the addressed modelling problem. In existing literature, causal models are defined as 
mathematical models representing causal relationships within an individual system or 
population [21]. According to [22], a causal model is an ordered triple < U, V, E >, where U 
is a set of exogenous variables whose values are determined by factors outside the model, V is 
a set of endogenous variables whose values are determined by factors within the model, and E 
is a set of structural equations that express the value of each endogenous variable as a 
function of the values of other variables in U and V. 

The main benefit of the proposed MS causal modelling is that it supports the required 
trade-off between model accuracy and modelling efficiency, leading to the selection of the most 
influent, easiest to measure and smallest set of MS job features, so that the resulting model has 
the lowest complexity with respect to the required accuracy of evaluation. Last but not least, 
CM works well enough even if applied in a case when the available past casuistry is small. 

The paper is structured as follows: the next section introduces the background and the 
algorithm based on which the MS causal modelling is performed. The third section is 
dedicated to validation and assessment of MS causal modelling based on two case studies 
addressing turning processes. The last section gives the conclusion. 

2. Causal modelling of the manufacturing system 
2.1 Background 

The MS is described by nominal jobs that it can accomplish. Such a job should be 
defined as accomplishment of a nominal manufacturing task according to a given procedure 
and using a given MS component. For each such job, the variables describing the task, the 
performance, and the accomplishment procedure are defined. They are of two types: condition 
variables (C-variables) that are independent, and effect variables (E-variables) that are 
dependent.  

In our approach, each job accomplishment represents an instance. The instances are 
recorded in collections, which describe MS past casuistry. 

Job causal modelling consists of the selection of a number of clusters of C-variables for 
each E-variable by means of which the E-variable can be evaluated. Such a cluster defines a 
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causal model corresponding to the given E-variable and represents, in fact, its structural 
equation. For this reason, CI output is the causal model tree, i.e. a representation of all causal 
models concerning the same E-variable. 

MS causal identification refers to the finding of causal models for all nominal jobs 
performed by the addressed MS, as well as the assessment of the obtained causal models. The 
here proposed MS causal identification consists of applying an algorithm that supposes the 
following steps: data concatenation, comparison of instances, assessment of variables, and 
identification of models, [23]. 

2.2 Data concatenation 
For a given nominal job, three actions are necessary in order to do data concatenation, 

namely, clustering, updating, and homogenization. 
Clustering deals with selecting the instances referring to a given job from a collection of 

instances. These instances form the instance dataset. 
Updating of variable values is necessary because of inherent changes occurring since 

the instances have been recorded. For example, energy and material prices may vary and the 
object metamorphosis costs at different times may be calculated in different terms. Thereby, 
the finding of causal models concerning the manufacturing costs, as E-variable, cannot be 
made without updating all costs to the current terms. 

Homogenization aims to make the instances comparable by scaling the values of each 
variable to values between 0 and 1. 

2.3 Comparison of instances 
The core idea in finding causal models is to look for relations between the variations of 

C- and E-variables (denoted by pi and qj, respectively), instead of viewing each instance as 
event that illustrates the causal relation between these variables. 

Variable variations can be revealed by instance comparison. Comparing kth and lth 
instances from a certain dataset means to calculate the differences δpi(k,l) and δqj(k,l) between 
their corresponding variables:  

 , , 1    i ik il pp k l p p i n    and    , , 1    j jk jl qq k l q q j n . (1) 

In relation (1), np and nq represent the number of C- and E-variables, respectively.  
The result of such a comparison will be further referred to as beam(k, l). It consists of the 
reunion of vectors δpi(k,l) and δqj(k,l). Hereby, beam(k, l) includes beam components (more 
specifically, np C-components and nq E-components). 

The instances as well as the beams resulting from their comparison have identical 
dimension and similar structure. Thus, from the instances such as 
 p q1 2 i n 1 2 j np , p , p , p ,q ,q , ,q , q     beams of the same structure 

 p q1 2 i n 1 2 j np , p , p , p , q , q , q , q          
 

are obtained. For this reason, it will be 
hereinafter made a natural correspondence between C-variable pi and C-component δpi as 
well as between the E-variable qj and E-component δqj. 

Obviously, each instance from n instances composing the dataset can be compared to all 
other n–1. The ensemble of beams resulting from all possible comparisons represent the beam 
dataset. Because beam(k, l) and beam(l, k) are identical (with k, l = 1...n), only one of them is 
recorded. Hereby, the beam dataset has 2

nN C  lines. 
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2.4 Assessment of variables 
This step aims to assess the C-variables in order to find the ones having potential for 

evaluating the given E-variable. This is done by beam windowing, which is an original 
technique, developed for this purpose. 

The elementary action in beam windowing is the windowing sequence, which refers to 
imposing restrained domains (‘windows’) to one or more of the beam components 
corresponding to the analysed variables, while the domains (‘images’), that consequently 
result for each of the other beam components, are measured. The ensemble of beams 
concomitantly passing through all considered windows will be further called strand of beams. 

Assessment of variables is performed by applying two algorithms, namely, i) the 
algorithm for dimensionality reduction, and ii) the algorithm for assessing the modelling 
potential of variables. The output of the first algorithm is the maximal cluster of variables, 
while the second algorithm delivers the values of specific criteria characterizing the C-
variables with respect to their modelling potential. 

The algorithms are further introduced by presenting their application in the case of the 
basic problem when one has to deal with a set of m C-variables corresponding to a single  
E-variable. 

Algorithm for dimensionality reduction 
Let us consider a beam dataset as defined above. Obviously, all beam components have 

values in the interval [0, 1]. Here, a predefined series of thresholds, hk, is considered (Fig. 1) as: 

0.8 , 0,1,2  k
kh k . (2) 

One of these thresholds, denoted by href, is set as reference. Its selection depends on the 
extension of beam dataset (e.g. href = h7 = 0.2097).  

 
Fig. 1  Windowing sequence applied to C-component δpi 

The algorithm aims to discard the C-variables having high degree of dependence on 
other C-variables. It consists of the following actions, [23]: 

 Windows having H = 0 and h = href are imposed to (m–1) of the C-components, 
excepting the ith one, for which the image dimension Δi is measured (Fig. 1). 
Obviously, there are m possibilities to do this (i = 1, 2, ... m). 

 The windowing sequence from above is run for each of the m C-components, hence 
m values of Δi will result. 
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 After that, the value of  min i i 1,2, mmin


     is determined. If Δmin < hk-1 (href = hk), 
then the C-variable to which Δmin corresponds can be considered as highly 
dependent on other C-variables, and it may be discarded. 

 The set of remaining C-variables is repetitively submitted to the previous three 
actions until the current value of Δmin becomes higher than hk-1. The last set of  
C-variables forms the maximal cluster of variables. 

Algorithm for assessing the modelling potential of variables  
The modelling potential refers to C-variables and to their potential to model a certain E-

variable. Three criteria, as presented below, can assess the modelling potential of a C-variable 
belonging to a given cluster: 

 The modelling power MP representing the ‘sensitivity’ of E-variable relative to the 
considered C-variable; 

 The modelling capacity MC referring to the measure in which C-variable is able to 
describe E-variable by itself only; 

 The modelling unevenness MU reflecting the variability of the relation between C- 
and E-variables. 

The algorithm, designed in order to assess the criteria from above in the case of C-
variable pi, belonging to the cluster (p1, p2 ... pn), when aiming to model  
E-variable q, consists of the following steps, [23].  

The windows having H = 0 and h = href are imposed to (n–1) C-components 
corresponding to variables from the considered cluster, excepting the ith one, for which we 
impose a window whose dimension is successively modified from h0 = 1, h1, h2 ... hj, ... to hk 
= href. An image of E-component δq having the dimension Δij, j = 1, 2, ... k, corresponds to hj 
dimension of the window imposed to δpi (see Fig. 2, where j = 3).   

 
Fig. 2  Assessment of pi modelling potential 

 In the case of the window having dimension hj imposed to δpi component, the strand 
of beams passing through it and other (n-1) windows (for which  
h = href) has the cardinal Nij. Then, the average values ij  and ij  are calculated as: 

1

1


  
ijN

ij il
lij

p
N

, (3) 
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and 
1

1


  
ijN

ij l
lij

q
N

, respectively, (4) 

where δpil and δql refer to the values of δpi and δq corresponding to the lth beam 
passing through the considered set of windows. 

 A linear regression, having the form of: 
y a x b    (5) 

is fitted to the set of points Cj  ijij
j 1,2 k

,


 


, the root mean square error (RMSE) 

being also calculated. 
The local ‘sensitivity’ of a function to its argument, in a given point, is shown by the 

value of the function derivative, meaning the slope of the tangent to the function graphic 
drawn in that point. By analogy, we assume that the global ‘sensitivity’ of the q variable to 
the pi variable may be expressed by slope a of the fitted straight line. Thus, slope a can be a 
metric for assessing the modelling power MP. At the same time, because jh 0  (together 

with ij ) when j , we assume that the causal relation ‘strength’ is reflected by the degree 
in which Δij (hence ij too) also tends to 0 when j , this being in connection with b value. 
The closer to 0 it is, the ‘stronger’ the causal relation is. Thus, 1- b can be a metric for 
assessing the modelling capacity MC. Finally, the dispersion of Cj points relative to the fitted 
straight line can give relevant information on the variability of the relation between pi and q. 
Thus, the RMSE of Cj points relative to the fitted straight line y a x b    can be a metric for 
assessing the modelling unevenness MU. 

It should be noted that the values of these three criteria are relative because they depend 
on the composition of the cluster inside which they are considered. In other words, the same 
C-variable may show different modelling potentials if assessed in different clusters. 

2.5 Identification of casual models 
Let us consider the case of a causal model whose maximal cluster has nmc C-variables, 

p1, p2, ... pnmc. This should have, at least in principle, the highest potential for modelling the E-
variable q. However, there might be situations when the values for one or more of cluster 
variables are not available, or a complicated model, involving all variables from the maximal 
cluster, might be useless. In both cases, the solution is to use a causal model defined by fewer 
C-variables. The selection of such most suitable model assumes that multiple causal models 
concerning q are identified. This can be realized by successively and repetitively applying a 
couple of algorithms [23], namely i) the algorithm for generating smaller clusters, and ii) the 
algorithm for assessing the modelling potential of a cluster. 
Algorithm for generating smaller clusters 

Let us suppose we have to deal with a cluster with nc C-variables (which may be in 
particular the maximal cluster when nc = nmc). Any of the variables might be discarded in 
order to obtain a cluster with (nc1) variables, hence nc clusters may result. If now we discard 
another C-variable from each smaller cluster, the total number of distinct clusters with (nc2) 
C-variables that could be obtained is nc (nc1). Obviously, after only few steps of generating 
smaller clusters by discarding variables one by one, a very large number of clusters will 
result, which complicates the problem of assessing the potential for all of them very much. A 
reasonable solution is to consider only a part of possible eliminations, more specifically, to 
discard only the C-variables with lower modelling potential at each level. The algorithm 
applied for this purpose has three steps: 
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 Each of the nc C-variables is analysed after a criterion for assessing the modelling 
potential (MP, MC or MU) has been selected. 

 The number nd of C-variables to be discarded is established in accordance to 
exigencies of the addressed modelling problem. 

 After nd C-variables with lowest modelling potential have been found, nd clusters 
with (nc-1) variables are generated by discarding them separately, one by one. 

Algorithm for assessing the modelling potential of a cluster 
The purpose of the algorithm is to assess the potential of a given cluster of C-variables 

for modelling the considered E-variable. The application of criteria defined in the previous 
subsection (MP, MC and MU) can be extended from assessing C-variables to assessing 
clusters of C-variables with respect to their modelling potential, after the needed adaptations 
have been made. In the case of a cluster, the values of the criteria (denoted by MPc, MCc and 
MUc) are obtained by applying the following algorithm: 

 The windows having H = 0 and the dimension successively modified from  
h0 = 1, h1, h2 ... hj ... to hk = href are concomitantly imposed to all nc beam 
components corresponding to the C-variables from the cluster. An image of the 
beam component corresponding to E-component δq, having the dimension Δj, j = 1, 
2, ... k is obtained for each dimension hj of the window (see Fig. 3, where j = 3).  

 
Fig. 3  Assessment of cluster modelling potential 

 When the windows imposed to C-components have the dimension hj, the strand of 
beams passing through them has the cardinal Nj. The average values cj  and j  are 
calculated as:  

1 2
1 1 1

1
  

 
           

  
j j j

c

N N N

cj l l n l
l l lc j

p p p
n N

, (6) 

and 
1

1


  
jN

j l
lj

q
N

, respectively, (7) 

where δpil and δql refer to the values of δpi and δq corresponding to the lth beam 
(from the Nj) passing through the considered set of windows, i = 1, 2, ... nc. 

 A linear regression, having the form of: 
  y A x B  (8) 
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is fitted to the set of points  jcj
j 1,2 k

,


 


, the root mean square error (RMSE) 

being also calculated.  
The values of the criteria evaluating the cluster potential are:  

MPc = A, MCc = 1- B and MUc = RMSE. (9) 
As regards the procedure of identifying casual models, the maximal cluster represents 

the starting point, hence it defines the first causal model. Every time when a number of 
clusters are generated by reducing the dimension of the ones defining the already identified 
causal models by 1, the new clusters having values of a selected criterion higher than a pre-
established threshold define new causal models of the q E-variable. The clusters of variables 
of the new models will be further submitted to the algorithms from above. The procedure of 
identifying new causal models is stopped when any of the smaller clusters generated does not 
show enough modelling potential. 

As already mentioned, the tree of causal models is a representation of causal models 
concerning the same E-variable. The tree is constructed after a whole set of causal models 
concerning the addressed E-variable has been identified. The representation shows the value 
of the criterion assessing the modelling potential for each model and suggests the way in 
which this was obtained in the procedure of identifying models. It is a graph-type 
representation (Fig. 4), drawn according to the following rules: 

 The cluster of each causal model is represented as a rectangle, inside which its  
C-variables are given. 

 The arrow drawn between two rectangles shows that the second cluster results from 
the first cluster by discarding the variable whose symbol is mentioned near the arrow. 

 The level (height) of the representation of a certain cluster shows values of the 
selected criterion (MPc, MCc, MUc, or a weighted combination of them).  

 
Fig. 4  Generic causal model tree associated with E-variable q, drawn by considering MPc criterion   

3. Case studies 
The two case studies presented below address MS jobs of turning. It is obvious that the 

larger the number of instances from the dataset, the more relevant the results of the case study. 
This is the reason why the first case study deals with a real MS job but with a dataset of artificial 
instances. The objectives of the case study are: (1) to demonstrate the causal modelling (CM) 
applicability and (2) to validate the CM results. The second case study uses a dataset of instances 
extracted from the industrial environment and concerns the job of turning roller bearing rings. Its 
objectives are: (1) to check the CM applicability in industrial conditions and (2) to assess the CM 
performance in the addressed industrial case. 
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3.1 Case study performed on the dataset of artificial instances 
(1) Demonstration of CM applicability 

Let us consider the nominal job of turning cylindrical parts. For its CM, 14 variables 
were considered, namely: length L and diameter D of the turned part, required level of part 
accuracy A, machinability of part material M, rigidity R, cutting speed v, feed f, cutting depth 
t, main cutting force F, power absorbed by lathe P, removed chips volume V, machining cost 
C, machining time span TS, and consumed energy E. 

Some remarks should be made regarding these variables: 
 The first five (L, D, A, M and R) are purely exogenous (independent) as their values 

are imposed by the part designer. The next six variables (v, f, t, F, P and V) depend 
on the first five variables, while the last three (C, TS and E) depend on all previous 
eleven variables. 

 Most of the variables have clear physical meaning, so they can be expressed directly 
by their values. The exceptions (A, M and R) shall be expressed by conventional 
dimensionless values, from 1 to 10, assigned after synthesizing some features. 

The relations describing the real turning process express v, f, t, F, P and V depending on 
L, D, A, M and R [23], as follows: 

5.1 0.1
10

  


R At  (mm), (10) 

4.4 0.4
10
 


Af  (mm/rot), (11) 

0.3 0.2
10

10
        

v
v vm

C Rv x y
f t T M

 (m/min), (12) 

0.8

10
      
 

F F F
MF C f t x y  (daN), (13) 

1
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F vP  (kW), (14) 

310
  


D L tV  (cm3). (15) 

In relations (12) and (13) Cv, xv and yv, and CF, xF and yF, respectively, refer to the 
constants to which values are pre-set. In relation (15), part dimensions L and D are expressed 
in millimetres. 

The relations for calculating C, TS and E are [23]: 

1
60




                 
sr sr s ec c P cVC k c

v f t T T
 (Euro), (16) 

1        
srVTS k

v f t T
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1
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 (kWh). (18) 
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In relations from above, k refers to the ratio between the auxiliary time and the 
machining time, τsr – time for worn tool changing (min), T – tool durability (min), 
cτ - wage specific costs (Euro/min), cs - tool expenditure between two consecutive tool 
changes (Euro), ce - energy price (Euro/kWh). 

Variables C, TS and E have been selected as the variables to be evaluated; hence, each 
of them may be considered to be an E-variable; the rest of variables are C-variables.  

In order to test its applicability, the modelling algorithm steps were followed as 
described in the previous section. 

Data concatenation - the dataset of instances should actually include data collected from the 
addressed manufacturing system. Since here we deal with an artificial instance dataset, the 
clustering, updating and homogenization actions are replaced by dataset artificial generation 
as follows: 

 Variation intervals have been established for each of the five variables L, D, A, M 
and R. The intervals [30, 300] and [20, 200], in millimetres, have been adopted for L 
and D, respectively. The conventional values of A, M and R are comprised in [1, 10] 
interval. Relative uniform divisions of these five intervals, composed by n = 150 
points each, were adopted. 

 The order of points from each of the five divisions has been separately randomized, 
thus resulting in the first five columns of the instance dataset with 150 lines. 

 The values of v, f, t, F, P and V were calculated using formulae (10) – (15) for each 
set of L, D, A, M and R values. 

 The values of C, TS and E have been calculated using formulae (16) – (18) on the 
base of the values previously found for v, f, t, F, P and V.  

 The values of each variable have been separately scaled to the interval [0, 1]. 
The resulting artificial instance dataset has been stored as a Microsoft Excel file.  

Comparison of instances - the beam dataset has been obtained with the help of a MatLab 
application written for this purpose by making comparisons between 150 instances from the 
dataset, as explained in subsection 2.3. Hereby, 2

150N C 11,175   beams compose the beam 
dataset, which has also been stored as a Microsoft Excel file. 
Assessment of variables  

Dimensionality reduction 
At first, the reference threshold has been set to href = h7 = 0.2097, hence  

hk-1 = h6 = 0.2621. According to the algorithm presented in 2.4, the windows having H = 0 
and h = href were considered for the beam components corresponding to ten of the eleven C-
variables, while for the eleventh the image dimension Δi was measured  
(i = 1, 2, ... 11, successively). The values obtained for Δi, by using a dedicated MatLab 
application are shown in Table 1, [23]. As it can be noticed, Δmin = 0.2036 (marked in bold) 
corresponds to variables A and f, hence one of them (e.g. f) may be discarded. In Step 2, the 
action from the previous step is repeated for the remaining ten C-variables and another 
variable is discarded, namely t, and so on. After Step 5, Δmin = 0.3600 > h6, so the seven  
C-variables remaining until this point can be considered relatively independent and the 
maximal cluster is [L, D, A, M, R, v, F]. 

TRANSACTIONS OF FAMENA XLV-1 (2021) 53



G. R. Frumusanu, C. Afteni, A. Epureanu Data-Driven Causal Modelling of the 
 Manufacturing System 

Table 1  Image dimensions and Δmin values (in bold), [23] 

Condition 
variable

Successive steps in dimensionality reduction 
Step 1 Step 2 Step 3 Step 4 Step 5 

L 0.9333 0.9333 0.9333 0.9333 0.9333 
D 0.7889 0.7889 0.7889 0.7889 0.9056 
A 0.2036 0.8409 0.8409 0.8409 0.8409 
M 0.7611 0.7611 0.7611 0.7611 0.7611 
R 0.2078 0.2078 0.3278 0.3278 0.3600 
v 0.4084 0.4084 0.4084 0.4084 0.4084 
f 0.2036 - - - - 
t 0.2043 0.2043 - - - 
F 0.3842 0.3842 0.3851 0.3851 0.3851 
P 0.2050 0.2050 0.2050 - - 
V 0.2385 0.2385 0.2385 0.2385 - 

One can notice that the actually independent C-variables (the first five from Table 1) 
retrieve themselves all in the maximal cluster, which confirms what we knew from the very 
beginning (when the artificial instance database had been built) and proves the reliability of 
the proposed algorithm. Another important remark is that only 7/11 C-variables remained for 
modelling E-variables, which results in a significant ease of the modelling problem. 

Assessment of variable modelling potential  
The C-variable modelling potential was assessed according to the EC criterion (hence, 

after the values of b). This has been determined for each C-variable of the maximal cluster, 
according to the algorithm presented in 2.4, after considering the costs C as E-variable, with 
the help of Curve fitting tool from MatLab. The resulting values are presented in the first line 
of Table 2.  

Identification of causal models  
Smaller cluster generation 

According to the algorithm from 2.5, the C-variables with lowest EC (highest values of 
b) are suitable to be discarded. After generating each set of smaller clusters, their modelling 
potential has been assessed in order to identify new causal models.  

Three clusters with six C-variables each have been generated from the maximal cluster 
at the first dimension reduction by discarding one of the nd = 3 variables having the lowest 
potential. Then, two clusters with five C-variables (this time, nd = 2) resulted from each of 
these three at the second dimension reduction. Finally, two clusters of four C-variables (when 
nd = 2) were obtained from each cluster with five variables. The clusters with three C-
variables did not show enough potential for identifying any causal models, so smaller cluster 
generation was stopped there. The C-variables selection and the resulting clusters are 
presented in Table 2. 

In the table, the variables having the highest value of b (the lowest MC) have been 
marked in bold. It should be noticed that because of discarding the same variables in different 
successions, some clusters were obtained twice in the same structure. This is the reason why 
there are only four (instead of six) distinct clusters with five C-variables and six (instead of 
12) clusters with four C-variables. Hereby, the causal model tree will include 14 clusters. 
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Table 2  Smaller cluster generation, [23] 

Generation of 6-variable clusters 
Variables L D A M R v F 

b 0.0269 0.0358 0.0475 0.0378 0.0486 0.0476 0.0437
Resulting clusters [L, D, M, R, v, F]      [L, D, A, M, v, F]      [L, D, A, M, R, F] 

Generation of 5-variable clusters 
Variables L D M R v F 

b 0.0289 0.0352 0.0415 0.0557 0.0492 0.0332 
Resulting clusters [L, D, M, v, F]                  [L, D, M, R, F] 

Variables L D A M v F 
b 0.0244 0.0313 0.0519 0.0474 0.0532 0.0601 

Resulting clusters [L, D, A, M, F]                 [L, D, A, M, v] 
Variables L D A M R F 

b 0.0278 0.0375 0.0486 0.0427 0.0493 0.0444 
Resulting clusters [L, D, M, R, F]                 [L, D, A, M, F] 

Generation of 4-variable clusters 
Variables L D M v F 

b 0.0276 0.0303 0.0456 0.0619 0.0487 
Resulting clusters [L, D, M, F]                 [L, D, M, v] 

Variables L D M R F 
b 0.0278 0.0375 0.0474 0.0557 0.0601 

Resulting clusters [L, D, M, F]                 [L, D, M, R] 
Variables L D A M F 

b 0.0284 0.0291 0.0446 0.0507 0.0604 
Resulting clusters [L, D, A, F]                 [L, D, A, M] 

Variables L D A M v 
b 0.0358 0.0411 0.0522 0.0554 0.0649 

Resulting clusters [L, D, A, v]                 [L, D, A, M] 

Assessment of cluster modelling potential 
After having found the clusters of C-variables that will compose the causal model tree, 

the values of A, B and RMSE were found with the Curve fitting tool from MatLab, by 
applying the algorithm introduced in subsection 2.5. These values are presented in Table 3. 

The clusters from Table 4 define the identified causal models. The causal model tree 
from Figure 5 was drawn according to the criterion MCc (which is very similar to the one 
drawn according to the MCc criterion). In our view, the third modelling potential criterion, 
namely MUc, is preferable to be used for the discrimination between two clusters with close 
MPc or MCc. 

It is very important to notice that the causal model tree corresponds to what we knew 
from the very beginning: the models including the five independent C-variables show better 
potential. As it was also expected, the models with more C-variables prove, in general, better 
potential than the ones with fewer C-variables. Finally, yet importantly, the model [L, D, A, 
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M] still has a reasonable potential, hence a significant reduction in the model dimension (4 
instead of 7) can be obtained by applying the presented algorithm. All remarks from above 
prove the method applicability. 

Table 3  Values of A, B and RMSE, [23] 

Cluster variables A B RMSE 
L, D, A, M, R, v, F 0.5051 0.0163 0.0040 

L, D, M, R, v, F 0.5110 0.0217 0.0086 
L, D, A, M, v, F 0.4800 0.0227 0.0032 
L, D, A, M, R, F 0.4923 0.0116 0.0032 

L, D, M, v, F 0.4510 0.0382 0.0046 
L, D, M, R, F 0.4954 0.0166 0.0076 
L, D, A, M, F 0.4657 0.0180 0.0031 
L, D, A, M, v 0.4769 0.0235 0.0035 

L, D, M, v 0.3654 0.0641 0.0045 
L, D, M, F 0.3879 0.0472 0.0011 
L, D, M, R 0.3114 0.0730 0.0054 
L, D, A, F 0.3818 0.0453 0.0033 
L, D, A, M 0.4522 0.0197 0.0031 
L, D, A, v 0.4275 0.0398 0.0026 

Table 4  R-coefficients values, [23] 

Crt. 
no. Cluster variables 

R-coefficient 
Training Validation Test All 

1 L, D, A, M, R, v, F 0.9990 0.9985 0.9972 0.9982 
2 L, D, M, R, v, F 0.9973 0.9857 0.9874 0.9872 
3 L, D, A, M, v, F 0.9990 0.9897 0.9910 0.9953 
4 L, D, A, M, R, F 0.9999 0.9980 0.9885 0.9962 
5 L, D, M, v, F 0.9938 0.9338 0.9477 0.9751 
6 L, D, M, R, F 0.9992 0.9787 0.9808 0.9917 
7 L, D, A, M, F 0.9992 0.9938 0.9878 0.9944 
8 L, D, A, M, v 0.9829 0.9339 0.9181 0.9697 
9 L, D, M, v 0.9393 0.7560 0.9202 0.9124 
10 L, D, M, F 0.9311 0.8369 0.9277 0.9164 
11 L, D, M, R 0.8879 0.8058 0.7182 0.8389 
12 L, D, A, F 0.9443 0.8997 0.8315 0.9176 
13 L, D, A, M 0.9500 0.9531 0.8456 0.9374 
14 L, D, A, v 0.9997 0.9932 0.9926 0.9977 
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Fig. 5  Causal model tree drawn according to criterion MCc, [23] 

(2) Validation of CM results  
By starting from the observation that the modelling potential of a given cluster is 

directly related to the performance in modelling the E-variable on its base, the CM results 
were validated by neural networks (NN) modelling. The performance of NN models having 
the structure according to the found causal models has been evaluated and compared to the 
potential of clusters corresponding to these causal models. NN models were built on the base 
of the 14 causal models composing the causal tree, and the Neural Networks tool from 
MatLab was used. 

The NN-models with two layers (the hidden layer with 10 neurons) were built on the base 
of the dataset of artificial instances with 150 lines (104 lines were used for training the network, 
23 for validation and 23 for the testing of the model). The NN models performance was 
evaluated by using the values of the correlation coefficient R between output and target values. 

In order to enable a comparison between the modelling potential of casual models and the 
corresponding performance of NN models, first, the values of A, 1-B (Table 3) and R (All, Table 
4) were scaled to interval [0, 1]. Then, the three sets of values were represented versus the current 
number of the model (Table 4) by joining each set of resulting points into a polyline (Fig. 6). 

After examining the diagrams from Fig. 6, we can draw the following conclusions: 
 The profile of the three polylines is similar in terms of the general appearance and 

most of the trends between successive points. 
 The three polylines have common points (8th and 11th point) or very close points  

(1st, 6th, 10th, and 12th point). 
 There is an obvious grouping of the points in the domains (e.g. between 0.8 and  

1, or below 0.6) showing either both good or both low modelling capacity and model 
performance. 
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Fig. 6  Comparison between causal model potential and NN model performance 

This entitles us to consider the result of the validation of the CM results to be positive. 
The differences appearing in the cases of some clusters might be explained by the difference 
between the dimensions of the application domains: in the case of the proposed CM the 
dataset has 11,175 beams, while in the case of finding the NN models, there were only 150 
instances. 
Note: The procedure for dimensionality reduction (see 2.4) can also be applied to  

E-variables C, TS and E. If the windows having H = 0 and h = href = 0.2097 are 
successively imposed to two of E-variables, then the image of the third E-variable 
results in: Δ12 = 0.2094, Δ13 = 0.2099 and Δ12 = 0.7800. This entitles us to conclude 
that the variables C and TS are highly dependent and they should have similar causal 
model trees, while E is relatively independent with respect to the other two and a 
distinct causal model tree needs to be drawn in this case. 

3.2 Case study performed on the dataset of industrial instances  
(1) Checking CM applicability in industrial conditions 

The CM has also been performed in the case of a dataset extracted from the industrial 
environment and it concerns the job of turning roller bearing rings.  
Data concatenation 

After the clustering action, the values of ten C-variables were available, namely, 
exterior and interior diameters De and Di of the ring, ring width L, cutting speed v, feed f, and 
depth t, volume of removed material V, maximum cutting force F and power P, and 
complexity index Ic (in connection with the ring profile). The time span TS was selected as  
E-variable.  

The dataset has 155 instances; some of them are presented in Table 5.  

Table 5  Real instance dataset (actual values, excerpt), [23] 

Instance
crt. no. 

De 
(mm) 

Di 
(mm)

L 
(mm) 

v 
(m/min)

f 
(mm/rot)

t 
(mm)

V 
(mm3)

F 
(N) 

P 
(kW) 

Ic 
(-) 

TS 
(min)

1 89.18 69.46 31.2 259.69 0.35 0.82 48.399 970.876 5.502 3.75 3.599
2 125.12 108.64 31.22 261.81 0.17 0.76 40.333 523.539 3.371 2.5 3.791
3 170.02 139.96 39.24 277.05 0.304 0.19 144.046205.594 1.888 7.7 2.52 
4 215.14 181.86 47.24 300.08 0.32 0.17 217.414188.196 1.879 2.21 3.841
5 190 157.45 36.2 286.53 0.34 0.11 167.733127.438 1.509 4.2 2.792

. . . . . . . . . . . . . . . . . . 
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Comparison of instances 
This time, the beam dataset generated with the same MatLab application has 

935,11CN 2
155   beams. 

Assessment of variables 
Dimensionality reduction 
The procedure has been applied in the same conditions as in the case of the dataset of 

artificial instances: href = h7 = 0.2097, hk-1 = h6 = 0.2621. This time only four steps were 
necessary because after the fourth step, Δmin = 0.5183 >> hk-1. Three  
C-variables (De, F and P) were found as dependent on other variables and discarded. The 
remaining seven C-variables lead to the maximal cluster: [Di, L, v, f, t, V, Ic]. 

Assessment of variable modelling potential 
The three criteria for assessing the modelling potential have been evaluated for each C-

variable of the maximal cluster by calculating the values of a, b, and RMSE relative to TS as 
E-variable. The results are presented in Table 6.  

Table 6  Values of a, b and RMSE, [23] 

 Di L v f t V Ic 

a 0.1272 0.2241 0.05765 0.0041 0.02191 0.3234 0.01558 
b 0.04458 0.03765 0.04864 0.05269 0.04961 0.03479 0.05466 

RMSE 0.00116 0.00058 0.00176 0.00112 0.00185 0.00171 0.00269 

Identification of casual models 
The MC (assessed by means of the values of b) was adopted as a criterion for selecting 

the C-variables to be discarded when generating smaller clusters. Three clusters with six C-
variables each have been generated from the maximal cluster in the first stage. Then, in the 
second stage, two clusters with five C-variables resulted from each of these three. Finally, two 
clusters of four C-variables were obtained from each cluster with five variables. After 
assessing the clusters potential in order to identify causal models, the process of generating 
smaller clusters had to be stopped at the level of 4-variable clusters. It should be noted that 
only three (instead of six) distinct clusters with five variables and four (instead of six) clusters 
with four variables were obtained. Hereby, the causal model tree will be formed from the 11 
clusters presented in Table 7.  

Table 7  Values of A, B and RMSE, [23] 

Condition variable from cluster A B RMSE 
Di, L, v, f, t, V, Ic 0.4058 0.0261 0.0034 
Di, L, v, t, V, Ic 0.4013 0.0266 0.0030 
Di, L, v, f, V, Ic 0.4263 0.0240 0.0030 
Di, L, v, f, t, V 0.4178 0.0287 0.0041 
Di, L, v, V, Ic 0.4167 0.0263 0.0028 
Di, L, v, t, V 0.4064 0.0314 0.0048 
Di, L, v, f, V 0.4253 0.0310 0.0044 
Di, L, V, Ic 0.3722 0.0344 0.0023 
Di, L, v, V 0.4339 0.0314 0.0047 
Di, L, t, V 0.3774 0.0365 0.0365 
Di, L, f, V 0.3919 0.0372 0.0039 
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(2) Assessment of CM performance in the addressed industrial case 
The criteria for assessing the modelling potential of the remained clusters were 

evaluated by using the values of A, B and RMSE, presented in Table 7. The causal model tree 
drawn according to the MCc criterion is depicted in Fig. 7. 

The results of the case study performed on the dataset of industrial instances are very 
similar and prove the validity of the proposed CM once again. They reveal the existence of a 
model with six C-variables (Di, L, v, f, V, Ic) that shows a very good potential for modelling 
the turning time span (B = 0.024), as well as a significantly simpler solution for doing the 
same thing with reasonably good results, namely the use of only four C-variables - Di, L, v 
and V (when B = 0.0314). 

 
Fig. 7  Causal model tree in the case of industrial instance dataset, [23] 

4. Conclusion 
The MS management involves a ‘what if’ analysis, where the capability of evaluating 

the predicted values of a large number of variables is crucial. Appropriate models are 
necessary for evaluation. Finding the most suitable structure based on which a future model 
will be built is critical and it yet represents a notable challenge. The ultimate goal of the paper 
is to answer to this challenge. The answer is the proposed MS causal modelling.  

The objective of CM is to enable a correlation of the model structure to the multiple 
conditionality imposed during the ‘what if’ analysis, and it concerns: i) the criteria based on 
which the analysis actually needs to be performed, ii) the synthetic/analytic character of the 
analysis, iii) the evaluation accuracy, iv) the unavailability of some independent variable 
values, v) the stringency in decision making process, and vi) the applicability when MS 
structure modifies in time quickly. 

For reaching the objective, the MS is described by nominal jobs that it could involve. 
The here proposed MS causal modelling is realized by building causal models of MS nominal 
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jobs. The CM supposes four steps: data concatenation, comparison of instances, analysis of 
variables, and identification of causal models. The delivered result is a causal model trees for 
all E-variables of the MS nominal jobs.  

The degree of fulfilling the CM objective was assessed by the results obtained from the 
two case studies performed. The first case study was performed on a dataset of artificial 
instances and the other on a dataset of industrial instances. After the results have been 
analysed, the following conclusions may be drawn: 

 The proposed MS causal modelling is applicable and works well. Unlike the existing 
approaches (see [8], [14], [19]), it delivers a significant number of model structure 
forms and facilitates the selection of the most suitable model. 

 The proposed method for CM allows correlating the model accuracy to the actually 
required level by choosing an appropriate feature cluster from the delivered clusters. 

 As opposed  to current approaches (e.g. [12]) where the difficulties in evaluating MS 
features or possible unavailability of some features are ignored, the proposed CM 
enables us to choose C-variables from the available MS features. 

 The CM can be applied with good results even when a small past casuistry is 
available (unlike in [7], [11]) for example, after reducing the number of instances 
from the database to one third, the CM leads to the same result. 

 The comparison of the CM results to the results obtained by the NN modelling 
validates the CM feasibility. 

 The MS causal modelling proves to have good potential for implementation in the 
industrial environment with a very wide range of possible applications. 

 The performance obtained when applying the CM in industrial conditions is good. 
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