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Abstract – With the development of Video on Demand applications due to the availability of high-speed internet access, adaptive 
streaming algorithms have been developing and improving. The focus is on improving the user’s Quality of Experience (QoE) and 
taking it into account as one of the parameters for the adaptation algorithm. Users often experience changing network conditions, so 
the goal is to ensure stable video playback with a satisfying QoE level. Although subjective Video Quality Assessment (VQA) methods 
provide more accurate results regarding user’s QoE, objective VQA methods cost less and are less time-consuming. In this article, 
nine different objective VQA methods are compared on a large set of video sequences with various spatial and temporal activities. 
VQA methods used in this analysis are: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), MultiScale Structural 
Similarity Index (MS-SSIM), Video Quality Metric (VQM), Mean Sum of Differences (DELTA), Mean Sum of Absolute Differences (MSAD), 
Mean Squared Error (MSE), Netflix Video Multimethod Assessment Fusion (Netflix VMAF) and Visual Signal-to-Noise Ratio (VSNR). 
The video sequences used for testing purposes were encoded according to H.264/AVC with twelve different target coding bitrates, 
at three different spatial resolutions (resulting in a total of 190 sequences). In addition to objective quality assessment, subjective 
quality assessment was performed for these sequences. All results acquired by objective VQA methods have been compared with 
subjective Mean Opinion Score (MOS) results using Pearson Linear Correlation Coefficient (PLCC). Measurement results obtained 
on a large set of video sequences with different spatial resolutions show that VQA methods like SSIM and VQM correlate better with 
MOS results compared to PSNR, SSIM, VSNR, DELTA, MSE, VMAF and MSAD. However, the PLCC results for SSIM and VQM are too low 
(0.7799 and 0.7734, respectively), for the usage of these methods in streaming services instead of subjective testing. These results 
suggest that more efficient VQA methods should be developed to be used in streaming testing procedures as well as to support the 
video segmentation process. Furthermore, when comparing results obtained for different spatial resolutions, it can be concluded that 
the quality of video sequences encoded at lower spatial resolutions in cases of lower target coding bitrate is higher compared to the 
quality of video sequences encoded at higher spatial resolutions at the same target coding bitrate, particularly when video sequences 
with higher spatial and temporal information are used.
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1. INTRODUCTION

The major increase in Internet accessibility over the 
last decade has resulted in high demand of differ-
ent multimedia content availability that is subject to 
changing network conditions. The prediction is that In-

ternet video traffic will increase from the current 105 EB 
per month to 240 EB per month by 2022 and consumer 
Video on Demand (VoD) traffic will nearly double by 
2022 [1]. Various VoD applications and adaptive bitrate 
(ABR) streaming algorithms have been developed, 
which has solved some of the problems with adapt-
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ing to changing network conditions, but there is still 
room for improvement. Nowadays ABR algorithms take 
into account various parameters to adapt to chang-
ing network conditions like variations in bandwidth, 
video segment size, and buffer fullness. Quality of vid-
eo sequences that are played back to the user should 
be tested so that the amelioration of ABR algorithms 
could be verified. 

Regardless of the network conditions, users request 
the highest possible Quality of Experience (QoE), which 
is still a challenging task. As opposed to QoE, the pa-
rameters in the Quality of Service (QoS) specification 
are selected depending on the type of application and 
are related to technical aspects. QoS was used to quan-
tify the quality in multimedia services for many years, 
but the question arose whether the technical param-
eters of the network correspond to the user’s percep-
tion of video quality, because QoS does not take into 
account user’s subjectivity. Currently a large amount of 
video streaming services, including social media, use 
objective Video Quality Assessment (VQA) methods to 
measure and control the video quality they deliver to 
end-users. Objective VQA methods can be also used as 
inputs to QoE predictors [2-3]. Still the correlation be-
tween objective and subjective VQA methods should 
be more thoroughly analyzed. 

Human-Computer Interaction (HCI) researchers were 
first to point out that QoE takes into account emotions, 
relationships, context, and expectations [4]. The QoE 
is defined by ITU-T as the user’s subjective acceptance 
of service [5]. The QoE is also defined as a measure of 
user’s satisfaction or bother with the service [6] which 
differs from subjective VQA, which is focused on pre-
dicting user’s responses to visible distortions. Authors 
in [7] state that QoE is a multidisciplinary area based 
on engineering and cognitive science, economics, and 
social psychology. The QoE is affected by various fac-
tors that can be divided into human, context and sys-
tem. Human factors include user preferences, different 
sensorial and cognitive processes. Context factors are 
economic and social aspects, as well as time and space 
in which a service is used.  System factors are software 
(SW) and hardware (HW) limitations of electronic de-
vices that are being used [8]. To ensure the highest pos-
sible QoE level, the playback of video content should 
be seamless, without delays and rebuffering events.

Developers of novel services are taking into account 
subjective and objective VQA methods that are used 
to quantify user’s QoE [9]. The reliability of an objective 
VQA method is usually verified and quantified by com-
paring its results to the results of subjective testing. 
Objective VQA methods are still a vital part of service 
testing because subjective testing is time-consuming, 
expensive and cannot provide the measurement of 
video quality fast enough [10]. Thus, analysis of objec-
tive VQA methods on various video sequences with dif-
ferent spatial and temporal activity and with different 
spatial and temporal resolution is important to further 

optimize ABR algorithms testing procedures. The serv-
er side in streaming services stores video sequences in 
segments encoded with various target coding bitrates 
and with different spatial resolutions. The client side in 
streaming services connects the received video seg-
ments and prepares the video sequence for playback. 
Depending on the playback device, spatial resolutions 
of all video segments have to be adjusted. The idea of 
this article is to analyze the efficiency of VQA methods 
on the server side, in order to improve the selection of 
proper target coding bitrates and spatial resolutions 
with respect to network conditions, but also the spatial 
and temporal activity of a given video sequence.

For this article ten different video sequences with dif-
ferent spatial and temporal activity were encoded with 
various parameters regarding target coding bitrates 
and spatial resolutions. Nine VQA methods have been 
tested on encoded video sequences after they were 
scaled to Full HD spatial resolution. All results were then 
compared to results acquired from subjective testing. 

This article is constructed as follows: related work is 
given in section 2. Section 3 gives information about 
test setup, selected coding parameters, target coding 
bitrates and calculated values of spatial and temporal 
information of selected video sequences. Section 4 
that includes results and discussion is followed by the 
conclusion.

2. INTRODUCTION

Based on the final video quality score of distorted 
video sequence which can be determined by a com-
puter or a user, VQA methods can be divided into ob-
jective and subjective methods. Objective VQA meth-
ods can further be divided into: 

•	 full-reference (FR) objective VQA methods: require 
full reference video sequence for analysis [10]

•	 reduced-reference (RR) objective VQA methods: 
require only a number of features from reference 
video sequence for evaluation of distorted video 
sequence quality [11, 12],

•	 no-reference (NR) objective VQA methods: pre-
dict quality without using any reference infor-
mation and do not need any information about 
the original video [13, 14].

In this article several FR objective VQA methods are 
analyzed: Mean Sum of Differences (DELTA), Mean Sum 
of Absolute Differences (MSAD), Mean Squared Error 
(MSE), Peak Signal-to-Noise Ratio (PSNR) [15], Struc-
tural Similarity index (SSIM) [16], MultiScale Structural 
Similarity Index (MS-SSIM) index [17], Visual Signal-to 
-noise Ratio (VSNR) [18], Netflix Video Multimethod As-
sessment Fusion (Netflix VMAF) [15], RR metric Video 
Quality Metric (VQM) [19]. 

DELTA uses the mean difference of the color compo-
nents in the correspondent points of image for quality 
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assessment. MSAD uses the mean absolute difference 
of the color components in the correspondent points 
of image for quality assessment [20]. 

MSE, DELTA, MSAD and PSNR are VQA metrics that 
do not take into account Human Visual System (HVS) 
characteristics. MSE and PSNR are based on statistical 
processing of the mean value of the square of the pixel 
difference, thus they do not achieve a high correlation 
with subjective VQA scores. Metrics that achieve bet-
ter correlation with subjective VQA scores are SSIM and 
MS-SSIM because they take into account HVS which is 
suitable for acquiring structural information. MS-SSIM 
uses structural distortion calculation but on multiple 
scales. SSIM and MS-SSIM compare structural features 
extracted from the video sequences as opposed to 
comparing the pixel values, [15, 16,18]. 

VSNR uses low-level properties of HVS of contrast sen-
sitivity and visual masking and mid-level properties of 
global precedence in the decision-making process. It 
takes into account the near-threshold and supra-thresh-
old properties of HVS to determine the visual accuracy 
of the analyzed video. Both the near-threshold and 
supra-threshold properties are presented as Euclidean 
distances. VSNR is the linear sum of those distances. The 
characteristic of VSNR are efficiency regarding the mem-
ory requirements and computational complexity [18]. 

Netflix VMAF is a metric that correlates well with 
Mean Opinion Score (MOS) due to the fact that it com-
bines multiple elementary video quality features. The 
estimation model was trained using a large MOS data-
set. VMAF focuses on quality degradation resulted from 
rescaling and compression. The perceived quality score 
is calculated by computing scores from various VQA al-
gorithms and combining them using a support vector 
machine [15].

VQM metric uses the Discrete Cosine Transform (DCT) 
to calculate the distortion in the video sequences. The 
value of VQM increases with the level of degradation in 
the analyzed video sequence [19].

Before analyzing the correlation between different 
objective and subjective VQA methods, it is necessary 
to investigate what affects the QoE of end-users the 
most. The QoS used for analyzing various multimedia 
services depends on the type of service for which the 
parameters are analyzed. Nowadays it is well known 
that user’s expectation of delivered video quality often 
do not meet the information acquired from measured 
network parameters. It is useful to gather information 
about network parameters to get the knowledge of 
certain events in the network, but that information will 
not present the user’s experience of those events [21].

Video sequence processing procedure consists of 
recording or generating the video sequence, coding, 
compression, transferring, decoding, and reproducing. 
During those processing procedures different factors 
can influence both the QoE and the QoS and vary the 
user’s experience. Considering that various technical 

and non-technical factors influence the user’s experi-
ence, optimization and measurement of video quality 
is an elaborate task [22]. 

As previously mentioned, there are different techni-
cal factors that can decrease the quality of the video 
sequence in processing procedure. Users generally per-
ceive high contrast video sequences as video sequenc-
es with better video quality, whereas video sequences 
with low brightness, contrast and sharpness as video 
sequences with low video quality [23].  ITU-T states that 
subjective testing conducted with a group of at least 
15 individuals is the most precise VQA method [24]. 
For researchers to conduct such testing, ITU-T provides 
regulation concerning viewing conditions, evaluation 
procedures, criteria for selecting users and materials 
and methods of data analysis [25].

Taking into account that subjective VQA methods 
give more accurate results, it is important to state that 
the QoE is lower if there is substantial initial delay or 
there is deterioration in the first temporal segment of 
the video sequence. Also the QoE is lower in the cases 
of up-switching between successive video quality lev-
els compared to instantaneous up-switching between 
quality levels by more than one step. Authors in [26] 
state that quality level switching among video se-
quences with different spatial resolutions affects the 
QoE more than switching among video sequences with 
different temporal resolutions. Nevertheless, some au-
thors point out the drawbacks of subjective testing like 
the fact that previous experiences of the participants 
can compromise the test results [27]. Also, subjective 
VQA results can be affected by the participants’ prefer-
ences [28]. 

Authors in [26] state that results acquired by subjec-
tive VQA metric like PSNR do not always correlate with 
the results acquired from the subjective VQA methods. 

Although authors in [18] state that objective VQA 
metrics like MSE and PSNR have low correlation with 
subjective testing because they do not take into ac-
count the properties of HVS, authors in [29] state that 
PSNR and SSIM have good correlation with subjective 
testing. 

Authors in [30] compared PSNR and SSIM to MS-SSIM 
and VMAF. They state that PSNR has the worst results 
due to the fact that it does not consider perceptual 
information. SSIM performed somewhat better com-
pared to PSNR especially in cases of images with vari-
ous supra-threshold distortions. Considering the MS-
SSIM has multiscale properties, it performed better 
than SSIM. VMAF performed the best, but only if Netflix 
dataset is used because it captures scaling compres-
sion artifacts and does not perform well with unseen 
distortions. Authors in [31, 32] state that MS-SSIM and 
VQM achieve roughly the same results. 

Compared to related work, this article compares re-
sults of nine full reference VQA methods to the results 
of subjective testing using ten video sequences with 
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different spatial and temporal information encoded on 
three spatial resolutions and various target coding bi-
trates. The idea is to use a larger set of video sequences 
to identify the best VQA method to be used in the fu-
ture for optimizing video segmentation procedures at 
server side as well as testing ABR algorithms that use 
scaling of spatial resolutions.

3. TEST SETUP

Testing conducted for this article was done in order 
to compare different VQA methods and determine 
which of them gives the most similar results to those 
obtained by subjective testing when using video se-
quences with different spatial and temporal informa-
tion encoded on different spatial resolutions, scenario 
often seen in streaming services. Ten various video 
sequences (often used in testing of ABR algorithms) 
were selected for testing purposes based on their spa-
tial and temporal activity. All sequences were encod-
ed at three spatial resolutions and various target cod-
ing bitrates, from 600 kbps to 12600 kbps. The VQA 
methods analyzed in this article are MSE, PSNR, VSNR, 
SSIM, MS-SSIM, DELTA, MSAD, VQM and Netflix VMAF. 

Results were acquired using MSU Quality Measure-
ment Tool [20]. All selected video sequences are avail-
able in FullHD spatial resolution with 25 fps. The core 
sequences used in this article are titled: BlueSky (BS), 
Chimera1102353 (C53), Station2 (S2), PedestrianArea 
(PA), Chimera1102347 (C47), CosmosLaundromat 
(CL), ElFuenteDance (ED), MeridianConversation (MC), 
Skateboarding (SK) and Soccer (SO). BS, S2, PA were 
obtained from the dataset published in [33]. Other 
video sequences were obtained from the dataset 
published in [34].

a) b)

c) d)

e) f )

g) h)

i) j)

Fig.1. Frames from video sequences: a)Blue Sky 
(BS) b) Chimera1102353 (C53) c) PedestrianArea 
(PA) d) Station2 (S2) e) Chimera1102347 (C47) f ) 

CosmosLaundromat (CL) g) ElFuenteDance (ED) h) 
MeridianConversation (MC) i) Skateboarding (SK) 

 j) Soccer (SO)

Temporal and spatial activity parameters titled Tem-
poral Perceptual Information (TI) and Spatial Perceptual 
Information (SI) were calculated based on [35] for Y color 
component of video sequences in YUV format. TI and 
SI values for all sequences are presented in Fig. 2. From  
Fig. 2. it can be seen that PA and S2 have similar SI but 
different TI. Sequences C53 and C47 have similar TI but 
different SI. The same stands for ED and SO. SO is the se-
quence with the highest SI, BS is the sequence with the 
highest TI, whereas C53 is the sequence with lowest SI, 
MC is the sequence with the lowest TI. This information 
of SI and TI shall be vital for the analysis of VQA methods.

All selected video sequences were encoded at three 
spatial resolutions: nHD (640x360), HD (1280x720) and 
FullHD (1920x1080), according to H.264/AVC video 
compression standard with coding parameters given in 
Tab.1, using open-source program called FFmpeg [36]. 
Spatial resolution downscaling was done using the me-
dium preset and CRF 0 (lossless). FFmpeg uses the scale 
filter that changes the output sample aspect ratio.

During the coding process, the preset was set to slow 
because it presents a compromise between time need-
ed for compression and its efficiency. When creating 
core video sequences, Constant Rate Factor (CRF) was 
set to zero because it ensures the best possible quality 
of the output video. 

Other sequences encoded from core sequences were 
encoded using CRF of 23, which is the default value in 
FFmpeg. Since the CRF was used, the achieved target 
coding bitrate can vary i.e. be higher or lower than tar-
get coding bitrate, because CRF focuses on delivering 
the requested quality level by using the bitrate close to 
target coding bitrate. Video sequences with high SI and 
TI are expected to have the highest achieved coding 
bitrate for equal target coding bitrate. 
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All selected target coding bitrates are given in Tab. 2. 
There are in total 19 different combinations of spatial 
resolution and target coding bitrate listed in Tab. 2. All 
ten video sequences with different SI and TI were en-
coded at those 19 different combinations, thus there 
are 190 encoded video sequences.

Fig.2. Spatial and temporal activity of video 
sequences used in our experiments

Tab.1. H.264/AVC coding parameters used in our 
experiments.

Coding parameter Value

overall encoding strategy 2-pass variable bitrate

profile high

coding CABAC entropy coding

level 4.0

peak rate 1080p Superbit

quantiziercurve compression 0.9

minimum quantization 3

Tab.2. Target coding bitrates.

Spatial resolution Target coding bitrate [kbps]

nHD 600; 800; 1000; 1400; 2400; 5400

HD 600; 1400; 2400; 3200; 4000; 5600; 9000

Full HD 600; 1400; 5400; 7200; 9000; 12600

In order to compare the quality of sequences with 
different spatial resolutions, before the objective and 
subjective quality evaluation, video sequences with 
nHD and HD resolution were up-scaled to Full HD. Bi-
linear interpolation was selected as scaling method 
due to its low complexity but overall satisfying results. 
The bilinear interpolation was also done using FFmpeg. 
In this way, we simulated conditions in which ABR may 
request from the server video segments with a lower 
resolution due to changes in network throughput, but 
the video sequence is always presented to a viewer 
with the same (the highest possible) resolution.

4. RESULTS AND DISCUSSION

Fig. 3. to Fig. 6. present test results for VQA methods 
PSNR, SSIM, VQM, and Netflix VMAF. All figures show mea-
surement results for ten video sequences encoded at Full 
HD spatial resolution with 600, 1400, 5400, 7200, 9000, 
12600 target coding bitrates. From Fig. 3 it can be seen 
that video sequences with higher SI and TI (Fig. 2.) have 
lower values of PSNR due to the fact that they are more 
complex to encode with the selected coding parameters. 
Furthermore, it can be concluded that video sequences 
with higher SI have lower PSNR values in cases when com-
paring two video sequences with similar TI like C53 and 
C47. Looking at values from S2 and PA video sequences, 
it can be concluded that in case of video sequences with 
similar SI, video sequence with higher TI has lower PSNR 
values. All video sequences have a value drop at the tar-
get coding bit rate of 600 kbps due to exceedingly low 
target coding bitrate for the analyzed spatial resolution. 
The lower the values of SI and TI are, the lower the drop in 
PSNR value is. Similar conclusions considering the relation 
of measurement results to SI and TI can be gathered from 
Fig. 4. to Fig. 6. The only main difference is the scale the 
VQA metric uses, thus the curves look more or less scat-
tered. In addition to objective quality testing, subjective 
testing was performed for all 190 video sequences. The 
subjective VQA measurement was done in a controlled 
environment with 26 inexperienced viewers [37]. After 
conducting the experiment, MOS was calculated as a 
mean value of gathered results for each video sequence. 

Fig.3. PSNR values for Full HD spatial resolution

Fig.4. SSIM values for Full HD spatial resolution

Volume 12, Number 1, 2021
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Fig.5. VQM values for Full HD spatial resolution

Fig.6. Netlix VMAF values for Full HD spatial 
resolution

Pearson Linear Coefficient (PLCC) was calculated to de-
termine the correlation between measurement results 
from all objective VQA methods and subjective test re-
sults [38]. PLCC results have been calculated for every spa-
tial resolution for every video sequence separately, then 
for all video sequences for certain spatial resolution, and 
for all video sequences for certain objective VQA method.

Results for PLCC for all video sequences at certain spa-
tial resolution and for all video sequences in total for 
each objective VQA method are given in Tab. 3. PLCC 
results for nHD and HD have been calculated for the up-
scaled video sequences. In total, 190 video sequences 
have been analyzed for each objective VQA method. The 
results showed that the correlation between measure-
ment results of subjective and objective VQA is, for most 
VQA methods, the lowest for video sequences encoded 
with HD resolution. This can be explained by the fact 
that the number of target coding bitrates used in the en-
coding process for this resolution was the largest. 

In general, none of the metrics used achieved a very 
high PLCC value for all video sequences. However, SSIM 
and VQM have the highest PLCC (0.7794 and 0.7734, 
respectively), and they achieve overall the best results 
when different spatial resolutions are used. Although 
SSIM has the highest PLCC for all sequences, VQM 
achieves the best results for HD resolution, i.e. when a 
larger number of target coding bitrates is used.

Considering that SSIM and VQM take into account 
some of the HVS characteristics, they outperform PSNR, 
DELTA, MSAD, MSE and VSNR as can be seen from Tab. 
3. The unexpectedly low PLCC results are obtained for 
Netflix VMAF, comparable to PSNR results, which has 
only a bit lower PLCC. Although Netflix VMAF combines 
multiple elementary video quality features and has 
been trained on streaming video sequences, it does 
not perform well on our experimental setup. Partially, 
this can be explained with different settings for subjec-
tive measurements used for VMAF development, i.e. 
model for VMAF is based on the assumption that the 
video sequences are presented in 1080p resolution TV 
display and that viewers are on the viewing distance of 
3x the screen height (3H).

Tab.3. PLCC results for video sequences at nHD, HD 
and Full HD spatial resolutions.

Objective metric Spatial resolution PLCC

PSNR

360p 0.685044

720p 0.644172

1080p 0.715153

All video sequences 0.708182

SSIM

360p 0.888921

720p 0.715210

1080p 0.831389

All video sequences 0.779926

MS-SSIM

360p 0.718876

720p 0.681271

1080p 0.769829

All video sequences 0.711381

VQM

360p 0.867630

720p 0.755780

1080p 0.831150

All video sequences 0.773982

DELTA

360p 0.823293

720p 0.634594

1080p 0.830959

All video sequences 0.649855

MSAD

360p 0.608980

720p 0.605221

1080p 0.684087

All video sequences 0.699860

MSE

360p 0.726784

720p 0.691223

1080p 0.697680

All video sequences 0.666198

Netflix VMAF

360p 0.670822

720p 0.585973

1080p 0.718319

All video sequences 0.718851

VSNR

360p 0.543860

720p 0.525684

1080p 0.712838

All video sequences 0.708905
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In our experiment, viewers watched video sequences 
on a computer monitor at a distance of less than 3H. When 
analyzing the results for each video sequence it can be 
concluded that objective VQA method results obtained 
for video sequences with higher spatial and temporal in-
formation have lower PLCC which states for all VQA meth-
ods (Tab. 4. presents SSIM results for C53, CL and SO, but 
similar results were obtained for all VQA methods).

The lower PLCC values for video sequences with high 
SITI (a product of SI and TI values, SITI=SI.TI), are a result 
of spatial and temporal masking of the errors that oc-
cur due to a large number of details and fast motions 
in video sequences with high SI and TI. Objective meth-
ods compare video sequences frame by frame (full ref-
erence metrics) and do not take properly the effects 
of spatial and temporal masking into account, so they 
generally rate the quality more rigorously compared to 
human viewers for these fast and complex sequences. 
That can cause the metrics to overestimate the visible 
impairments and give lower objective VQA scores com-
pared to subjective scores.

Taking into account that ABR algorithms use video 
segments with different spatial resolution, analysis has 
been done on results given for every spatial resolution 
separately. Fig.7. presents SSIM results for video se-
quences CL, C53 and SO for all three spatial resolutions. 
CL, C53 and SO are selected because C53 has the lowest 
SITI, SO has very high SITI and the highest SI, and SITI 
of CL is in the middle compared to C53 and SO (Fig. 2.). 
Although results are given for SSIM, all other metrics 
give similar results. From Fig. 7. it can be concluded that 
in general the SSIM values are higher when achieved 
bit rate is higher and that video sequences encoded at 
higher spatial resolution have higher SSIM values. Still, 
in cases when spatial and temporal activity of video se-
quence are too high to encode it on low target coding 
bitrate and with HD or Full HD spatial resolutions, SSIM 
values can be higher in the case of nHD spatial resolu-
tion. For example, in the case of the SO video sequence 
that has high spatial and temporal activity, SSIM values 
for the target bit rate of 600 kbps are lower for both HD 
and Full HD compared to nHD. In the case of CL that has 
a lower SI and TI at 600 kbps, SSIM value for HD spatial 
resolutions is higher than for Full HD spatial resolution. 
Taking into account SI and TI, it can be seen that the bit 
rate at which the overlap occurs is higher for video se-
quences with higher SI and TI. This conclusion can help 
with selecting the most suitable target coding bitrates 
for each spatial resolution, thus improving encoding and 
segmentation process when preparing video sequences 
for adaptive streaming. For the C53 sequence, which 
has the lowest SITI, there are no overlapping effects for 
nHD resolution. SSIM results for this resolution are lower 
than for HD and Full HD even for 600 kbps, because due 
low spatial and temporal activity of this video sequence, 
coder can successfully encode at higher spatial resolu-
tions. It can be expected that overlapping for sequences 
with such low SITI occurs at even lower target coding 

bitrates. The MOS results for video sequences C53, CL 
and SO, given in Fig. 8, confirm that the overlapping of 
curves occurs. For CL and SO video sequences it can be 
seen that at lower target coding bitrates, MOS as well as 
SSIM can be higher for lower spatial resolution. The C53 
sequence has much lower MOS results at nHD than at 
HD and Full HD resolutions, even at 600 kbps, because 
the loss of details caused by a decrease in spatial resolu-
tion cannot be masked due to the low spatial and tem-
poral activity of the video content.

Fig.7. SSIM values for three spatial resolutions 
for video sequences Chimera1102353 (C53), 

CosmosLaundromat (CL) and Soccer (SO)

Fig.8. MOS values for three spatial resolutions 
for video sequences Chimera1102353 (C53), 

CosmosLaundromat (CL) and Soccer (SO)

Tab. 4. PLCC results for SSIM and SITI for 
Chimera1102353 (C53), CosmosLaundromat (CL) 

and Soccer (SO) video sequences.

Objective 
metric Video sequence SITI PLCC

SSIM Chimera1102353 (C53) 75.066 0.921

CosmosLaundromat(CL) 470.342 0.842

Soccer (SO) 2200.608 0.821

Volume 12, Number 1, 2021
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5. CONCLUSION

In order to improve datasets and the segmentation 
process for video streaming purposes in the future, dif-
ferent variants of encoded video sequences were used. In 
this paper, nine subjective VQA methods were analyzed 
using ten video sequences with different SI and TI that 
were encoded at three spatial resolutions and various 
target coding bitrates. From our results, video sequences 
with higher SI and TI have lower values of PSNR. When 
comparing the sequences with similar TI, it can be con-
cluded that sequences with higher SI have lower PSNR 
values. Sequences with higher TI and similar SI have low-
er PSNR values. PSNR values drop considerably at cod-
ing bit rate of 600 kbps, especially for video sequences 
with higher SI and TI. Similar results are obtained for all 
analyzed objective VQA metrics. Results also show that 
in cases of higher SI and TI and low target coding bitrate, 
subjective VQA scores can be higher for lower spatial 
resolutions. The same conclusion can be made from 
MOS results. On selected dataset, SSIM achieves the best 
overall correlation to PLCC results calculated based on 
MOS thus it is the best in cases when video sequences 
are encoded with various spatial resolutions and various 
target coding bitrates. Video sequences with higher SI 
and TI have lower PLCC results due to spatial and tempo-
ral masking, which objective VQMs fail to capture well. 
VQM acquires the best results for HD resolution which 
was calculated for larger set of encoded sequences, 
though SSIM has the highest overall PLCC. Compared to 
PSNR, DELTA, MSAD, MSE and VSNR, SSIM and VQM have 
higher values of PLCC because they consider HVS char-
acteristics. From MOS results and results obtained with 
objective VQA methods it can also be concluded that 
when sequences with high SI and TI encoded at low tar-
get coding bitrate are used, video quality can be higher 
in case of nHD spatial resolution compared to HD and 
Full HD spatial resolutions. This situation does not occur 
when video sequences with low SI and TI are used. In the 
future work those conclusions shall be used to shape pa-
rameters for new adaptive streaming algorithm and to 
propose a new dataset for adaptive streaming purposes.
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