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ABSTRACT 

Reductions in coal use and greenhouse gas emissions may be achieved through 

implementing biomass co-firing in existing coal-fired power plants with minor retrofits. 

Furthermore, the biomass may be sourced sustainably from agricultural wastes.  
Under direct co-firing, biomass is directly used as secondary fuel, while indirect co-firing 

separately processes the biomass reducing risks for equipment damage from 

unconventional feedstock. Despite the increased costs, this approach generates a biochar 

by-product that may be applied directly to soil for permanent carbon sequestration. 

However, these systems face uncertainties in biomass quality that may increase costs and 

environmental impacts during actual operations. This work develops a multi-objective 

target-oriented robust optimization model to design biomass co-firing networks 

integrating uncertainty in biomass properties with investment and operations planning.  

A case study is solved to demonstrate model capabilities. Monte Carlo simulation shows 

that the robust optimal network is relatively insusceptible to uncertainties compared to 

the deterministic solution. 

KEYWORDS 

Biomass co-firing, Biochar, Target-oriented robust optimization, Multi-objective 

optimization. 

INTRODUCTION 

Energy generated carbon emissions increased by approximately 2% between 2017 

and 2018, arriving at more than 33 Gt CO2 in 2018. Additionally, approximately 

two-thirds of this growth can be attributed to the combustion of fossil fuels, particularly 

coal [1]. As a result, public concern regarding energy related global issues, particularly 

fossil fuel resource depletion and climate change is significantly rising. This has led 

several countries to look into different solutions to address these issues [2] and meet the 

Greenhouse Gas (GHG) emission reduction targets in the Parris Accord [3]. Climate 

change may be mitigated through advancing renewable energy sources, developing 

energy efficiency, and implementing carbon capture and storage technologies. However, 

these strategies are still limited by techno-economic and environmental bottlenecks [4].
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As a renewable energy, biomass feedstock has garnered much attention in industry and 

research in the recent years since it can be converted into a wide array of bioenergy and 
bioproducts [5]. Co-firing biomass in existing coal-fired power plants is a promising 

approach to reduce GHG emissions. In fact, a co-firing ratio of 25% is reported to achieve 

near-zero emissions, and complete displacement of coal achieves negative emissions of 
more than 800 kg CO2 eq./MWh [4]. However, biomass inherently has a relatively higher 

moisture content than coal decreasing its lower heating value, which reduces the amount of 

energy that may be converted from it. Furthermore, most biomass residues have high alkali 
and ash content which can cause issues with molten ash deposition such as slagging or 

fouling, which can be corrosive to a boiler, when not properly managed. Although one of 

the advantages of biomass as an energy feedstock is its ability to be stored, its high volatile 
matter content when exposed to ambient moisture can lead to mass loss from vaporization 

during storage. Biomass pretreatment may also improve the transport efficiency of biomass 

by improving its bulk density. These issues may be addressed through pretreatment of the 
biomass [6]. 

Another critical configuration when implementing biomass co-firing is where biomass 

will be inserted in the power plants’ conversion process. The two most common co-firing 
configurations are direct and indirect co-firing. Direct co-firing involves burning a mixture 

of coal and biomass in a single common boiler. Although this requires minimal investment 

for the retrofitting of the plant, it can lead to corrosion in the equipment due to the 
unconventional fuel properties of the biomass-coal blend [7]. On the other hand, in indirect 

co-firing systems, biomass first undergoes gasification or pyrolysis for conversion into 

syngas and/or bio-oil, which is used as secondary fuel in direct co-firing systems. This 
set-up generates solid biochar residue which may be separated and applied to soil as 

fertilizer for further GHG reductions through carbon sequestration. Thus, indirect co-firing 

may result in negative emissions for the biomass fraction of the feedstock, even if total 
emissions still net positive due to the coal firing [3]. Nonetheless, the additional technology 

required for the separate gasifier makes implementing this configuration more expensive 

than direct co-firing, hence, it is less implemented in industry [8]. 
Negative Emission Technologies (NETs), such as direct air capture, augmented ocean 

disposal (i.e., ocean liming or fertilizer), bioenergy with carbon dioxide (CO2) capture and 

storage, and biochar application to soil, may become a critical approach to reduce CO2 
levels in the atmosphere to safe levels. The last option has conventionally been used for soil 

conditioning but has become recognized as an effective strategy to mitigate climate change 

because it achieves the net removal of carbon from the atmosphere into the ground [9]. 
However, some researches contradict the benefits of biochar application. Some unintended 

consequents of this are the oversupply of nutrients, increased soil pH, impacts on 

germination and soil biological processes, binding and deactivation of agrochemicals  
(e.g., herbicides and nutrients) in the soil, and the release of toxic chemical contaminants in 

the biochar (e.g., heavy metals, polycylic aromatric hydrocarbons, and dioxins) [10].  

These risks encourage the need to strategically match biochar sources, such as pyrolysis 
plants, to biochar sinks or agricultural lands and the associated soil conditions to minimize 

the potential negative effects of applying biochar to soil [9]. 

Given several complex challenges, proper management and design of the biomass 
supply chain networks, preferably supported by data-based decision-making tools such as 

optimization modelling, is crucial [11]. Several studies have proposed novel approaches to 

the optimal design biomass networks. Mohd Idris et al. [12] and Griffin et al. [13] 
developed multi-objective optimization models which minimized both costs and emissions 

for a biomass co-firing supply chain, while Pérez-Fortes et al. [14] formulated an 

optimization model which captures biomass quality to determine the optimal pretreatment 
scheme for biomass. However, the approach proposed by Pérez-Fortes et al. [14] is limited 

because it assumed strict constraints for quality requirements, when these limits are often 

violated in practice, while Mohd Idris et al. [12] and Griffin et al. [13] overlooked the 
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consideration of feedstock properties despite its critical impact on system decisions and 

performance. San Juan et al. [15] and San Juan et al. [16] address this by developing a 
multi-objective optimization models that captures the changes in biomass properties as it 

moves along the supply chain and its impact on conversion yield and equipment damage. 

Most of these literatures which cover optimization modelling of co-firing supply chain 
focus only on direct co-firing despite the trade-offs between the two co-firing schemes 

[17]. San Juan et al. [15] and Aviso et al. [3] are works which address these gaps in 

literature by developing optimization models which consider the selection between direct 
and indirect co-firing integrated with biochar-based carbon sequestration. However, these 

two studies assume simplistic and deterministic conditions. 

Biochar carbon management networks are natural extensions of upstream 

biomass-based energy systems [18]. Nonetheless, previous studies have modelled them as 

stand-alone systems. Tan [9] was the first to consider the optimal synthesis of 

biochar-based carbon management networks in a mixed integer linear programming model 

which identified the optimal allocation of biochar with varying contaminant levels to a set 

of biochar sinks with predefined storage capacities and contaminant level limits over a 

multiple period planning horizon. This initial model proposed by Tan [9] was extended by 

Belmonte et al. [10] and Belmonte et al. [19] using a two-stage and a bi-objective 

optimization model, respectively. These two studies optimized economic and 

environmental objectives, specifically minimizing costs and maximizing CO2 

sequestration. Belmonte et al. [19] improved on previous approaches by considering the 

dependence of carbon sequestration on the interactions between the biochar and biochar 

sinks because the success of these systems does not only rely on feedstock materials and 

processing conditions, but are also influenced by the type and quality of the soil to which 

the biochar is applied to. Nonetheless, the need to capture upstream and downstream 

activities in a holistic analysis to capture interactions between them were not yet explored 

in these studies. 

Even though biomass co-firing systems have been found to generate both economic 

and environmental benefits, a series of issues influenced by internal and external 

uncertainties also come with it. These uncertainties are traditionally overlooked even 

though they could render optimal solutions infeasible or significantly suboptimal.  

With this, the proper construction and management of a biomass co-firing network such 

that it is invulnerable to uncertainties becomes an important challenge to overcome. 

Biomass co-firing network design projects entail both investment and operational 

decisions including retrofits on existing handling systems in coal-fired power plants, 

biomass and coal purchase and transport, installation of biomass pretreatment technology 

or facilities, and energy production planning. Investment decisions are usually expensive 

and challenging to reverse, and have long-term and significant influence on the networks 

overall economic and environmental performance. Biomass properties are inherently 

plagued with uncertainties significantly influenced by external factors, such as climate, 

weather, and cultivation and harvesting approaches, the effect of these separately and their 

interactions are difficult to predict. Furthermore, biomass properties are endogenous in 

nature, wherein their properties are uncertain prior to conversion, and will be resolved 

depending on the co-firing configuration chosen and the conversion yield. However, only 

uncertainties in supply, demand, and prices are commonly considered in biomass co-firing 

supply chain network design models [20]. Given the impact of realizations of uncertainties 

on a system, several researchers have been spurred to incorporate uncertainty through 

stochastic parameters in designing biomass networks. Only Castillo-Villar et al. [21] 

considered biomass quality as an uncertainty in a biomass supply network design problem, 

but the impact of biomass quality was modelled only as additional costs incurred from 

pretreatment. San Juan and Sy [22] proposed a robust optimization model considering only 

the lower heating value of biomass as the uncertain parameter. However, there are several 
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aspects of biomass quality that have significant impact on supply chain decisions, such as 

moisture content, ash content, and bulk density.  

This study develops a novel robust optimization model for the optimal synthesis and 
planning of a multi-echelon network composed of biomass and coal allocation to 

pretreatment facilities for co-firing in existing coal power plants integrated with biochar 

allocation networks for carbon sequestration. The model takes into consideration power 
demand, biomass and coal supply, plant capacities, and biochar application limits to 

simultaneously minimize costs and emissions while subject to uncertain biomass 

properties. The proposed robust approach may be used to identify a range of solutions 
depending on the risk appetite of the decision maker. Each solution maximizes the 

robustness index, which is a measure of how much uncertainty the solution will be able to 

tolerate before it becomes infeasible, whilst ensuring that economic and environmental 
targets are satisfied. This feature reduces inherent weakness of the traditional robust 

optimization of producing solutions that are overly conservative. Furthermore, the robust 

approach preserves the computational tractability of the deterministic problem, unlike 
when using stochastic optimization which is typically computationally expensive [23].  

The resulting formulation may easily be solved by commercially available solvers. 

The rest of the paper is organized as follows. Section 2 provides the formal problem 
statement, while Section 3 discusses the development of the Multi-objective 

Target-oriented Robust Optimization (MOTORO) model. Then, a biomass co-firing 

network case study is discussed and solved to demonstrate the capabilities of the proposed 
model in Section 4, a comparison between the deterministic and robust solution is 

presented to highlight the advantage of utilizing the MOTORO methodology.  

Finally, Section 5 gives the conclusions and recommendations for future work.   

PROBLEM STATEMENT 

The formal problem statement can be stated as follows: 

 The biomass co-firing network has biomass waste sources (i), coal sources (j), 

biomass pretreatment facilities (k), existing coal power plants (l), and biochar 

sinks (n), wherein the solid biochar by-product produced from coal power plants 

configured for indirect co-firing may be brought for permanent carbon 

sequestration, studied across a planning horizon of periods (t); 

 Each biomass source has a maximum available supply of biomass each period 

with corresponding bulk density, moisture content, and ash content, which may be 

purchased at a certain price. However, the moisture and ash contents of the 

biomass experiences variabilities, represented by a range of percentages where the 

upper and lower limits reflect the most pessimistic and optimistic scenarios, 

respectively; 

 Each coal source has a maximum availability supply of coal each period that may 

be purchased at a certain price. The coal has constant bulk density, lower heating 

value, and moisture content and ash contents; 

 Raw biomass may be processed in pretreatment facilities to improve their 

moisture and ash contents by a certain percentage and their bulk densities specific 

to each facility. Each pretreatment facility can only process a certain amount of 

biomass each period with associated fixed and variable costs, but processing 

capacities may be increased for a certain fixed and proportional costs. 

Additionally, treated biomass may be kept in inventory for future periods limited 

by each facility’s storage capacity with associated costs, but capacity may also be 

expanded with corresponding expansion costs. Aside from costs, processing 

biomass in pretreatment facilities generate GHG emissions; 

 Each coal power plant may be retrofitted to implement co-firing schemes (f) with 

a retrofitting cost. Each coal power plant and co-firing scheme have 
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corresponding upper and lower coal displacement limits, which sets an allowable 

range for how much coal can be safely displaced by biomass. If co-firing is 

implemented in a power plant, a mix of raw and treated biomass and coal may be 

converted into energy to satisfy energy demand each period, limited by a certain 

processing capacity that may be increased through capacity expansion. 

Nonetheless, there are corresponding fixed and variable costs to process biomass 

and coal feedstock, as well as to expand the capacities of each coal power plant, 

and GHG emissions are generated through burning coal. If direct co-firing is 

chosen, the equipment in the power plants may experience damage from the 

unconventional properties of the feedstock mix when it violated allowable limits 

for ash and moisture contents, which decreases the conversion efficiency of the 

power plants. Each power plant has a certain efficiency threshold. If the plant’s 

efficiency falls below this threshold, it must be shut down until repair or 

maintenance is performed, which also has corresponding costs. However, when 

indirect co-firing is implemented, a fraction of the biomass feedstock processed 

by the plant will be converted into biochar, which has a particular bulk density. 

Each plant generates biochar with different concentrations of c contaminants;  

 Each biochar sink has a sequestration factor, maximum biochar capacity, and 

maximum tolerance for contaminant (c); 

 The distances between each potential source-destination pair, together with the 

corresponding cost and carbon footprint from transportation of biomass, coal, and 

biochar proportional to each unit of distance travelled.  
The problem may be visualized as a superstructure shown in Figure 1. The objective 

is to determine the optimal allocation of raw biomass from sources to pretreatment 

facilities and coal power plants, pretreated biomass from pretreatment facilities to coal 

power plants, coal from sources to coal power plants, and biochar from coal power plants 

to biochar sinks, to identify which existing coal power plants must be retrofitted and the 

co-firing scheme to be implemented, which pretreatment facilities and coal power plants 

should be operating each period, as well as the schedule for implementing the co-firing 

option to maximize robustness index 𝜃 of the resulting network design influenced by 

variations in biomass quality while simultaneously satisfying cost and environmental 

impact targets. The solution should also indicate whether biomass should be kept in 

inventory in a pretreatment facility each period, whether the capacities of the 

pretreatment facilities and coal power plants should be increased, and whether the 

equipment in the coal power plants need to undergo maintenance or repair. 
 

 
 

Figure 1. Network superstructure 
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MODEL DEVELOPMENT 

This section presents the model formulation for the biomass co-firing network system 

described beginning with a definition of the relevant variables and parameters, followed 

by the development of the deterministic model, which does not yet account for any 

uncertainties. The basic optimization model is revised to account for uncertainties in the 

biomass’ moisture and ash contents through the application of the MOTORO approach. 

Biomass co-firing network model 

The basic optimization model for the biomass co-firing network understudy is shown 

in eq. (1)-(60) wherein the overall objectives of the system are to minimize economic 

costs and environmental emissions. The total economic cost is expressed in eq. (1) as the 

sum of costs incurred from operating the pretreatment facilities and power plants, holding 

inventory, expanding storage, pretreatment, and coal power plant capacities, purchasing 

feedstock, transporting biomass, coal, and biochar, applying biochar to soil, and repairing 

or performing maintenance on power plant equipment each period, incurring unmet 

demand, as well as the costs to retrofit existing coal power plants, shown individually in 

eq. (2)-(11). Transportation costs are proportional to the total distance travelled and the 

average transportation cost per unit distance: 
 

Min cost = ∑(𝑃𝐹𝑂𝑝𝑡 + 𝑃𝑃𝑂𝑝𝑡 + Inv𝑡 + Exp𝑡 + Fuel𝑡 + TransC𝑡 + BcharC𝑡 + Main𝑡 + Penalty𝑡)

𝑡

+ Retro (1) 

  

𝑃𝐹𝑂𝑝𝑡 = ∑ 𝑝𝑜𝑘𝑡𝐹𝑘𝑡

𝑘

+ ∑ ∑ 𝑝𝑐𝑘𝑡𝑥𝑘𝑙𝑡

𝑙𝑘

          ∀𝑡 (2) 

  

𝑃𝑃𝑂𝑝𝑡 = ∑ 𝑜𝑐𝑙𝑡𝐴𝑙𝑡

𝑙

+ ∑ 𝑏𝑐𝑙𝑡 (∑ 𝑥𝑘𝑙𝑡

𝑘

+ ∑ 𝑦𝑖𝑙𝑡

𝑖

)

𝑙

+ ∑ ∑ 𝑐𝑐𝑙𝑡𝑧𝑗𝑙𝑡

𝑙𝑗

       ∀𝑡 (3) 

  

Inv𝑡 = ∑(𝑓ℎ𝑘𝑡𝑆𝑘𝑡 + 𝑢ℎ𝑘𝑡𝐼𝑘𝑡)

𝑘

       ∀𝑡 (4) 

  

Exp𝑡 = ∑(𝑓𝑒𝑘𝑡
𝑝

𝑃𝑘𝑡 + 𝑢𝑒𝑘𝑡
𝑝

𝑒𝑘𝑡
𝑝

+ 𝑓𝑒𝑘𝑡
𝑠 𝐵𝑘𝑡 + 𝑢𝑒𝑘𝑡

𝑠 𝑒𝑘𝑡
𝑠 )

𝑘

+ ∑(𝑓𝑒𝑙𝑡
𝑐 𝐶𝑙𝑡 + 𝑢𝑒𝑙𝑡

𝑐 𝑒𝑙𝑡
𝑐 )

𝑙

       ∀𝑡 (5) 

  

Fuel𝑡 = ∑ ∑ 𝑏𝑝𝑖𝑡𝑤𝑖𝑘𝑡

𝑘𝑖

+ ∑ ∑ 𝑏𝑝𝑖𝑡𝑦𝑖𝑙𝑡

𝑙𝑖

+ ∑ ∑ 𝑐𝑝𝑗𝑡𝑧𝑗𝑙𝑡

𝑙𝑗

       ∀𝑡 (6) 

  

TransC𝑡 = 𝑡𝑐 (∑ ∑ 𝑡𝑖𝑘𝑡
𝑤 𝑑𝑖𝑘

𝑎

𝑘𝑖

+ ∑ ∑ 𝑡𝑘𝑙𝑡
𝑥 𝑑𝑘𝑙

𝑏

𝑙𝑘

+ ∑ ∑ 𝑡𝑖𝑙𝑡
𝑦

𝑑𝑖𝑙
𝑐

𝑙𝑖

+ ∑ ∑ 𝑡𝑗𝑙𝑡
𝑧 𝑑𝑗𝑙

𝑑

𝑙𝑗

+ ∑ ∑ 𝑡𝑙𝑛𝑡
𝑏 𝑑𝑙𝑛

𝑒

𝑛𝑙

)       ∀𝑡 (7) 

  

BcharC𝑡 = ∑ ∑ 𝐽𝑏𝑙𝑛𝑡

𝑛𝑙

       ∀𝑡 (8) 

  

Main𝑡 = ∑(𝑓𝑚𝑙𝑊𝑙𝑡 + 𝑢𝑚𝑙𝑟𝑙𝑡)

𝑙

       ∀𝑡 (9) 

  
Penalty𝑡 = 𝐷𝑃(𝑢𝑑𝑡)       ∀𝑡 (10) 

  

Retro = ∑ ∑ 𝑟𝑐𝑙𝑓𝑅𝑙𝑓

𝑙𝑓

 (11) 

 

The model also aims to minimize the net carbon emissions of the biomass co-firing 

network expressed in eq. (12) as the sum of emissions from transporting biomass, coal 

and biochar, burning coal for power generation, and pretreating biomass across all 
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periods in the planning horizon shown in eq. (13)-(15). Similarly, total emissions from 

transporting feedstock is based on emissions per unit distance and total  

distanced travelled: 
 

Min env = ∑(TransE𝑡 + Coal𝑡 + Pretreat𝑡 − BcharCS𝑡)

𝑡

 (12) 

  

TransE𝑡 = 𝑡𝑒 (∑ ∑ 𝑡𝑖𝑘𝑡
𝑤 𝑑𝑖𝑘

𝑎

𝑘𝑖

+ ∑ ∑ 𝑡𝑘𝑙𝑡
𝑥 𝑑𝑘𝑙

𝑏

𝑙𝑘

+ ∑ ∑ 𝑡𝑖𝑙𝑡
𝑦 𝑑𝑖𝑙

𝑐

𝑙𝑖

+ ∑ ∑ 𝑡𝑗𝑙𝑡
𝑧 𝑑𝑗𝑙

𝑑

𝑙𝑗

+ ∑ ∑ 𝑡𝑙𝑛𝑡
𝑏 𝑑𝑙𝑛

𝑒

𝑛𝑙

)       ∀𝑡 (13) 

  

Coal𝑡 = ∑ ∑ 𝑐𝑒(𝑧𝑗𝑙𝑡)
𝑙𝑗

       ∀𝑡 (14) 

  

Pretreat𝑡 = ∑ ∑ 𝑝𝑒𝑘𝑡𝑤𝑖𝑘𝑡

𝑘𝑖

       ∀𝑡 (15) 

  

BcharCS𝑡 = ∑ ∑ 𝐺𝑛𝑏𝑙𝑛𝑡

𝑛𝑙

       ∀𝑡 (16) 

 

The net emissions contributed by the network may be reduced through carbon 

sequestration from utilizing biochar as soil amendment expressed in eq. (16). Eq. (17) 

computes for the demand for power satisfied each period. The amount of energy 

produced each period is computed for by multiplying the conversion efficiency of each 

coal power plant for a particular period, lower heating value of the mixed fuel being 

handled, and the total amount of feedstock processed by the coal power plant. The total 

amount of biomass fed into the handling equipment of the power plant is dependent on 

the biochar yield of the co-firing scheme implemented and the amount of biomass 

received by the coal power plant. If direct co-firing scheme is implemented, biochar yield 

is equal to zero, allowing the coal power plant to process all of the biomass it received. 

On the other hand, if indirect co-firing scheme is chosen, a fraction of the biomass would 

have been converted to biochar and would not undergo conversion to electricity.  

The formulation in eq. (17) makes demand satisfaction a soft constraint and allows for the 

possibility for unmet demand and overshooting the demand. However, the amount of 

feedstock processed by the coal power plant must be less than or equal the processing 

capacity as enforced in eq. (18). Eq. (19) and eq. (20) limits the amount of biomass and 

coal that can be purchased and transported from each source location to the source’s 

available supply each period: 
 

∑ 𝛾𝜆𝑙𝑡𝑞𝑙𝑡 [∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)
𝑓

(∑ 𝑥𝑘𝑙𝑡

𝑘

+ ∑ 𝑦𝑖𝑙𝑡

𝑖

) + ∑ 𝑧𝑗𝑙𝑡

𝑗

]
𝑙

+ 𝑢𝑑𝑡 − 𝑜𝑑𝑡 = 𝐷𝑡       ∀𝑡 (17) 

  

∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)
𝑓

(∑ 𝑥𝑘𝑙𝑡

𝑘

+ ∑ 𝑦𝑖𝑙𝑡

𝑖

) + ∑ 𝑧𝑗𝑙𝑡

𝑗

≤ 𝑌𝑙𝑡
𝑐𝐴𝑙𝑡       ∀𝑙𝑡 (18) 

  

∑ 𝑤𝑖𝑘𝑡

𝑘

+ ∑ 𝑦𝑖𝑙𝑡

𝑙

≤ 𝑠𝑖𝑡
𝑏        ∀𝑖𝑡 (19) 

  

∑ 𝑧𝑗𝑙𝑡

𝑙

≤ 𝑠𝑗𝑡
𝑐        ∀𝑗𝑡 (20) 

 

Eq. (21) ensures that a specific co-firing scheme may only be used if the power plant 

has been retrofitted for that particular co-firing scheme, while eq. (22) defines the 
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co-firing schemes as mutually exclusive options. Eq. (23) set upper and lower coal 

displacement limits to the biomass and coal blends that will be used in each power plant 

and period depending on the co-firing scheme implemented: 

 
𝑅𝑙𝑓 ≥ 𝑂𝑙𝑓𝑡        ∀𝑙𝑓𝑡 (21) 

  

∑ 𝑅𝑙𝑓

𝑓

≤ 1       ∀𝑙𝑓 (22) 

  

∑ 𝐿𝑙𝑓
𝑙 𝑂𝑙𝑓𝑡

𝑓

 ≤  
∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 )

∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑧𝑗𝑙𝑡𝑗
≤ ∑ 𝐿𝑙𝑓

𝑢 𝑂𝑙𝑓𝑡

𝑓

       ∀𝑙𝑡 (23) 

 

The amount of biomass brought to the pre-treatment facilities should be less than or 

equal to the processing capacity of each facility, as shown in eq. (24). The weight of the 

biomass received by a pre-treatment facility in each period after undergoing 

pre-treatment processes is given in eq. (25), which is given by adding the pure biomass 

weight and the remaining moisture and ash content left after completing treatment.  

The inventory of biomass kept in the pre-treatment facilities is defined in eq. (26) as 

equal to the amount of biomass carried over from the previous period and received from 

sources and pre-treatment facilities, less the biomass sent to the power plants in the 

current period. Eq. (27) makes sure that the amount of biomass held each period is 

restricted by the facility’s storage capacity: 

 

∑ 𝑤𝑖𝑘𝑡

𝑖

≤ 𝑌𝑘𝑡
𝑝 𝐹𝑘𝑡        ∀𝑘𝑡 (24) 

  

∑ 𝑤𝑖𝑘𝑡[(1 − 𝑚𝑖𝑡
𝑟 − �̃�𝑖𝑡

𝑟 ) + (𝑚𝑖𝑡
𝑟 )(1 − 𝑣𝑘) + (𝑎𝑖𝑡

𝑟 )(1 − 𝑢𝑘)]

𝑖

= 𝑋𝑘𝑡        ∀𝑘𝑡 (25) 

  

𝐼𝑘𝑡+1 = 𝐼𝑘𝑡 + 𝑋𝑘𝑡+1 − ∑ 𝑥𝑘𝑙𝑡+1

𝑙

       ∀𝑘𝑡 (26) 

  
𝐼𝑘𝑡 ≤ 𝑌𝑘𝑡

𝑠 𝑆𝑘𝑡        ∀𝑘𝑡 (27) 

 

The capacities of the pre-treatment facilities and the coal power plants may be 

expanded. Eq. (28)-(30) show that the processing and storage capacities assigned to each 

facility are dependent on the capacity expansion performed in the previous period. Binary 

variables for capacity expansions are switched on in eq. (31)-(33): 

 

𝑒𝑘𝑡
𝑝 + 𝑌𝑘𝑡

𝑝 = 𝑌𝑘𝑡+1
𝑝        ∀𝑘𝑡 (28) 

  
𝑒𝑘𝑡

𝑠 + 𝑌𝑘𝑡
𝑠 = 𝑌𝑘𝑡+1

𝑠        ∀𝑘𝑡 (29) 

  
𝑒𝑙𝑡

𝑐 + 𝑌𝑙𝑡
𝑐 = 𝑌𝑙𝑡+1

𝑐        ∀𝑙𝑡 (30) 

  

𝑒𝑘𝑡
𝑝 ≤ 𝑀𝑃𝑘𝑡        ∀𝑘𝑡 (31) 

  
𝑒𝑘𝑡

𝑠 ≤ 𝑀𝐵𝑘𝑡        ∀𝑘𝑡 (32) 

  
𝑒𝑙𝑡

𝑐 ≤ 𝑀𝐶𝑘𝑡        ∀𝑙𝑡 (33) 
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Eq. (34) computes for the moisture content of the biomass that has just completed 

pre-treatment and mixed with the existing biomass in stock. The improved moisture 

content is computed for by dividing the remaining moisture in biomass by weight and 

moisture in the biomass kept in stock with the total biomass in each pre-treatment facility. 

Eq. (35) defined the average moisture content of all the biomass received by a coal power 

plant in each period. Lastly, eq. (36) computes for the moisture content of the mixed 

feedstock processed by the coal power plant handling equipment. The ash content of the 

feedstock as it moves through the network is similarly computed for in eq. (37)-(39): 

 

𝑚𝑘𝑡+1
𝑝

=
∑ 𝑤𝑖𝑘𝑡+1(𝑚𝑖𝑡+1

𝑟 )(1 − 𝑣𝑘)𝑖 + 𝐼𝑘𝑡𝑚𝑘𝑡
𝑝

∑ 𝑤𝑖𝑘𝑡+1𝑖 + 𝐼𝑘𝑡
       ∀𝑘𝑡 (34) 

  

𝑚𝑙𝑡
𝑝𝑝

=
∑ 𝑚𝑘𝑡

𝑝
𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑚𝑖𝑡

𝑟 𝑦𝑖𝑙𝑡𝑖

∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖
       ∀𝑙𝑡 (35) 

  

𝑚𝑙𝑡
𝑚 =

𝑚𝑙𝑡
𝑝𝑝 ∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑚𝑐𝑧𝑗𝑙𝑡𝑗

∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑧𝑗𝑙𝑡𝑗

       ∀𝑙𝑡 (36) 

  

𝑎𝑘𝑡+1
𝑝

=
∑ 𝑤𝑖𝑘𝑡+1(𝑎𝑖𝑡+1

𝑟 )(1 − 𝑢𝑘)𝑖 + 𝐼𝑘𝑡𝑎𝑘𝑡
𝑝

∑ 𝑤𝑖𝑘𝑡+1𝑖 + 𝐼𝑘𝑡
       ∀𝑘𝑡 (37) 

  

𝑎𝑙𝑡
𝑝𝑝 =

∑ 𝑎𝑘𝑡
𝑝 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑎𝑖𝑡

𝑟 𝑦𝑖𝑙𝑡𝑖

∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖
       ∀𝑙𝑡 (38) 

  

𝑎𝑙𝑡
𝑚 =

𝑎𝑙𝑡
𝑝𝑝 ∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑎𝑐𝑧𝑗𝑙𝑡𝑗

∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑧𝑗𝑙𝑡𝑗

       ∀𝑙𝑡 (39) 

 

Eq. (40) determines the lower heating value of the biomass in each coal power plant. 

This equation is adapted from the research of Hernández et al. [24], which estimates the 

lower heating value by subtracting the latent heat of vaporization of water from the 

higher heating value. The computation for the average lower heating value of the 

feedstock of a plant considering the biomass and coal blend is given in eq. (41): 

 

𝑞𝑙𝑡
𝑏 = [𝑄 − 212.2𝐻 − 0.8(𝐿 + 𝑁)](1 − 0.01𝑚𝑙𝑡

𝑝𝑝)(1 − 0.01𝑎𝑙𝑡
𝑝𝑝) − 24.43𝑚𝑙𝑡

𝑝𝑝       ∀𝑙𝑡 (40) 
  

𝑞𝑙𝑡 =
𝑞𝑙𝑡

𝑏 ∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑞𝑐𝑧𝑗𝑙𝑡𝑗

∑ 𝑂𝑙𝑓𝑡(1 − 𝑔𝑓)𝑓 (∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖 ) + ∑ 𝑧𝑗𝑙𝑡𝑗

       ∀𝑙𝑡 (41) 

 

The conversion equipment in all of the coal power plants begin with conversion 

efficiencies of 100%. The percentage conversion efficiency in each power plant is a 

function of the excess and lacking moisture content of the feedstock, excess ash content, 

and the total amount of feedstock processed by the plant, as these values increase, the 

efficiency will decrease, and may be increased by repair or maintenance as shown in  

eq. (42). Eq. (43) describes accumulated excess moisture content to be equal to the excess 

moisture content for the current period, which is the maximum between zero and the 

difference between the actual moisture content of the feedstock and the upper limit, and 

the accumulated excess moisture content of the previous period, while eq. (44) defines 

accumulated shortage in moisture. Similarly, eq. (45) and eq. (46) computes for the 

accumulated excess and shortage in ash content. With this approach, there will be no 

amount stored if the difference returned is negative. Lastly, eq. (47) sums up the biomass 

and coal processed in a coal power plant each period to get the total feedstock handled by 
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the equipment and adds this to the accumulated values from previous. Furthermore, the 

computations for quality violations in eq. (43)-(47) are dependent on the risk for 

equipment damage of the specific co-firing scheme implemented in the power plant: 

 

𝜆𝑙𝑡 = 𝑓(𝑚𝑙𝑡−1
+ , 𝑚𝑙𝑡−1

− , 𝑎𝑙𝑡−1
+ , 𝑎𝑙𝑡−1

− , 𝐸𝑙𝑡−1) + ∑ 𝑟𝑙𝑡

𝑡

0

       ∀𝑙𝑡 (42) 

  

𝑚𝑙𝑡+1
+ = ∑ 𝐾𝑓

𝑓

𝑂𝑙𝑓𝑡+1[max(𝑚𝑙𝑡+1
𝑚 − 𝑚𝑙

𝑢 , 0)] + 𝑚𝑙𝑡
+        ∀𝑙𝑡 (43) 

  

𝑚𝑙𝑡+1
− = ∑ 𝐾𝑓

𝑓

𝑂𝑙𝑓𝑡+1[max(𝑚𝑙
𝑙 − 𝑚𝑙𝑡+1

𝑚 , 0)] + 𝑚𝑙𝑡
−        ∀𝑙𝑡 (44) 

  

𝑎𝑙𝑡+1
+ = ∑ 𝐾𝑓

𝑓

𝑂𝑙𝑓𝑡+1[max(𝑎𝑙𝑡+1
𝑚 − 𝑎𝑙

𝑢 , 0)] + 𝑎𝑙𝑡
+        ∀𝑙𝑡 (45) 

  

𝑎𝑙𝑡+1
− = ∑ 𝐾𝑓

𝑓

𝑂𝑙𝑓𝑡+1[max(𝑎𝑙
𝑙 − 𝑎𝑙𝑡+1

𝑚 , 0)] + 𝑎𝑙𝑡
−        ∀𝑙𝑡 (46) 

  

𝐸𝑙𝑡+1 = ∑ 𝑂𝑙𝑓𝑡+1(1 − 𝑔𝑓)

𝑓

(∑ 𝑥𝑘𝑙𝑡+1

𝑘

+ ∑ 𝑦𝑖𝑙𝑡+1

𝑖

) + ∑ 𝑧𝑗𝑙𝑡+1

𝑗

+ 𝐸𝑙𝑡        ∀𝑙𝑡 (47) 

 

Eq. (48) activates switches for repair or maintenance and limits the percent 

effectiveness of maintenance to a maximum of one. Eq. (49) makes sure that when the 

efficiency of the coal power plant falls below the plant’s efficiency threshold, the coal 

power plant cannot be allowed to operate. On the other hand, when the conversion 

efficiency of the coal power plant is above the threshold, the coal power plant can choose 

whether or not to operate for that period: 
 

𝑟𝑙𝑡 ≤ 𝑊𝑙𝑡        ∀𝑙𝑡 (48) 

  

𝛽𝑙 − 𝜆𝑙𝑡 ≤ 𝑀(1 −  𝐴𝑙𝑡)       ∀𝑙𝑡 (49) 

 

The amount of biochar that may transported from coal power plants is shown in  

eq. (50) is limited by the product between the amount of biomass processed and the 

fraction biochar yield of the co-firing scheme selected. Eq. (51) limits the amount of 

biochar allocated to each sink by the storage capacity of the sink, while eq. (52) ensures 

that the contaminant levels of the biochar allocated to each sink does not exceed the 

allowable contaminant levels, which is given by the decision maker’s tolerance for soil 

contaminants and the limits for each contaminant type: 
 

∑ 𝑏𝑙𝑛𝑡

𝑛

≤ ∑ 𝑂𝑙𝑓𝑡𝑔𝑓

𝑓

(∑ 𝑥𝑘𝑙𝑡

𝑘

+ ∑ 𝑦𝑖𝑙𝑡

𝑖

)        ∀𝑙𝑡 (50) 

  

∑ 𝑏𝑙𝑛𝑡

𝑙

≤ 𝑇𝑛       ∀𝑛𝑡 (51) 

  

∑ 𝑏𝑙𝑛𝑡ℎ𝑐𝑙

𝑙

≤ ∑ 𝜓𝑏𝑙𝑛𝑡ℎ𝑐𝑛
∗

𝑙

       ∀𝑛𝑡𝑐 (52) 
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Eq. (53)-(57) compute for the number of trips needed to transport biomass, coal, and 

biochar from their respective sources and destinations based on the weight and volume 

capacities of the transport vehicles: 

 

𝑡𝑖𝑘𝑡
𝑤 ≥ max {

𝑤𝑖𝑘𝑡

𝑈
,
𝑤𝑖𝑘𝑡

𝑝𝑖𝑡
𝑟 𝑉

}       ∀𝑖𝑘𝑡 (53) 

  

𝑡𝑘𝑙𝑡
𝑥 ≥ max {

𝑥𝑘𝑙𝑡

𝑈
,

𝑥𝑘𝑙𝑡

𝑝𝑘𝑡
𝑝

𝑉
}       ∀𝑘𝑙𝑡 (54) 

  

𝑡𝑖𝑙𝑡
𝑦

≥ max {
𝑦𝑖𝑙𝑡

𝑈
,

𝑦𝑖𝑙𝑡

𝑝𝑖𝑡
𝑟 𝑉

}       ∀𝑖𝑙𝑡 (55) 

  

𝑡𝑗𝑙𝑡
𝑧 ≥ max {

𝑧𝑗𝑙𝑡

𝑈
,

𝑧𝑗𝑙𝑡

𝑝𝑐𝑉
}       ∀𝑗𝑙𝑡 (56) 

  

𝑡𝑙𝑛𝑡
𝑏 ≥ max {

𝑏𝑙𝑛𝑡

𝑈
,
𝑏𝑙𝑛𝑡

𝑝𝑏𝑉
}       ∀𝑙𝑛𝑡 (57) 

 

Lastly, non-negativity, binary, and integer constraints are imposed on the relevant 

variables in eq. (58)-(60): 

 
𝑤𝑖𝑘𝑡 , 𝑥𝑘𝑙𝑡 , 𝑦𝑖𝑙𝑡 , 𝑧𝑗𝑙𝑡 , 𝑏𝑙𝑛𝑡 , 𝑒𝑘𝑡

𝑝 , 𝑒𝑘𝑡
𝑠 , 𝑒𝑙𝑡

𝑐 , 𝑟𝑙𝑡 , 𝑌𝑙𝑡
𝑐 , 𝑌𝑘𝑡

𝑝 , 𝑌𝑘𝑡
𝑠 , 𝜆𝑙𝑡 , 𝐼𝑘𝑡 , 𝑋𝑘𝑡 , 𝑞𝑙𝑡

𝑏 , 𝑞𝑙𝑡 , 𝑚𝑘𝑡
𝑝 , 𝑚𝑙𝑡

𝑝𝑝, 𝑚𝑙𝑡
𝑚 ,  

𝑚𝑙𝑡
+ , 𝑚𝑙𝑡

− , 𝑎𝑘𝑡
𝑝 , 𝑎𝑙𝑡

𝑝𝑝, 𝑎𝑙𝑡
𝑚 , 𝑎𝑙𝑡

+ , 𝑎𝑙𝑡
− , 𝐸𝑙𝑡 , 𝑢𝑑𝑡, 𝑜𝑑𝑡 ≥ 0       ∀𝑖𝑗𝑘𝑙𝑛𝑡 

(58) 

  
𝑅𝑙𝑓 , 𝑂𝑙𝑓𝑡 , 𝑆𝑘𝑡 , 𝐹𝑘𝑡 , 𝐴𝑙𝑡 , 𝑃𝑘𝑡 , 𝐵𝑘𝑡 , 𝐶𝑙𝑡 , 𝑊𝑙𝑡  ∈ {0,1}       ∀𝑘𝑙𝑓𝑡 (59) 

  
𝑡𝑖𝑘𝑡

𝑤 , 𝑡𝑘𝑙𝑡
𝑥 , 𝑡𝑖𝑙𝑡

𝑦 , 𝑡𝑗𝑙𝑡
𝑧 , 𝑡𝑙𝑛𝑡

𝑏 ≥ 0 and integers       ∀𝑖𝑗𝑘𝑙𝑛𝑡 (60) 

Application of the Multi-objective Target-oriented Robust Optimization approach 

However, there is a need to consider uncertainties that may be realized from biomass 

quality variability, particularly its moisture and ash contents, when designing and 

planning biomass co-firing networks. This uncertainty can significantly impact the 

economic and environmental sustainability and feasibility of the design, thus, the 

implemented setup should remain feasible despite realizing the highest potential degree 

of uncertainty. The basic optimization model is modified to account for uncertainties in 

moisture and ash contents denoted by �̃�𝑟 and �̃�𝑟, respectively. The revised formulation 

considering these uncertainties is given by eq. (60)-(65) replacing eq. (25), eq. (34),  

eq. (35), eq. (37), and eq. (38): 

 

∑ 𝑤𝑖𝑘𝑡[(1 − �̃�𝑖𝑡
𝑟 − �̃�𝑖𝑡

𝑟 ) + (�̃�𝑖𝑡
𝑟 )(1 − 𝑣𝑘) + (�̃�𝑖𝑡

𝑟 )(1 − 𝑢𝑘)]

𝑖

= 𝑋𝑘𝑡        ∀𝑘𝑡 (61) 

  

𝑚𝑘𝑡+1
𝑝

=
∑ 𝑤𝑖𝑘𝑡+1(�̃�𝑖𝑡+1

𝑟 )(1 − 𝑣𝑘)𝑖 + 𝐼𝑘𝑡𝑚𝑘𝑡
𝑝

∑ 𝑤𝑖𝑘𝑡+1𝑖 + 𝐼𝑘𝑡
       ∀𝑘𝑡 (62) 

  

𝑚𝑙𝑡
𝑝𝑝 =

∑ 𝑚𝑘𝑡
𝑝 𝑥𝑘𝑙𝑡𝑘 + ∑ �̃�𝑖𝑡

𝑟 𝑦𝑖𝑙𝑡𝑖

∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖
       ∀𝑙𝑡 (63) 

  

𝑎𝑘𝑡+1
𝑝 =

∑ 𝑤𝑖𝑘𝑡+1(�̃�𝑖𝑡+1
𝑟 )(1 − 𝑢𝑘)𝑖 + 𝐼𝑘𝑡𝑎𝑘𝑡

𝑝

∑ 𝑤𝑖𝑘𝑡+1𝑖 + 𝐼𝑘𝑡
       ∀𝑘𝑡 (64) 
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𝑎𝑙𝑡
𝑝𝑝 =

∑ 𝑎𝑘𝑡
𝑝

𝑥𝑘𝑙𝑡𝑘 + ∑ �̃�𝑖𝑡
𝑟 𝑦𝑖𝑙𝑡𝑖

∑ 𝑥𝑘𝑙𝑡𝑘 + ∑ 𝑦𝑖𝑙𝑡𝑖
       ∀𝑙𝑡 (65) 

 

The sources of uncertainty, particularly the uncertain biomass moisture (�̃�𝑟) and ash 

content (�̃�𝑟), are incorporated through the Target-Oriented Robust Optimization (TORO) 

approach proposed by Ng and Sy [23], which is extended to capture several objectives 

through the MOTORO approach. MOTORO facilitates optimal network design and 

planning through the achievement of targets derived under uncertainty.  

Appropriate values for the decision variables should be identified so that the system 

constraints remain feasible for the largest range of the uncertain parameters as possible. 

These sources of uncertainty could then be defined as perturbations in the biomass 

moisture (𝛿𝑚𝑟) and ash content (𝛿𝑎𝑟) from their nominal values �̅�𝑟 and �̅�𝑟 as shown in 

eq. (66) and eq. (67): 

 
�̃�𝑟 = �̅�𝑟 +  𝛿𝑚𝑟 (66) 

  

�̃�𝑟 = �̅�𝑟 +  𝛿𝑎𝑟 (67) 
  

𝑍𝜃 = {𝛿𝑚𝑟, 𝛿𝑎𝑟 ∈ ℜ𝑁| 0 ≤ 𝛿𝑚𝑖𝑡
𝑟 ≤ 𝛿�̂�𝑖𝑡

𝑟 (𝜃), 0 ≤ 𝛿𝑎𝑖𝑡
𝑟 ≤ 𝛿�̂�𝑖𝑡

𝑟 (𝜃),   ∀𝑖, ∀𝑡} (68) 

 

Eq. (68) shows that the robustness index quantifies the degree of uncertainties in the 

given parameters. For instance, the largest perturbation occurs when 𝛿𝑚𝑖𝑡
𝑟 = 𝛿�̂�𝑖𝑡

𝑟  and 

𝛿𝑎𝑖𝑡
𝑟 = 𝛿�̂�𝑖𝑡

𝑟 , for all 𝑖 = 1, … , 𝐼  and 𝑡 = 1, … , 𝑇 . This is associated with a robustness 

index of 𝜃 = 1.0. This also assumes that under the most favorable case, 𝑚𝑖𝑡
𝑟  and 𝑎𝑖𝑡

𝑟  

would be at the minimum and equal to the nominal values, which are associated with a 

robustness index of 𝜃 = 0.0 since no perturbation from the nominal values can be 

accommodated. This follows because moisture and ash content indirectly impact the 

energy conversion yield, equipment efficiency, and pretreatment costs and emissions. 

These perturbations are parameterized by the robustness index 𝜃 ∈ [0, 1]. 
The concept of the MOTORO approach is based on the integration of the robust 

optimization framework and target-oriented decision making. Target-oriented decision 

making is reflected in the model by translating the original objective of costs and 

emissions minimization into system targets that consider the different scenarios that 

result from biomass quality uncertainty. This procedure allows the decision maker to 

select among non-dominated solutions based on how much risk or uncertainty they are 

willing to tolerate. Eq. (69) shows the modified objective function, which now 

maximizes the robustness index (𝜃 ∈ [0, 1]), which is the degree of uncertainty that can 

be tolerated by a solution before it becomes infeasible. A higher value of 𝜃 implies a 

larger degree of perturbation for the biomass properties, thus, a more risk-averse decision 

maker would prefer a higher 𝜃 because it is more robust. This replaces and is subject to 

the previously shown objective functions, which are translated into costs (𝜏cost) and 

emissions (𝜏env) targets shown in eq. (70) and eq. (71), and the other function constraints 

discussed earlier. The bisection search algorithm is used to maximize 𝜃: 

 
max 𝜃 (69) 

  

cost ≤ 𝜏cost (70) 
  

env ≤ 𝜏env (71) 

 

Targets are set using the equations shown in eq. (72) and eq. (73), which can be used 

by decision makers as a guide when setting their targets. Setting targets that are too 
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optimistic results in the risk of missing these targets, on the other hand, establishing too 

conservative targets limits the results of the model, which could lead to significant 

opportunity losses for the network owners: 
 

𝜏cost = 𝛼𝜏cost(1) + (1 − 𝛼)𝜏cost(0) (72) 

  
𝜏env = 𝛼𝜏env(1) + (1 − 𝛼)𝜏env(0) (73) 

 

Eq. (72) and eq. (73) can be used to identify a range of targets through the parameter 

𝛼 ∈ [0, 1] for both costs and emissions. In the two equations, 𝜏cost(0) and 𝜏env(0) reflect 

the costs and emissions under the most optimistic conditions where 𝛼 = 0, while 𝜏cost(1) 

and 𝜏env(1) represent the most pessimistic conditions where 𝛼 = 1. The 𝛼 level is the 

parameterized index for perturbations of the uncertain parameters, higher values imply 

that a decision maker is conservative, while lower values are chosen by decision makers 

with more risk-appetite. In this system, a more risk-averse decision maker would assume 

worse or higher values for moisture and ash content in biomass, while a less risk-averse 

decision maker would assume the opposite. The maximum robustness index that 

minimizes both costs and emissions at different cost and emissions targets is determined 

with different levels of 𝛼 using the bisection method algorithm shown in Table A1. 

COMPUTATIONAL EXPERIMENTS 

Computational experiments were carried out using IBM ILOG CPLEX Optimization 

Studio in MATLAB on a MacBook Pro with a 3.1 GHz Intel Core i5 processor and 8 GB 

2133 MHz LPDDR3 RAM. The CPLEX solver allows MATLAB to solve linear 

optimization problems through a simplex algorithm. Nonlinear equations were linearized 

to facilitate this, and a decomposition algorithm was also utilized. A hypothetical case 

study is used to validate the proposed model. The system considered is composed of six 

biomass sources, four coal sources, three pretreatment facilities, four existing coal power 

plants, three biochar sinks across a five-year planning horizon. The input parameters used 

in the validation of the proposed model were adopted and modified from several existing 

studies, particularly co-firing costs parameters from Griffin et al. [13], while biochar 

application parameters were sourced from Tan [9]. 

Table 1 shows the costs associated with retrofitting, operating, expanding the 

capacity, and performing maintenance on the existing power plants. Variable costs are 

proportional to the amount of biomass and coal processed by the power plant. 

Meanwhile, it costs USD 1.2 to burn each kilogram of feedstock. Similarly, the costs 

associated with operating the pretreatment facilities and their corresponding storage 

facilities are shown in Table 2. Table 2 also details the fixed and variable costs incurred 

by the system to expand the processing and storage capacities of the pretreatment 

facilities. Transportation costs are assumed to be USD 26.16 per kilometer travelled.  

The costs to purchase each kilogram of biomass and coal from their respective sources 

are USD 0.0149 and USD 0.06, respectively. Applying biochar to soil as amendment will 

also incur the system costs, particularly USD 0.0149 per kilogram of biochar applied. 
 

Table 1. Power plant costs 

 

Power plant 

Retrofitting co-firing Operating Expansion Maintenance 

Direct 
[USD] 

Indirect 
[USD] 

Fixed 
[USD] 

Fixed 
[USD] 

Variable 
[USD/kg] 

Fixed 
[USD] 

Variable 
[USD/kg] 

1 22,000 58,000 2,500 500 15 750 75 
2 23,000 69,000 5,600 400 20 600 50 
3 32,500 47,500 4,450 450 10 800 60 

4 22,500 67,200 3,500 400 15 675 25 
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The carbon emissions from treating each kilogram of biomass in each pretreatment 

facility are shown in Table 3. Additionally, burning coal to produce energy also results in 

carbon being emitted into the atmosphere. The amount of carbon released from the 

combustion of each kilogram of carbon is 5.86 kg CO2. Transportation emissions are 

assumed to be 0.0005 kg CO2 per distance travelled. The emissions parameters were 

adapted from the study of Mohd Idris et al. [12]. 
 

Table 2. Pretreatment facility costs 
 

Pretreatment 

facility 

Processing Processing expansion Storage Storage expansion 

Fixed 

[USD] 

Variable 

[USD/kg] 

Fixed 

[USD] 

Variable 

[USD/kg] 

Fixed 

[USD] 

Variable 

[USD/kg] 

Fixed 

[USD] 

Variable 

[USD/kg] 

1 200 0.09 400 20 120 0.02 400 20 

2 300 0.05 450 10 105 0.01 450 10 

3 500 0.04 500 15 100 0.05 500 15 

 

Table 3. Biomass pretreatment emissions 

 

Pretreatment facility Emissions [kg CO2/kg] 

1 (torrefaction) 0.01 
2 (pelletization) 0.03 

3 (torrefaction + pelletization) 0.04 

 

Demand is assumed to differ every period, the demand experienced by the system is 

shown in Table 4, while biomass and coal supply is only assumed to vary between each 

source. The initial capacities of the coal power plants and pretreatment facilities were 

arbitrarily set to 35,000 kg, while the storage facilities within the pretreatment facilities 

had initial capacities of 10,000 kg. The bulk densities, moisture and ash contents of raw 

biomass from each source are detailed in Table 5. Two columns are given for both 

biomass moisture and ash contents to provide the range across which the uncertain 

parameters are assumed to vary along. The values adopted for the biomass’ higher 

heating value is 16.71 MJ/kg, hydrogen content is 6.5%, nitrogen content equals to 1.7%, 

and oxygen content is 47.5%. Biomass property values were adopted from the researches 

of Kargbo et al. [25] and Liu et al. [26]. For the deterministic and base run model 

validation, the median values were used for moisture and ash content. The bulk density, 

lower heating value, ash content, and moisture content of coal are assumed to be  

793 kg/m3, 22.73 MJ/kg, 7.5%, and 9.05%, respectively [27]. 
 

Table 4. Demand and supply parameters 

 

Period [year] 1 2 3 4 5  
Demand [MJ] 500,000 600,000 550,000 600,000 540,000  

Biomass source 1 2 3 4 5 6 

Supply [kg] 4,500 4,500 5,700 5,500 6,000 5,750 

Coal source 1 2 3 4   

Supply [kg] 20,000 20,000 20,000 20,000   

 

Table 5. Biomass quality parameters 

 

Biomass source Moisture content [% mass] Ash content [% mass] Bulk density [kg/m3] 

1 7 21 9 18 50 

2 9 19 5 20 60 
3 11 23 10 23 20 

4 7 18 7 15 35 

5 9 20 10 18 80 

6 8 25 8 17 55 
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Because each pretreatment facility is assumed to perform a different type of 

pretreatment process, different efficiencies for ash content and moisture content 

improvement efficiency are assigned to each pretreatment facility. In the same way, the 

bulk density of treated biomass differs between pretreatment facilities. These parameters 

are shown in Table 6. Parameters for moisture content and bulk density improvement 

were adapted and modified from Pérez-Fortes et al. [14], which shows a range of 

pretreatment technologies including torrefaction, pelletization, pyrolysis, and their 

combinations, while ash content improvements were assumed. It is assumed that the 

system starts with no biomass in inventory. 
 

Table 6. Biomass pretreatment parameters 

 

Pretreatment facility 
Moisture content 

[% improvement] 

Ash content 

[% improvement] 

Bulk density 

[kg/m3] 

1 (torrefaction) 80 25 230 

2 (pelletization) 10 35 575 
3 (torrefaction + pelletization) 90 20 800 

 

Upper and lower coal displacement limits are enforced in each retrofitted coal power 

plant depending on the co-firing scheme it has been modified for as presented in Table 7. 

In this model, the upper displacement limit is higher for indirect co-firing systems 

because biomass is separately processed from coal. The limits for the moisture and ash 

contents of the mixed fuel processed in each coal power plant is also given in Table 8. 

The risk of damage in the equipment from processing biomass is influenced by the 

co-firing scheme implemented. It is assumed that if indirect co-firing scheme is chosen, 

no damage occurs due to moisture content and ash content properties, while full risk is 

experienced when direct co-firing is chosen. The efficiency threshold for each coal power 

plant represents the lower bound of the conversion efficiency. This forces a coal power 

plant to close down unless repairs or maintenance on the equipment is performed.  

The efficiency threshold is assumed to be 0.3 or 30%, the same for all power plants.  

The biochar yield is dependent on the co-firing scheme implemented. When direct 

co-firing scheme is implemented, no biochar will be produced. On the other hand, when 

indirect co-firing is chosen, it is assumed that 20% of the biomass fraction of the 

feedstock is transformed into biochar. 

 
Table 7. Coal displacement limits and quality tolerances parameters 

 

Co-firing scheme 
Displacement limit 

Feedstock property 
Property/Quality limit [% mass] 

Lower Upper Lower Upper 

Direct 0 0.2 Ash 3.3 8 

Indirect 0 0.5 Moisture content 2.2 12 

 
Table 8. Biochar properties 

 
Power plant Biochar quality [mg PAH/kg] Biochar quality [mg Zn/kg] Biochar quality [mg Pb/kg] 

1 10 50 2 

2 2 10 1 

3 1 5 0.5 

4 8 20 4 

 

Depending on the processes undergone, biochar may have different concentration of 

contaminants. Thus, the contaminant levels in biochar differs based on the power plant 

from which it was produced. The contaminants considered in the model validation are 

Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals, zinc (Zn) and lead (Pb). 
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The presence of these contaminants in biochar utilized as soil amendment for crop plant 

cultures can pose a potential disadvantage from ecotoxicity risk [10]. These values are 

shown in Table 8. The allowable soil contaminant factor (𝜓) represents the willingness of 

the decision maker to contaminate soil properties with biochar contaminants and can 

assume values varying between 0 to 1. For the purpose of the validation, this is assumed 

to be equal to 1. The total biochar storage capacity of each sink is shown in Table 9. 

Similarly, Table 9 also presents the sequestration factor of biochar applied in each sink 

and the maximum allowable concentration of each contaminant in each biochar sink. 

Lastly, the bulk density of biochar is assumed to be 200 kg/m3.  
 

Table 9. Biochar sink properties 

 

Biochar sink 
Storage capacity 

[kg] 

Sequestration factor 

[kg CO2/kg] 

Biochar quality limit 

[mg PAH/kg] [mg Zn/kg] [mg Pb/kg] 

1 1,800 5.2 250 200 40 

2 1,800 5.0 100 125 30 

3 5,400 5.5 50 500 120 

 

Table 10 and Table 11 show the distances in kilometres between biomass sources to 

pretreatment facilities, pretreatment facilities to coal power plants, biomass sources to 

coal power plants, coal sources to coal power plants, and coal power plants to biochar 

sinks. Additionally, the weight and volume capacities are assumed to be 13,500 kg and  

55 m3, respectively. 
 

Table 10. Distances between biomass sources, pretreatment facilities, and power plants [km] 
 

Biomass 

source 

Pretreatment facility Power plant Pretreatment 

facility 

Power plant 

1 2 3 1 2 3 4 1 2 3 4 

1 30 40 35 40 50 45 40 1 15 15 20 15 

2 25 40 30 25 50 40 45 2 20 20 20 20 

3 15 45 35 25 55 45 35 3 20 18 17 15 

4 30 20 25 40 20 35 40 

 5 15 20 15 25 30 25 35 

6 35 25 35 45 35 45 45 

 

Table 11. Distances between coal sources, power plants, and biochar sinks [km] 
 

Coal sources 
Power plant 

Power plant 
Biochar sink 

1 2 3 4 1 2 3 

1 30 35 25 35 1 15 10 15 

2 30 25 20 30 2 10 15 15 
3 30 30 30 30 3 15 15 10 

4 25 35 30 30 4 10 10 15 

 

The relationship between conversion equipment efficiency, feedstock property 

violations and total feedstock processed is modelled with an arbitrary function. For the 

model validation, an exponential decay function is chosen, the conversion efficiency of 

the equipment is equal to a certain constant raised to the feedstock quality violations and 

volume of feedstock processed as shown in eq. (74): 
 

𝜆𝑙𝑡 = constant−(𝑚𝑙𝑡−1
+ ,𝑚𝑙𝑡−1

− ,𝑎𝑙𝑡−1
+ ,𝑎𝑙𝑡−1

− ,𝐸𝑙𝑡−1) (74) 

 

An exponential function with a base that is greater than or equal to 1 will return 

decreasing values as the exponent variables increase. Efficiency will begin at 1 when the 

exponent is 0 or when no feedstock property violations have been made and/or no 
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feedstock has been handled by the power plant yet. The efficiency value will then 

decrease, approaching 0 as the exponent increases. The constant dictates the rate of 

decrease per unit increase in the exponent variables. The higher the constant the faster the 

rate of decrease will be. For the model validation, the constant used was 𝑒, which has an 

approximate value of 2.7183. 

Deterministic solution 

The optimization of the deterministic model returns a total system cost of  

USD 1,535,762.55 and emissions of 568,500.37 kg CO2, which were both minimized. 

Majority of the costs may be attributed to power plant retrofitting costs because all plants 

were retrofitted for indirect co-firing. Despite biomass displacing, coal for energy 

production through the implementation of co-firing in all of the coal power plants, majority 

of the environmental emissions is contributed by coal combustion for energy generation. 

Nonetheless, significant reductions in emissions is achieved through biochar-based carbon 

sequestration, which achieved 170,629 kg CO2 carbon sequestration.  

The optimal network for the first period is shown in Figure 2. The violet connection 

lines represent the flow of raw biomass from biomass sources to coal power plants, while 

the green connection lines represent the movement of raw biomass from biomass sources 

to pretreatment facilities. The movement of biomass after treatment and/or storage in 

pretreatment facilities to coal power plants are shown as blue arrows. Coal being brought 

from coal sources to coal power plants are illustrated as black lines. Lastly, the flow of 

biochar from power plants to biochar sinks are represented as yellow connection lines. 

The amount of material that flows between each node is indicated by the start of the 

connection arrows. It can be observed that raw biomass is purchased from all sources, 

some were directed towards pretreatment facilities. However, pretreated biomass is kept 

in inventory. Only two out of three potential pretreatment facilities were activated.  

This shows that the model prioritizes the facilities which can improve the biomass’ 

quality the most, while also causing the least pollutant emissions and at least cost.  

No material flows occur between pretreatment facilities and coal power plants to prepare 

for the higher power demand in succeeding periods. In Figure 2, biomass is accumulated 

in pretreatment facilities in period 1, the same behaviour was observed in period 2. 

However, by the third period, illustrated in Figure 3, the biomass that was previously 

stored in the pretreatment facilities start to be brought and utilized by the power plants.  

In addition, the model decides to divide satisfying the demand between three power 

plants, instead of having just one power plant to satisfy the whole demand for the first 

period, to avoid significantly decreasing the conversion efficiency of these coal power 

plants, which could later increase costs and emissions when more feedstock is needed to 

satisfy future demand, or when repairs would have to be made. Finally, all three power 

plants allocate biochar to sink 3 because it has the highest sequestration factor which 

offsets the carbon emissions from being farther from the power plants and having lower 

contaminant limits. In succeeding periods, the model is observed to choose expanding 

capacity, and performing maintenance on damaged equipment. Moreover, pretreated 

biomass is utilized to avoid damaging the equipment any further, and to be able to satisfy 

more demand from improved conversion efficiency. 

The deterministic optimal solution is tested against uncertain levels of biomass 

moisture and ash content through Monte Carlo simulation. The optimal solution obtained 

in the deterministic base run is set as fixed parameters and is tested with 150 samples of 

randomly varying levels of biomass moisture and ash content to determine the robustness 

of the solution, and its ability to satisfy requirements under realizations of uncertainties. 

The results of the Monte Carlo simulation for the amount of demand satisfied and 

probability of meeting demand are summarized in Table 12. Varying the biomass 
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properties while keeping the decision variables values as parameters created erratic 

results for the amount of electricity that could be generated each period. For all five 

periods, the system experiences difficulty in trying to meet the demand. Additionally, the 

performance of the model on its cost objective when subjected to uncertainty is also 

erratic. The objective costs can vary greatly from USD 1.532 to 1.605 million, with an 

average of USD 1,557,993.66, which is significantly higher than USD 1,535,762.55 

obtained from the deterministic model.  
 

 
 

Figure 2. Optimal network for period 1 of deterministic model 

 

 
 

Figure 3. Optimal network for period 3 of deterministic model 
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Table 12. Monte Carlo simulation results on demand satisfaction 

 

Period [year] Demand [MJ] Average demand satisfied [MJ] Probability 

1 500,000 495,393.93 0.2933 
2 600,000 593,669.20 0.2533 

3 550,000 545,768.07 0.2800 

4 600,000 600,793.93 0.5600 

5 540,000 539,740.20 0.5133 

Average   0.2533 

 

Although the deterministic model performed well, it only did so because of known 

and certain biomass properties, particularly moisture and ash content. In real scenarios, 

decision makers are faced with the difficulty of making proper investment decisions and 

properly allocating biomass and coal feedstock and biochar to their appropriate sinks to 

satisfy demand at minimum cost and emissions while influenced by unknown and 

uncertain biomass moisture and ash content. Thus, to address an oversight of existing 

literature, this study proposes the use of TORO approach to reconcile and consider the 

tradeoffs of uncertain biomass properties with multi-objective biomass co-firing network 

design and optimization. This approach only requires the decision maker to provide an 

upper and lower limit of estimation for the uncertain parameters to which the model will 

return a robust solution. In addition, this approach balances the tradeoffs between a 

certain level of risk the decision maker is willing to tolerate or conservativeness without 

having to give up too much of the optimal solution for a robust solution. 

Robust solution 

In the model implementation, several values of 𝛼 ∈ [0, 1]  were considered in 

increments of 0.1, providing 11 targets for both costs and environmental emissions using 

eq. (72) and eq. (73). Then, a solution is obtained for each of the targets through a 

bisection search maximizing the robustness index 𝜃. The targets obtained from this is 

shown in Table 13. 

 
Table 13. Robust solution and Monte Carlo simulation results 

 

𝛼 
𝜏cost 

[USD] 
𝜏env 

[kg CO2] 

Cost 

[USD] 

Emissions 

[kg CO2] 

Mean cost 

[USD] 

Cost standard 

deviation [USD] 

0.0 2,315,200 566,650 1,490,000 568,680 1,568,500 29,827 

0.1 2,204,600 546,710 1,490,000 568,680 1,568,500 29,827 

0.2 2,094,100 526,780 1,490,000 568,680 1,568,500 29,827 

0.3 1,983,500 506,840 1,490,000 568,680 1,568,500 29,827 

0.4 1,872,900 486,900 1,974,600 659,180 1,975,700 2,578 

0.5 1,762,300 466,960 1,974,600 659,180 1,975,700 2,578 

0.6 1,651,800 447,020 1,974,600 659,180 1,975,700 2,578 

0.7 1,541,200 427,080 1,974,600 659,180 1,975,700 2,578 
0.8 1,430,600 407,140 1,129,900 367,040 1,130,600 1,929 

0.9 1,320,100 387,200 1,129,900 367,040 1,130,600 1,929 

1.0 1,209,500 367,270 1,401,000 365,770 1,400,100 169 

Deterministic solution 1,535,800 568,490 1,557,993.66 23,113.49 

 

Each of the 11 solutions obtained were also subjected to biomass moisture and ash 

content uncertainty through the Monte Carlo simulation. Table 13 presents the specific 

costs and emissions targets for each 𝛼 value, and shows the maximum robustness index, 

which describes the amount of uncertainty the model is protected against, achieved for 

each of the 11 solutions. The operational objective values obtained from each of the 11 

TORO solutions, as well as the mean and standard deviations of the cost from the Monte 

Carlo simulation are also shown. The mean and standard deviation of the cost objective 
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was taken for each of the 150 data points generated for each 𝛼 level to provide a basis for 

comparison, which would allow non-dominated solutions to be identified. The standard 

deviation shows how much the solution may deviate from the mean in case of 

uncertainty. This value can represent how robust a solution is. A solution can be 

considered as superior if it is able to offer a lower average and standard deviation for 

costs. It can also be observed that there are some points which perform well on one metric 

but poorly on the other, while other points perform desirably on both. The solutions 

obtained when 𝛼 = 0.8 and 0.9 and when 𝛼 = 1.0  are the best solutions since they 

provide the lowest mean costs and standard deviation. The average costs when  

𝛼 = 0.8 and 0.9 (USD 1,130,600) is significantly lower than the deterministic average 

(USD 1,557,993.66). On the other hand, mean costs when 𝛼 = 1.0 (USD 1,400,100) is 

slightly higher than the average costs for 𝛼 = 0.8 and 0.9, but can still found well below 

the deterministic solution and deterministic mean. The solution obtained when  

𝛼 = 0.0 to 0.3 has lower mean costs than when 𝛼 = 0.4 to 0.7, but results in higher cost 

standard deviation. Regardless, these two solutions performed worse than the 

deterministic solution. 

Solutions under 𝛼 -values 0.8 to 1.0 dominates all the others on all metrics.  

These solutions produce operational cost and emission values, mean costs, and cost 

standard deviation that are lower or better than the deterministic solution.  

However, when choosing between the two solutions, namely the solution for 𝛼-values 0.8 

to 0.9 (highlighted in green) and the solution for 𝛼-value 1.0 (highlighted orange), a 

decision maker who prioritized costs over environmental emissions may find the former 

more attractive because of its lower mean costs, despite contributing higher operational 

pollutant emissions. On the other hand, if the environmental objective is more important to 

the stakeholders, the latter solution might be a better option. Furthermore, this solution 

might be more attractive because lower cost standard deviation was obtained from the 

Monte Carlo simulation, despite having higher mean costs than the solution when 𝛼-value 

is 0.8 or 0.9. Thus, the decision maker would have to consider which among the metrics, 

operational emissions, mean costs, and standard deviation, carry the most weight for them. 

The simulation reveals that the TORO approach is able to produce solutions for the 

model that are strictly better than the optimal solution obtained from the deterministic 

approach. In fact, the deterministic model returned costs and emissions that are much 

higher when subjected to biomass quality uncertainty compared to the robust solution. 

With the TORO approach, the decision maker does not need to know the actual 

distribution or level of biomass moisture and ash contents, and does not sacrifice too 

much of the optimality in the solution when maximizing robustness. 

CONCLUSIONS AND RECOMMENDATIONS 

A novel multi-objective mixed integer non-linear programming model was developed 

for biomass co-firing supply networks with biochar carbon management networks that 

ensures robustness to biomass quality uncertainty, while ensuring that economic and 

environmental targets are satisfied. The model covers investment, production, and 

distribution planning, while accounting for the impact of feedstock properties throughout 

the supply chain. The proposed MOTORO model uses the robustness index 𝜃 to measure 

the design’s vulnerability to fluctuations in critical parameters. Model capabilities are 

demonstrated using an illustrative case study. The proposed robust model identifies 

solutions that are relatively more immune to realizations of biomass quality uncertainty 

depending on the risk-appetite of the decision maker. The model may be useful to 

stakeholders, such as network designers and managers, to commit to a final network 

design. Policies may then be drafted by prioritizing designs that satisfy robustness and 

objective targets. Future work may consider the extension of the multi-objective 

consideration to simultaneously account for other sustainably measures, such as other 
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environmental impacts and social impact. Moreover, biomass is a flexible energy source, 

thus other bioenergy and bioproducts may be integrated into the model. Lastly, the model 

and its extensions may be applied to real-world and commercial-scale problems. 

NOMENCLATURE 

𝐴𝑙𝑡 binary, 1 if coal power plant l is operating on period t [-] 

𝑎𝑐 ash content of coal [%] 

𝑎𝑖𝑡
𝑟  ash content of raw biomass from source i on period t [%] 

𝑎𝑙
𝑢 maximum allowable ash content in coal power plant l [%] 

𝑎𝑙
𝑙 minimum allowable ash content in coal power plant l [%] 

𝑎𝑘𝑡
𝑝

 ash content of pretreated biomass in pretreatment facility k on 

period t 

[%] 

𝑎𝑙𝑡
𝑝𝑝

 ash content of all biomass in coal power plant l on period t [%] 

𝑎𝑙𝑡
𝑚 ash content of feedstock in coal power plant l on period t [%] 

𝑎𝑙𝑡
+  accumulated excess ash content of feedstock in coal power plant l 

on period t  

[%] 

𝑎𝑙𝑡
−  accumulated ash content insufficiency of feedstock in coal power 

plant l on period t 

[%] 

𝐵𝑘𝑡 binary, 1 if pretreatment facility k undergoes storage capacity 

expansion on period t 

[-] 

𝑏𝑙𝑛𝑡 amount of biochar produced and transported from power plant l to 

biochar sink n on period t 

[kg] 

𝑏𝑝𝑖𝑡 cost of biomass from source i on period t [USD] 

𝐶𝑙𝑡 binary, 1 if coal power plant l undergoes capacity expansion on 

period t 

[-] 

𝑐𝑒 emissions due to coal combustion [kg CO2/kg] 

𝑐𝑝𝑗𝑡 cost of coal from source j on period t [USD] 

𝐷𝑡 amount of energy demanded on period t [MJ] 

𝑑𝑖𝑘
𝑎  distance from biomass source i to pretreatment facility k [km] 

𝑑𝑘𝑙
𝑏  distance from pretreatment facility k to coal power plant l [km] 

𝑑𝑖𝑙
𝑐  distance from biomass source i to coal power plant l [km] 

𝑑𝑗𝑙
𝑑 distance from coal source j to coal power plant l [km] 

𝑑𝑙𝑛
𝑒  distance from coal power plant l to biochar sink n [km] 

𝐷𝑃 penalty cost for unmet demand [USD] 

𝐸𝑙𝑡  accumulated feedstock processed in coal power plant l on period t [kg] 

𝑒𝑘𝑡
𝑝

 capacity expansion for processing biomass in pretreatment facility 

k on period t 

[kg] 

𝑒𝑘𝑡
𝑠  capacity expansion for storage in pretreatment facility k on  

period t 

[kg] 

𝑒𝑙𝑡
𝑐  capacity expansion for coal power plant l on period t [kg] 

𝐹𝑘𝑡 binary, 1 if pretreatment facility k is operating on period t [-] 

𝑓𝑒𝑘𝑡
𝑝

 fixed cost to expand the capacity of pretreatment facility k on 

period t 

[USD] 

𝑓𝑒𝑘𝑡
𝑠  fixed cost to expand the storage capacity of pretreatment facility k 

on period t 

[USD] 

𝑓𝑒𝑙𝑡
𝑐  fixed cost to expand the capacity of coal power plant l on period t [USD] 

𝑓ℎ𝑘𝑡 fixed cost to store in pretreatment facility k on period t [USD] 

𝑓𝑚𝑙 fixed cost to repair/perform maintenance on the equipment in coal 

power plant l 

[USD] 

𝐺𝑛 sequestration factor of biochar sink n [-] 
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𝑔𝑓 biochar yield from co-firing scheme f [-] 

ℎ𝑐𝑙 concentration of contaminant c in the biochar produced in power 

plant l 

[g/kg] 

ℎ𝑐𝑛
∗  maximum allowable concentration of contaminant c in biochar 

sink n 

[g/kg] 

𝐼𝑘𝑡 ending biomass inventory in pretreatment facility k on period t  [kg] 

𝐽 biochar application cost [USD] 

𝐾𝑓 severity of damage in equipment due to co-firing scheme f [USD] 

𝐿𝑙𝑓
𝑙  lower coal displacement limit of coal power plant l retrofitted for 

co-firing scheme f 

[km] 

𝐿𝑙𝑓
𝑢  upper coal displacement limit of coal power plant l retrofitted for 

co-firing scheme f 

[km] 

𝑚𝑖𝑡
𝑟  moisture content of raw biomass from source i on period t [%] 

𝑚𝑐 moisture content of coal [%] 

𝑚𝑙
𝑢 maximum allowable moisture content in coal power plant l [%] 

𝑚𝑙
𝑙 minimum allowable moisture content in coal power plant l [%] 

𝑚𝑘𝑡
𝑝

 moisture content of all biomass in pretreatment facility k on  

period t 

[%] 

𝑚𝑙𝑡
𝑝𝑝

 moisture content of all biomass in coal power plant l on period t [%] 

𝑚𝑙𝑡
𝑚 moisture content of feedstock in coal power plant l on period t [%] 

𝑚𝑙𝑡
+  accumulated excess moisture content of feedstock in coal power 

plant l on period t  

[%] 

𝑚𝑙𝑡
−  accumulated moisture content insufficiency of feedstock in  

power plant l on period t 

[%] 

𝑂𝑙𝑓𝑡 binary, 1 if coal power plant l retrofitted for co-firing scheme f is 

used on period t 

[-] 

𝑜𝑑𝑡 energy produced over demand on period t [MJ] 

𝑃𝑘𝑡 binary, 1 if pretreatment facility k undergoes processing capacity 

expansion on period t 

[-] 

𝑝𝑖𝑡
𝑟  bulk density of raw biomass from source i on period t [kg/m3] 

𝑝𝑐 bulk density of coal [kg/m3] 

𝑝𝑘𝑡
𝑝

 bulk density of pretreated biomass in pretreatment facility k on 

period t 

[kg/m3] 

𝑝𝑏 bulk density of biochar [kg/m3] 

𝑝𝑐𝑘𝑡 biomass pretreatment cost in facility k on period t [USD] 

𝑝𝑒𝑘𝑡 emissions due to biomass pretreatment in facility k on period t [kg CO2/kg] 

𝑞𝑐 lower heating value of coal [kJ/kg] 

𝑞𝑙𝑡
𝑏  lower heating value of biomass in coal power plant l on period t [kJ/kg] 

𝑞𝑙𝑡 lower heating value of feedstock in coal power plant l on period t [kJ/kg] 

𝑅𝑙𝑓  binary, 1 if coal power plant l is retrofitted for co-firing scheme f [-] 

𝑟𝑙𝑡 repair/maintenance effectiveness in coal power plant l on period t [-] 

𝑆𝑘𝑡 binary, 1 if storage in pretreatment facility k is used on period t [-] 

𝑠𝑖𝑡
𝑏  amount of biomass available at biomass source location i on  

period t 

[kg] 

𝑠𝑗𝑡
𝑐  amount of coal available a coal source location j on period t [kg] 

𝑇𝑛 total biochar storage capacity of sink n [kg] 

𝑡𝑖𝑘𝑡
𝑤  number of trips to transport raw biomass from source i to 

pretreatment facility k on period t 

[-] 

𝑡𝑘𝑙𝑡
𝑥  number of trips to transport treated biomass from facility k to 

power plant l on period t 

[-] 
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𝑡𝑖𝑙𝑡
𝑦

 number of trips to transport raw biomass from source i to power 

plant l on period t 

[-] 

𝑡𝑗𝑙𝑡
𝑧  number of trips to transport coal from source j to coal power plant 

l on period t 

[-] 

𝑡𝑙𝑛𝑡
𝑏  number of trips to transport biochar from coal power plant l to sink 

n on period t 

[-] 

𝑡𝑐 transportation costs per unit distance per trip [USD] 

𝑡𝑒 transportation emissions [kg CO2/kg] 

𝑈 transport weight capacity [kg] 

𝑢𝑒𝑘𝑡
𝑝

 Unit capacity expansion cost of pretreatment facility k on period t [USD] 

𝑢𝑒𝑘𝑡
𝑠  unit storage capacity expansion cost of pretreatment facility k on 

period t 

[USD] 

𝑢𝑒𝑙𝑡
𝑐  unit capacity expansion cost of coal power plant l on period t [USD] 

𝑢ℎ𝑘𝑡 unit holding cost in pretreatment facility k on period t [USD] 

𝑢𝑚𝑙 unit cost of repair/maintenance on the equipment in coal power 

plant l per unit efficiency 

[USD] 

𝑢𝑘 ash content improvement efficiency in pretreatment facility k [-] 

𝑢𝑑𝑡 unmet demand on period t [MJ] 

𝑉 transport volume capacity [kg3] 

𝑣𝑘 moisture content improvement efficiency in pretreatment facility k [-] 

𝑊𝑙𝑡  binary, 1 if coal power plant l is repaired/undergoes maintenance 

on period t 

[-] 

𝑤𝑖𝑘𝑡  amount of biomass transported from biomass source i to 

pretreatment facilities k on period t 

[kg] 

𝑋𝑘𝑡 new weight of biomass from source after pretreatment in facility k 

on period t 

[kg] 

𝑥𝑘𝑙𝑡 amount of biomass transported from pretreatment facilities k to 

power plant l on period t 

[kg] 

𝑌𝑙𝑡
𝑐 combustion capacity of coal power plant l on period t [kg] 

𝑌𝑘𝑡
𝑝

 pretreatment capacity in facility k on period t [kg] 

𝑌𝑘𝑡
𝑠  storage capacity in pretreatment facility k on period t [kg] 

𝑦𝑖𝑙𝑡  amount of biomass transported from biomass source i to coal 

power plant l on period t 

[kg] 

𝑧𝑗𝑙𝑡 amount of coal transported from coal source j to coal power plant l 

on period t 

[kg] 

Greek letters 

𝛽𝑙 efficiency threshold of coal power plant l [-] 

𝛾 conversion factor for heat energy to electrical energy [-] 

𝜓 allowable soil contaminant tolerance factor [-] 

𝜆𝑙𝑡 efficiency loss of equipment in coal power plant l on period t [-] 

Subscripts and superscripts 

c biochar contaminant types 

f co-firing scheme 

i biomass waste source 

j coal source 

k biomass pretreatment facility 

l coal power plant 

n biochar sink 

t time period 
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APPENDIX 

Table A1. Bisection search algorithm for the TORO approach 

 

set tolerance level 𝜀 

initialize the highest and lowest possible 𝜃 to 𝜃+ = 1 and 𝜃− = 0, respectively 

while (𝜃+ − 𝜃−) > 𝜀 do 

 𝜃∗ =
𝜃+ + 𝜃−

2
 

 solve optimization model given 𝜃∗ 

 if a feasible solution exists then 

  𝜃− = 𝜃∗ 

       else 

                    𝜃+ = 𝜃∗ 

 end 

end 

 


