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Abstract – The need for assertive video classification has been increasingly in demand. Especially for detecting endangering 
situations, it is crucial to have a quick response to avoid triggering more serious problems. During this work, we target video 
classification concerning falls. Our study focuses on the use of high-level descriptors able to correctly characterize the event. These 
descriptor results will serve as inputs to a multi-stream architecture of VGG-16 networks. Therefore, our proposal is based on the 
analysis of the best combination of high-level extracted features for the binary classification of videos. This approach was tested on 
three known datasets, and has proven to yield similar results as other more consuming methods found in the literature.
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1.	 INTRODUCTION

Abnormal situations can be characterized as actions 
that fall outside the scope of a given context. Therefore, 
an example of such, can be the identification of endan-
gering situations. A condition that can be considered 
a risk, especially for older people, are falls. Due to the 
weakening of the body’s physical structures, an elderly 
person’s fall can lead to various other problems that 
can contribute to more severe outcomes. Accordingly, 
it is critical the fast and correct identification of these 
actions to avoid further complications.

A way of determining some of these abnormal ac-
tions is through the analysis of videos from surveillance 
cameras. Thus, the identification of these cases in vid-
eos is being facilitated by the use of computational re-
sources. The sole employment of a surveillance camera 
operator is not always as assertive as an on-going sur-
veillance algorithm. This can be observed since people 
can get easily distracted, unlike a machine.

The use of neural network approaches has been play-
ing an important role in action identification in videos. 

There are many branches considering these studies, 
one of them is video classification. Video classification 
is the verification of the existence of a given action, in a 
group of actions, in an analyzed input video.

This study, an extension of Carneiro et al. [1], still in-
fluenced by the identification of falls, focuses on the bi-
nary classification of videos. Since many works use in-
formation that is directly linked to the RGB information, 
such as the video frame itself, our proposal is based on 
the use of data only generated from a high-level de-
scriptor extraction. It is a concern of ours that the RGB 
can influence the classification behavior of the network 
when dealing with the generalization of cases.

The use of a specific dataset, that is influenced by cam-
era noise, actors, furniture and others, can make the net-
work not as assertive as expected if the frame informa-
tion is solely used. In addition, since high-level descrip-
tors might not be as assertive as an RGB information for 
a given dataset, we also focus on the merge of three of 
these descriptors: (i) optical flow; (ii) visual rhythm; and 
(iii) pose estimation. Although some of these features 
have already been used in other works, their combina-
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tion is a novel approach. This combination can provide 
us with complementary temporal, spatial and rhythmic 
(temporal-spatial) information of the video without hav-
ing to rely on the raw frame information itself.

This descriptor ensemble was thought of as a three-
stream VGG-16 [2] architecture known as a multi-
stream. With this multi-stream, we were able to verify 
the best complementary stream combination for a 
video classification concerning falls. Furthermore, by 
avoiding the use of RGB, we are able to conceal the 
identity of the people in the analyzed videos as well as 
to observe that the combination of lesser information 
descriptors can provide as good results as the features 
commonly used in the literature.

This text is organized as follows. In Section 2, we dis-
cuss some of the recent works associated with fall detec-
tion in videos. In Section 3, concepts used in this work 
are clarified. In Section 4, the proposed methodology 
is explained. In Section 5, we describe the experiments 
performed and compare the achieved results to other 
published methods. Finally, some concluding notes and 
suggestions for future work are presented in Section 6.

2.	 RELATED WORKS

Given the aging process, it is possible to notice a weak-
ening of various body structures. Associated with this, it is 
observable that as well as reflexes, balance can also be af-
fected. Therefore, these issues allied to a number of other 
factors can be responsible for the occurrence of falls. In 
addition, since recovery for this portion of the population 
might not be as fast, falling situations might lead to ag-
gravated injuries. Thus, it is imperative to have access as 
quickly as possible to aid. Hence, several researches asso-
ciated with computational resources, related to wearable 
sensors, video processing and machine learning, have 
been conducted to try to identify these falls faster.

A study associated with video information was con-
ducted by Lin et al. [3] regarding the extraction of mo-
tion vectors and DC+2AC images. This information is 
used as input to a Global Motion Estimator (GME) to 
cluster global and local motion. Based on this cluster-
ing, falls can be identified by the analysis of the per-
son’s centroid, the vertical projection histogram value, 
and the event duration. There is also research related to 
identifying falls based on silhouette recognition. These 
studies use this data as input to statistical models, such 
as Hidden Markov Model (HMMs), to determine the oc-
currence of falls [4][5].

 It has also become important for these studies to 
conceal the subject’s identity. Accordingly, privacy can 
be achieved by blurring, silhouetting, covering the ob-
ject with graphical shapes, among other strategies. A 
common element that is also associated with action 
detection is background subtraction. Thus, a subtrac-
tion method in conjunction to head tracking algo-
rithms was proposed by Yu et al. [6] to identify falls. As 
observed, head tracking is also useful in this scenario, 

Yu et al. [7] was able to correlate this data to density cal-
culation methods, with a mixture Gaussian model for 
fall detection. Similarly, with a Gaussian model, Rougier 
et al. [8] was able to use a feature of human body defor-
mity to cope with falling. Attempts for detection were 
also made by using a subject’s bounding box surround-
ing angulations to train a K-Nearest Neighbor (KNN) [9].

Depth information also started to be considered 
among detection studies. The RGB-D (RGB image and 
analogous depth image) were used to extract features, 
such as Histogram of Oriented Gradients (HOG), Opti-
cal Flow (OF) and target skeletons. These features were 
served to a Support Vector Machine (SVM) to be able 
to classify fall events [10]. It has also been a concern 
to determine whether a learning algorithm has a good 
performance associated with action detection. Thus, a 
comparative research was conducted to verify distinct 
learning structures associating them to falls [11].

Kwolek and Kepski [12] demonstrated that, in given 
circumstances, the KNN algorithm could provide bet-
ter results compared to the SVM algorithm. The optical 
flow is regularly associated with a VGG for classification 
scenarios. By using it, Nunez-Marcos et al. [13] classi-
fied falls with a three-stage transfer learning method. 
Naive-Bayes has also been used as an alternative for 
detection, employing as data Bag-of-Words from sil-
houette oriented volumes (SOV) strategy [14]. Alterna-
tive studies used a modified CNN AlexNet architecture 
allied to transfer learning applied to fall detection for 
surveillance videos [15]. The use of curvelet transforms 
and an SVM for the identification of human postures 
are also used with a hidden Markov model (HMM) to 
classify the existence of falls in videos [16].

3.	 Theoretical Background

In this section, we will clarify some of the basic knowl-
edge necessary for understanding this work.

3.1. Optical Flow

The optical flow is a high level feature descriptor 
able to outline an approximation of a possible move-
ment between video frames (Figure 1). This identified 
movement can, for example, be caused by an object 
displacement or a camera shift. Therefore, the algo-
rithm’s objective is to highlight frame information that 
was relocated from a previous frame to its following. 
Hence, we are able to obtain only the moving object 
information in the image, thus, being able to discard 
every other extra static information in the frame.

Let I(x,y,t) be a pixel in a video’s first frame f1 and dT 
the elapsed time between the first frame and its next 
compared frame f2. Considering that the pixel I(x,y,t) 
was relocated by a distance (dx, dy), based on the condi-
tion that the pixels of f1 and f2 have equivalent static 
intensities, we are able to use Equation 1, where x, y 
reference the coordinate of a pixel at the  t positioned 
frame. Then, after applying a Taylor series approxima-
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tion, it is possible to calculate the optical flow with 
Equation 2 through 6. There are two possible ways to 
calculate the optical flow of a set of frames, by a sparse 
or a dense methodology.

Volume 12, Number 1, 2021

Fig. 1. Frame examples from the FDD dataset and 
their optical flow extraction example in y and x 

components, respectively.

A sparse application will generate the optical flow 
information for selected pixels that can be considered 
relevant for an object, for instance edges. The dense 
method, on the other hand, calculates the optical flow 
per pixel. Despite being a more expensive approach, 
our study used the Farnebäck [17] algorithm to gen-
erate the video’s optical flow filtered frames, which is 
a dense optical flow calculation. This means that the 
flow vectors are calculated for each pixel. However, 
this choice was made once we

(1)

(3)

(5)

(2)

(4)

(6)

3.2. Visual Rhythm

The visual rhythm of a frame-set is a descriptor 
capable of providing spatio-temporal information about 
the video [18-20]. Although not visually intuitive, this 
descriptor, by gathering information of each individual 
video frame, is able to concatenate this information to 
generate an outcome that is composed of a single image 
capable of summarizing the video used as input.

This descriptor can be built based on a variety 
of methods. Therefore, different outcomes can be 
generated depending on the approach used. 

A first approach can be by using histograms. Consider 
a video V=(ft)t∈[0,T-1] in the 2D + t domain, D = {0,...,M-1} x 
{0,...,N-1}, where M and N are the width and height of the 

frame. The variable ft is a progression of frames and T is 
the total number of frames in V. A visual rhythm ϑ can 
be produced, for example, by assembling a sequence of 
histograms (Hft)t∈[0,T-1] calculated based on all the frames 
of a video. ϑ is defined in Equation 7, where Z∈[0,L-1] 
and t∈[0,T-1], such that T is the number of frames and L 
the number of histogram bins. Therefore, the result is a 
2D representation of the combination of all frame histo-
grams, where each column of ϑ represents a frame histo-
gram. This process is exemplified in Figure 3.

ϑ(t,z) =Hft  (z) (7)

Another technique that can be used to generate a 
visual rhythm is by sub-sampling [21][22]. Hence, the 
visual rhythm, in domain 1D+T, is a rendition of the 
video V=(ft)t∈[0,T-1] in which each frame ft has their pixels 
sampled into a column of ϑ (Equation 8). Accordingly, 
Z∈[0,....,hϑ-1] and k∈[0,....,wϑ-1], where z, k, rx and ry are 
the height and the width of ϑ, and the ratios of pixel 
sampled from ft respectively. In addition, A and B relate 
to the shifts on each frame, from where the algorithm 
can initiate the pixel sampling (Figure 3).

ϑ(k,z) =ft (rx × z + a, ry × z + b)

Although the output of these algorithms is a single 
image for a video, in the attempt of gathering more 
spatio-temporal information, we modified the algo-
rithm so that it could produce a visual rhythm for each 
frame. Thus, we are able to define how many frames we 
intend to use to create a visual rhythm that is associ-
ated with ft. Consequently, considering a window of 5 
frames, we use ft plus its 5 following frames to calculate 
a visual rhythm and associate it with ft, and so on until 
the last frame.

(8)

Fig. 2. First row: Frame examples from the URFD 
dataset Second row: The frame visual rhythm 

extraction examples.

Fig. 3. Visual rhythm algorithm example. 
The red arrow is demonstrating a possible way of 

pixel sampling of a frame. The information gathered 
is placed as a column of the visual rhythm output 

image.
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3.3. Pose Estimation

The pose estimator used during this work is a de-
scriptor able to detect a humanoid and determine its 
main joints. Similar to the optical flow, the pose estima-
tion will conceal unnecessary information for a classifi-
cation study (Figure 4).

For this descriptor, we used the algorithm proposed 
by Cao et al. [23]. The approach receives a video frame 
that is then used on a two-branch CNN feed-forward 
network, that is, networks that do not return the infor-
mation calculated by a layer to a previous one. Thus the 
information runs through the network until it reaches 
and becomes an output. An example is a multi-layer 
perceptron, that is able to predict sets of 2D confidence 
maps (S) of body member positioning (where might a 
body member be positioned in the frame) and 2D vec-
tor fields (L) (that calculates the degree of association 
between these members).

The set S = (S1,S2,...,SJ), where J is the number of body 
parts found, and L= (L1,L2,...,LC), where C is the number 
of limbs, are parsed by bipartite matching greedy infer-
ence so they can be associated. Lastly, the algorithm 
produces the 2D key-points indicating the posture of 
all human components of the frame.

Fig. 4. Frame examples from the Multicam dataset 
and their pose estimation examples.

3.4. Multi-Stream Architecture

The multi-stream architecture [28-30] is a learning 
algorithm based on the ensemble of individual learn-
ers, each learner is considered a stream (Figure 5). The 
ensemble can be made based on some different ap-
proaches, such as an average of the individual results, 
the use of a support vector machine (SVM), and oth-
ers [24]. The use of a multi-stream makes it possible for 
the network to learn each of the high-level descriptors 
without disregarding a descriptor as unimportant. An-
other feature is that, with multi-stream, we are able to 
evaluate the use of all descriptor combinations. In other 
words, considering the employment of three high-level 
descriptors, we can analyze the results of a combina-
tion one by one, two by two, and all three.

Fig. 5. Multi-stream architecture example.

4.	 Multi-Stream Fall Detection Approach

Since previous studies regarding abnormal action 
detection in videos have used standard descriptors 
for classification, our goal was to verify if the use of 
weaker feature descriptors could provide as satisfying 
classification results concerning fall detection. The 
purpose of this is based on the fact that, by discover-
ing good descriptors, we are able to manage poten-
tially faster or, even, more specialized descriptors for 
classifying each abnormal situation depending on its 
need.

The methodology proposed in this work is based on 
an ensemble of three VGG-16 streams. We acknowl-
edge that the use of the VGG-16 might be outdated, 
however, it is a classical method and have yielded satis-
fying results regarding classification in past studies. In 
addition, since the goal was to verify the relevance of 
feature combination rather than faster learning algo-
rithms we decided to keep this architecture for a pri-
mary result analysis. The features chosen for this study 
were the optical flow, the visual rhythm, and the sub-
ject’s pose estimation. Even though some of these fea-
tures have already been used in past literature works, 
the proposition of their combination is, to our knowl-
edge, novel.

4.1. High-Level Descriptor Extraction

In this work, we focused on three high-level descrip-
tors: (i) Optical Flow; (ii) Pose Estimation; (iii) Visual 
Rhythm. As an initial step of our method, the videos 
from each dataset needed to go through the investi-
gated descriptor algorithms. This pre-processing step 
guarantees the original frame information filtering 
according to our need of temporal, spatial or spatial-
temporal data. From each frame, these extractions 
generate other 2D image information (Figures 1, 2 and 
4). These images will then serve as inputs to what we 
acknowledge as a high-level feature extraction.

4.2. High-Level Feature Extraction

After obtaining the images provided by the descrip-
tors, each of these image groups (Optical Flow, Pose Es-
timation, Visual Rhythm) go through a modified VGG as 
it can be observed in Figure 6.  It should be noticed that 
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this modified CNN is not a part of the stream learning 
structure. It is mainly used to avoid explicit feature en-
gineering, since it is not intuitive or easy to determine 
which are the best features to extract and to ensure the 
method’s independence. The extracted feature vectors 
acquired by the modified VGG serve as weights for the 
following step, fine-tuning.

4.3. Individual Streams

Our work was based on the feature extraction of three 
descriptors. Therefore, the learning model needed to 
have three individual streams. Each of these streams go 
through a three step learning process: (i) multi-stream 
pre-training; (ii) fine-tuning; and (iii) ensembling.

In this work, the falling data provided by the datasets 
did not optimally contribute with the information re-
quired by our network. Therefore, more data was need-
ed to train this learning model. Thus, the initial step 
was to train the first 14 layers of each of the VGG-16 
on ImageNet [25] and, later, the UCF101 dataset [26]. 
This makes it possible for the network to understand 
the image’s basic structures as well as to identify move-
ment and sequences.

To guarantee that the network would learn the fall-
ing action itself, as a second step, we then froze these 
pre-trained layers and fine-tuned the remaining two. 
This fine-tuning procedure was associated with the 
feature vectors extracted (in Section 4.2) from each of 
the previously presented descriptors. Hence, since we 
implemented three streams, each individual stream 
was linked to a specific descriptor. In other words, 
each stream was fine-tuned with only one of the cal-
culated feature vectors. The third and final step is the 
ensemble of the results of the individual classifica-
tions to combine their isolated outcomes regarding 
the best combination of features for fall classification.

4.4. Classification

To provide the final classification verdict, as men-
tioned in the previous section, we used ensembling 
techniques. To analyze which type of ensemble would 
provide the best results for our classification, we used 
three different techniques: (i) average and threshold; 
(ii) average and a support vector machine (SVM); and 
(iii) continuous values and SVM.

The first technique, average and threshold, com-
puted the average based on the sum of each stream 
output and compared it to an empirically defined 
class threshold. The second ensembling method, 
on the other hand, had this class threshold defined 
and adjusted based on the assistance of an SVM. Fi-
nally, the continuous values and SVM classified the 
input regarding a generated vector with each of the 
streams output so that an SVM could find its separa-
tion region.

Fig. 6. Multi-stream architecture for fall detection

To analyze the impact of features from high-level 
descriptors regarding falls, all possible combinations 
of streams were explored in this work. Therefore, we 
organized the stream ensembling considering single, 
two by two, and all three stream results (Figure 7).

Fig. 7. Feature stream combination.

5.	 Experiments

In this section, we briefly describe the datasets used 
in our experiments, as well as the quantitative and 
qualitative results.

5.1. Dataset

Our method was evaluated on three well known falling 
sets throughout the literature: FDD, URFD [27] and Multi-
cam datasets. These datasets are focused on binary falling 
and not falling classes. The URFD dataset is composed of 
70 videos: (i) 30 videos of falls; and (ii) 40 videos displaying 
diverse activities. FDD disposes of 191 single camera sur-
veillance videos from both elderly home environments, 
and office rooms. The Multicam contains 24 scenarios, in 
which 22 have falling situations, recorded with 8 differ-
ently positioned video cameras around the room.
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5.2. Quantitative Results

Our quantitative analysis was based on sensitiv-
ity, specificity and accuracy metrics. They were cho-
sen since previous studies validated their works using 
them and we can better evaluate the outputs of our 
learner. Accuracy is a metric for the model performance 
evaluation that correlates both positive and negative 
classes and measures how accurate are the learning re-
sults (Equation 9). In Equations 9 to 11, variables TP, TN, 
FP, FN, P, N stand for true positives, true negatives, false 
positives, false negatives, total number of positive, and 
total of negative samples, respectively.

A=(TP+TN)/(P+N) (9)

Specificity is a metric that provides information re-
lated to, given a negative example, the probability 
of a result being negative (Equation 10). Sensitivity, 
also known as recall, is, given a positive example, the 
classification result being indeed positive (Equation 
11). These metrics were chosen since we did not use 
balanced accuracy to evaluate our method.

Specificity = TN/(TN+FP)  

Sensitivity=TP/(TP+FN)

(10)

(11)

To correctly train our network considering the ac-
tion of falling, since the entire positive video can con-
tain many other different actions, we cropped only the 
moment in which a fall occurred. Therefore, so that 
the network was not trained with what we consider 
a negative situation (walking, sitting, running, etc), 
we narrowed the training videos to only the period of 
frames containing a fall. This reduced the training set, 
however, it was a way to ensure that the training was 
not corrupted with false cases.

Considering that the training data was diminished 
and the not falling cases contained a lot more data, 
to try to balance this situation we applied a random 
downsampling of the dataset’s negative class to 
match the size of the positive class. Later on, experi-
ments were conducted considering an 80% training 
set and 20% testing set.

The results for our multi-stream for all of the descrip-
tor combinations for the FDD dataset concerning the 
different ensemble methods explained in Section 4.4 
can be seen in Tables 1, 2 and 3, respectively.

The best result obtained for the FDD dataset shown 
in Tables 1, 2 and 3 were yielded upon experiments 
with a five fold cross-validation, learning rate of 10-6, a 
mini-batch of 1024, 500 epochs and the batches were 
normalized. It was possible to see that the use of an 
SVM during the ensemble technique was beneficial for 
the classification of the FDD dataset. Considering the 
average and threshold (Table 1) as the baseline of our 
method, we are able to observe that the use of the SVM 

both with the average (Table 2) and continuous values 
(Table 3) had an improvement concerning the combi-
nation of weaker features such as the visual rhythm and 
the pose estimation. Both the results for Table 2 and 3 
were slightly similar, however, when using an SVM with 
the continuous values, the sensitivity was enhanced by 
almost 5% in a three stream combination.

Table 1. Results for the FDD dataset with the 
average and threshold.

FDD avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 42.00% 92.00% 96.80%

Multi-Stream 
(OF+PE) 85.00% 99.00% 98.66%

Multi-Stream 
(OF+VR) 23.00% 100.00% 95.73%

Multi-Stream 
(PE+VR) 29.00% 100.00% 96.09%

Single-Stream 
(OF) 69.00% 90.00% 98.22%

Single-Stream 
(PE) 100.00% 25.00% 29.21%

Single-Stream 
(VR) 13.00% 100.00% 95.20%

Table 2. Results for the FDD dataset with the 
average and SVM.

FDD SVM/avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 74.00% 100.0% 98.57%

Multi-Stream 
(OF+PE) 84.00% 100.0% 98.84%

Multi-Stream 
(OF+VR) 71.00% 100.00% 98.40%

Multi-Stream 
(PE+VR) 32.00% 100.00% 98.49%

Single-Stream 
(OF) 77.00% 100.0% 98.22%

Single-Stream 
(PE) 100.00% 24.00% 28.24%

Single-Stream 
(VR) 26.00% 100.00% 95.91%
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Table 3. Results for the FDD dataset with an SVM.

FDD SVM

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 82.00% 99.81% 98.84%

Multi-Stream 
(OF+PE) 82.00% 99.43% 98.49%

Multi-Stream 
(OF+VR) 77.00% 99.90% 98.66%

Multi-Stream 
(PE+VR) 24.00% 100.0% 95.82%

Single-Stream 
(OF) 77.00% 99.71% 98.49%

Single-Stream 
(PE) 100.0% 24.00% 28.00%

Single-Stream 
(VR) 26.00% 100.0% 95.00%

Table 4. Results for the URFD dataset with the 
average and threshold.

URFD avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 42.00% 100.0% 96.82%

Multi-Stream 
(OF+PE) 84.00% 99.0% 98.40%

Multi-Stream 
(OF+VR) 20.00% 100.00% 95.59%

Multi-Stream 
(PE+VR) 30.00% 100.0% 96.10%

Single-Stream 
(OF) 61.00% 100.0% 97.86%

Single-Stream 
(PE) 98.00% 26.00% 29.75%

Single-Stream 
(VR) 13.00% 100.0% 95.11%

Results for the URFD dataset can be seen in Tables 4, 5 
and 6. Similar to the FDD results, the experiments were 
conducted with a five fold cross-validation, a mini-bath 
of 1024, learning rate of 10-6, 500 epochs and normal-
ized batches. We have observed that the use of a small-
er learning rate helped to improve the results of both of 
the URFD and FDD datasets that had a smaller amount 
of positive cases to use while in training. In addition, 
the accuracy values also had an improvement with the 
use of an SVM in the classification. The enhancement 
was made upon sensitivity values as well, as it can be 
seen that Table 6 had an 11% growth compared to Ta-
ble 5 in a three-stream case combination.

The Multicam dataset was the largest dataset used 
during the experiments, its results can be seen in Ta-
bles 7, 8 and 9. As expected based on the same pattern 
of the results yielded by the previous tested datasets, 
Table 9 both sensitivity and specificity values had im-
provements compared to the other tables when the 

ensemble was assisted by the SVM. These results were 
obtained also using a five fold cross-validation, a mini-
batch of 1024, learning rated of 10-3, normalized batch-
es and 1000 epochs. It is possible to observe that Table 
9 had the best results, however when dealing with a 
dataset with a larger amount of data Tables 7 and 8 had 
similar values.

Table 5. Results for the URFD dataset with the 
average and SVM.

URFD SVM/avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 66.00% 100.0% 98.13%

Multi-Stream 
(OF+PE) 71.00% 100.0% 98.40%

Multi-Stream 
(OF+VR) 61.00% 100.00% 97.86%

Multi-Stream 
(PE+VR) 23.00% 100.0% 95.73%

Single-Stream 
(OF) 63.00% 100.0% 97.95%

Single-Stream 
(PE) 98.00% 26.00% 30.37%

Single-Stream 
(VR) 19.00% 100.0% 95.55%

Table 6. Results for the URFD dataset with an SVM.

URFD SVM

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 77.00% 100.0% 98.75%

Multi-Stream 
(OF+PE) 81.00% 100.0% 98.84%

Multi-Stream 
(OF+VR) 61.00% 100.00% 97.86%

Multi-Stream 
(PE+VR) 19.00% 100.0% 95.55%

Single-Stream 
(OF) 76.00% 100.0% 98.57%

Single-Stream 
(PE) 98.00% 24.00% 28.33%

Single-Stream 
(VR) 24.00% 100.0% 95.82%

As it can be seen the accuracy values did not nec-
essarily increase if the number of streams increased. 
However, we believe that some high-level features can 
be appropriate to detect specific actions, for example 
the pose estimation descriptor has a better detection 
rate when dealing with falling situations while the vi-
sual rhythm with negative cases for some of the data-
sets. Both of these features assisted in the growth of 
specificity and sensitivity values for the optical flow 
descriptor.
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Table 7. Results for the Multicam dataset with the 
average and threshold.

Multicam avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 84.00% 92.00% 88.33%

Multi-Stream 
(OF+PE) 62.00% 76.00% 70.45%

Multi-Stream 
(OF+VR) 89.00% 95.00% 92.52%

Multi-Stream 
(PE+VR) 92.00% 82.00% 86.56%

Single-Stream 
(OF) 58.00% 90.00% 76.35%

Single-Stream 
(PE) 27.00% 62.00% 47.17%

Single-Stream 
(VR) 91.00% 92.00% 91.71%

Table 8. Results for the Multicam dataset with the 
average and SVM.

Multicam SVM/avg

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 77.00% 93.00% 86.21%

Multi-Stream 
(OF+PE) 58.00% 86.00% 73.65%

Multi-Stream 
(OF+VR) 74.00% 98.00% 87.76%

Multi-Stream 
(PE+VR) 88.00% 90.00% 89.50%

Single-Stream 
(OF) 55.00% 91.00% 75.79%

Single-Stream 
(PE) 25.00% 68.00% 49.58%

Single-Stream 
(VR) 91.00% 92.00% 91.69%

In a general applicability, our method outputs as in-
teresting results as some of the methods found in the 
literature which used the same datasets (Tables 10, 11 
and 12). However, we are not able to directly compare 
the methods of the literature to our approach, since we 
do not know how the dataset was manipulated. None-
theless, our method had better specificity and, in some 
cases, accuracy results when compared to the others.

In general, the small amount of data provided by 
these datasets, considering what we use for training, 
made it difficult to maintain an above 95% accuracy 
for all of the cases. It is possible to observe that the da-
taset that had a larger amount of information, Multi-
cam, yielded more stable results compared to FDD and 
URFD. Compared to Carneiro et al. [1], our method even 
though not using the RGB information was still able to 
output compatible results.

Table 9. Results for the Multicam dataset  
with an SVM.

Multicam SVM

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 90.00% 94.00% 92.33%

Multi-Stream 
(OF+PE) 58.00% 90.00% 76.48%

Multi-Stream 
(OF+VR) 91.00% 93.00% 92.21%

Multi-Stream 
(PE+VR) 91.00% 92.00% 91.64%

Single-Stream 
(OF) 55.00% 91.00% 75.79%

Single-Stream 
(PE) 25.00% 68.00% 49.58%

Single-Stream 
(VR) 91.00% 92.00% 91.69%

Table 10. FDD comparison with other methods.

FDD comparison

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 82.00% 99.81% 98.84%

Nunez-Marcos 
et al.[13] 99.00% 97.00% 97.00%

Zerrouki and 
Houacine [11] - - 97.02%

Carneiro et 
al. [1] 99.90% 98.32% 98.43%

Table 11. URFD comparison with other methods.

URFD comparison 

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 77.00% 100.0% 98.75%

Nunez-Marcos 
et al.[13] 100.0% 92.00% 95.00%

Zerrouki and 
Houacine [11] - - 96.88%

Kwolek and 
Kepski [12] 100.0% 92.50% 95.71%

Carneiro et 
al. [1] 100.0% 98.61% 98.77%

Table 12. Multicam comparison 
 with other methods.

Multicam comparison

Methods Sensitivity Specificity Accuracy

Multi-Stream 
(OF+PE+VR) 90.00% 94.00% 92.33%

Nunez-Marcos 
et al.[13] 99.00% 96.00% -
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5.2. Qualitative Results

As expected, the method had some troubles when 
dealing with situations that had similar movement as 
falling actions. The videos that were not classified cor-
rectly were related to abruptly sitting actions, squat-
ting or even lying down (Figure 8). 

Fig. 8. Misleading fall detection squatting frame 
example.

6.	 Conclusions and Future Work

In this work, we proposed and evaluated a multi-
stream learning model based on convolutional neural 
networks to cope with a falling classification problem. 
Therefore, our approach consisted in extracting hand-
crafted high-level features (optical flow, visual rhythm, 
and pose estimation) from public data set videos and 
using each one as an input to a distinct VGG-16 clas-
sifier. In addition to the feature combination, we also 
studied the best of three ensemble techniques to cope 
with our binary classification problem.

We believe that a multi-stream model can assist in clas-
sification since an outlier result from one of the streams 
can be corrected based on the other. Using high-level 
features also assisted in covering unnecessary informa-
tion from the video frames such as the background and 
other unimportant details. It was also possible to ob-
serve that the SVM assisted in the balance and increase 
of the sensitivity and specificity metrics when used in 
the ensemble. In addition, compared to previous work 
we were able to maintain accuracy even though not us-
ing the RGB frame information itself.

For future work, we intend to continue investigating 
relevant high-level features used for fall detection. In 
addition, the studies will be conducted to test better 
parameters for the individual learners and use other ar-
chitectures for each stream. Finally, we will also inves-
tigate the use of contexts other than falling to observe 
if this learning method is able to maintain its accuracy 
and general applicability.
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