
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

An evolutionary algorithm for the robust
maximum weighted independent set problem

Ana Klobučar & Robert Manger

To cite this article: Ana Klobučar & Robert Manger (2020) An evolutionary algorithm for
the robust maximum weighted independent set problem, Automatika, 61:4, 523-536, DOI:
10.1080/00051144.2020.1789364

To link to this article: https://doi.org/10.1080/00051144.2020.1789364

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Jul 2020.

Submit your article to this journal

Article views: 501

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2020.1789364
https://doi.org/10.1080/00051144.2020.1789364
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2020.1789364
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2020.1789364
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2020.1789364&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2020.1789364&domain=pdf&date_stamp=2020-07-21

AUTOMATIKA
2020, VOL. 61, NO. 4, 523–536
https://doi.org/10.1080/00051144.2020.1789364

REGULAR PAPER

An evolutionary algorithm for the robust maximumweighted independent set
problem

Ana Klobučar a and Robert Manger b

aFaculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia; bDepartment of Mathematics, Faculty of
Science, University of Zagreb, Zagreb, Croatia

ABSTRACT
This work deals with the robustmaximumweighted independent set problem, i.e. finding a sub-
set of graph vertices that are not adjacent to each other and whose sum of weights is as large
as possible. Uncertainty in problem formulation is restricted to vertex weights and expressed
explicitly by a finite set of scenarios. Three criteria of robustness are considered: absolute robust-
ness (max-min), robust deviation (min-max regret), and relative robustness (relative min-max
regret). Since the conventionalmaximumweighted independent set problem is alreadyNP-hard,
finding the exact solution of its robust counterpart should obviously have a prohibitive compu-
tational complexity. Therefore, we propose an approximate algorithm for solving the considered
robust problem, which is based on evolutionary computing and on various crossover andmuta-
tion operators. The algorithm is experimentally evaluated on appropriate problem instances. It
is shown that satisfactory solutions can be obtained for any of the three robustness criteria in
reasonable time.

ARTICLE HISTORY
Received 27 September 2019
Accepted 26 June 2020

KEYWORDS
Robust optimization;
maximumweighted
independent set;
approximation; evolutionary
algorithm; complexity

1. Introduction

A conventional optimization problem consists of max-
imizing or minimizing an objective function over a
set of feasible solutions that satisfy given constraints.
However, in real-life situations, input parameters that
specify a particular problem instance are often uncer-
tain or subject to change, since they may be influenced
by some unpredictable future circumstances. We can
try to somehow estimate or approximate those param-
eters, but such estimations could easily lead to an infe-
rior or even infeasible solution. Instead of ignoring
uncertainty, it is much better to handle it by using an
appropriate mathematical model.

A state-of-the art approach to deal with the men-
tioned uncertainty is called robust optimization [1,2].
According to that approach, a finite or infinite set of sce-
narios is defined. The scenarios should capture uncer-
tainty in problem parameters in some way. Only those
solutions are considered that are feasible for all scenar-
ios. As the optimal solution in the robust sense, the
one is chosen whose worst behaviour over the whole
set of scenarios happens to be the best among all solu-
tions. Such solution does not need to be really optimal
in the conventional sense, but it is chosen in order to be
acceptable even in the most adverse circumstances.

In this paper, we consider the maximum weighted
independent set problem, which is posed in a graph
whose vertices are given weights. In its conventional

form, the problem consists of finding a subset of graph
vertices that are not adjacent to each other and whose
sum of weights is as large as possible. Our focus is
on several robust variants of the same problem, where
graph structure is fixed but vertex weights are uncer-
tain. Such uncertainty is expressed by a finite set of
scenarios.

It is well known [3] that the conventional maxi-
mumweighted independent set problem is already NP-
hard. Thus finding exact solutions of its robust variants
should be even harder. Consequently, we do not expect
that real-life problem instances could be solved to opti-
mality in reasonable time. Instead, we believe that the
only practical way of solving such instances is by using
approximate algorithms.

The aim of this paper is to demonstrate that robust
variants of the maximum weighted independent set
problem can be solved by approximate algorithms
that are accurate and fast enough for real-life appli-
cations. To fulfil this aim, the paper proposes an
algorithm for solving the considered robust prob-
lem variants, which is based on evolutionary com-
puting and on various original evolutionary opera-
tors (crossovers, mutations, recovery). The proposed
algorithm is experimentally evaluated on appropriate
problem instances. Through such evaluation, the best-
performing combinations of crossovers and mutations
are identified.

CONTACT Robert Manger manger@math.hr Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, Zagreb,
Croatia

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2020.1789364&domain=pdf&date_stamp=2020-07-09
http://orcid.org/0000-0002-0260-5439
http://orcid.org/0000-0003-0953-6517
mailto:manger@math.hr
http://creativecommons.org/licenses/by/4.0/

524 A. KLOBUČAR AND R. MANGER

Building our algorithm on a heuristic such as evolu-
tionary computing (and not on amore “exact”method)
is motivated by the following facts. It is true that the
considered robust problem can be formulated as an
integer linear programming problem and then pro-
cessed by a general-purpose optimization software. But
due to NP-hardness, such approach does not work for
larger problem instances. Moreover, according to our
preliminary investigations, approximate solving based
on a relaxed linear-programming model would not
work either, since it would produce non-integer solu-
tions that cannot easily be rounded to integer solutions.
Thus among various approximate algorithms, evolu-
tionary computing and similar heuristics seem to be the
best choice.

Apart from this introduction, the rest of the paper is
organized as follows. Section 2 lists all necessary def-
initions and preliminaries. Section 3 gives examples
of real-world applications of the considered problem
and its robust variants. Section 4 presents the overall
structure and properties of our evolutionary algorithm
for solving the robust variants. Sections 5–7 describe
in more detail the concrete operators used by the
algorithm, i.e. four crossovers, one recovery operator
and five mutations, respectively. Section 8 reports on
experimental evaluation, i.e. on the performed tests and
their results. The final Section 9 gives conclusions.

2. Definitions and preliminaries

The foundations of robust optimization have been laid
out in the seminal works [2,4–6]. More recent surveys
and some general results can be found in [1,7–9]. The
book [2] gives a suitable framework for robust discrete
optimization.

According to [2], uncertainty in problem param-
eters should be captured by a finite and explicitly
given set of scenarios. Each scenario specifies a pos-
sible combination of parameter values. As mentioned
before, only those solutions are considered that are
feasible for all scenarios. The behaviour of any consid-
ered solution under any scenario is measured accord-
ing to some criterion of robustness. Then, the so-called
robustly optimal solution in chosen as the one whose
worst behaviour,measured over all scenarios, is the best
possible.

The framework from [2] obviously allows many
options. For instance, the set of uncertain parameters
can be more or less extensive. Also, the behaviour of a
solution under a scenario can be measured by different
criteria of robustness. Thus for the same conventional
(non-robust) optimization problem one can construct
several robust problem variants, which can be more or
less difficult to solve. There are three popular criteria of
robustness, and according to [2], they are called abso-
lute robustness, robust deviation, and relative robust
deviation. In some other publications, e.g.[1], the same

criteria are referred to as max-min (min-max), min-
max regret, and relative min-max regret, respectively.

Let now S denote the set of all scenarios, and sup-
pose that each scenario is encoded as an n-tuple, where
n is the number of input parameters. Let X be a feasible
solution, F(X, s) the (conventional) objective-function
value for solution X under scenario s, F∗(s) the optimal
(conventional) solution value for scenario s, and � the
set of all solutions that are feasible for all scenarios. Sup-
pose also that the considered conventional problem is a
maximization problem, and that for any scenario s the
value F∗(s) is not zero. Then the three previously men-
tioned robustness criteria are defined in the following
way.

• Absolute robust solution (max-min). XA is a feasible
solution whose minimum objective function value,
measured over all scenarios, is as large as possible,
i.e.

optA = max
X∈�

min
s∈S

F(X, s) = max
X∈�

FA(X) = FA(XA).

The robust objective function used here (beingmax-
imized) is

FA(X) = min
s∈S

F(X, s). (1)

• Robust deviation solution (min-max regret). XD is a
feasible solution whose maximum deviation from
the conventional optimum, measured over all sce-
narios, is as small as possible, i.e.

optD = min
X∈�

max
s∈S

(
F∗(s) − F(X, s)

)

= min
X∈�

FD(X) = FD(XD).

The corresponding robust objective function (now
being minimized) is

FD(X) = max
s∈S

(
F∗(s) − F(X, s)

)
. (2)

• Relative robust deviation solution (relative min-max
regret). XR is a feasible solution whose maximum
relative deviation from the conventional optimum,
measured over all scenarios, is as small as possible,
i.e.

optR = min
X∈�

max
s∈S

(
F∗(s) − F(X, s)

F∗(s)

)

= min
X∈�

FR(X) = FR(XR).

The corresponding robust objective function (again
being minimized) is now

FR(X) = max
s∈S

(
F∗(s) − F(X, s)

F∗(s)

)
. (3)

AUTOMATIKA 525

As already announced, in this paper, we study the
maximum weighted independent set problem. Its con-
ventional variant is very well known and treated in
many textbooks, e.g.[10,11]. We give here some basic
definitions for convenience.

• Let G = (V ,E) be an undirected graph, where V is
the set of vertices and E the set of edges. An inde-
pendent set of G is a subset X of V such that no
two vertices in X are adjacent (connected by an edge
from E).

• Let G = (V ,E) be an undirected graph whose ver-
tices have weights. Suppose that all weights are pos-
itive real numbers. A maximum weighted indepen-
dent set of G is an independent set of G whose sum
of vertex weights is as large as possible.

• The problem of finding a maximum weighted inde-
pendent set in a given weighted graph is called the
(conventional) maximum weighted independent set
problem (theMWIS problem).

In this paper, we consider robust variants of the
above defined MWIS problem. Those variants are con-
structed according to the framework from [2]. Thereby
the graph structure is assumed to be stable, only ver-
tex weights are considered as uncertain. Consequently,
each scenario is simply an n-tuple of weights, where n
is the number of vertices in the graph.

So our robust problem can be defined as follows. For
a given graph G = (V ,E) and a finite set S of scenar-
ios for its vertex weights, find an independent set XA
(or XD or XR) that satisfies one of the previously listed
robustness criteria. Or in other words, find an indepen-
dent set that optimizes the robust objective function (1)
(or (2) or (3)). Such problem is called the robust max-
imum weighted independent set problem (the RMWIS
problem). Depending on the chosen criterion, there are
three variants of the RMWIS problem.

It is important to note that the conventional MWIS
problem can be written formally as an integer linear
programming (ILP) problem, as shown below. Such
definition is necessary in order to be able to solve
smaller problem instances by general-purpose opti-
mization packages, e.g. by IBM ILOG CPLEX Opti-
mization Studio [12].

maximize
n∑
i=1

wixi

subject to:

xi + xj ≤ 1, for all (vi, vj) ∈ E

xi ∈ {0, 1}, for all i = 1, . . . , n.

Here, n is again the number of vertices in our graph
G, i.e. n = |V|. The symbols vi, i = 1, . . . , n, denote
vertices, and wi, i = 1, . . . , n, are their weights. The
decision variable xi corresponds to vi and it is equal 1 if

and only if vi is included in the solution. The first con-
dition assures that no two vertices within the solution
are adjacent. We maximize the sum of weights among
all feasible solutions. So the objective function can also
be written as:

F(X) =
∑
vi∈X

wi,

whereX is the set of chosen vertices, i.e. those vertices vi
whose corresponding values xi are 1. In the robust case,
the objective function at scenario s is the following:

F(X, s) =
∑
vi∈X

ws
i . (4)

Here ws
i denotes the weight of vertex vi under

scenario s.
Similarly as the conventional MWIS problem, our

three variants of the robust MWIS problem can also
be formulated in terms of ILP and hopefully solved
by general-purpose optimization packages. Indeed, for
the absolute robust MWIS problem (max-min) the ILP
formulation looks as follows:

maximize y

subject to:
n∑

i=1
ws
ixi ≥ y, for all s ∈ S

xi + xj ≤ 1, for all (vi, vj) ∈ E

xi ∈ {0, 1}, for all i = 1, . . . , n.

(5)

For the robust deviation MWIS problem (min-max
regret), the ILP formulation is the same as above, except
that y is minimized and the first constraint is replaced
with:

F∗(s) −
n∑

i=1
ws
ixi ≤ y, for all s ∈ S (6)

The ILP formulation for the relative robust deviation
MWIS problem (relative min-max regret) is again the
same, except y being minimized and the first constraint
being:

n∑
i=1

ws
ixi ≥ (1 − y)F∗(s), for all s ∈ S (7)

At this moment, there are only few publications on the
RMWIS problem found in the literature, i.e.[13–16].
The cited papers are concerned with complexity issues,
restrictions to special types of graphs, or relations to
other problems. We are not aware of any paper deal-
ing with reasonably efficient algorithms for the RMWIS
problem on general graphs. So our paper tries to fill
this gap. On the other hand, there is a fair number
of publications where the conventional MWIS prob-
lem is solved by exact or approximate algorithms. For

526 A. KLOBUČAR AND R. MANGER

instance, [17] presents an exact algorithm for theMWIS
problem, [18,19] develop greedy heuristics, [20,21] pro-
pose local-search heuristics, while [22,23] study genetic
algorithms.

At the end of this section, let us say something
more about computational complexity of the consid-
ered problems. The proof that the conventional MWIS
problem is NP-hard can be found in many books
including also the classical monograph [3]. Since the
MWIS problem can be regarded as a special case of the
RMWIS problem (having only one scenario), it is clear
that the RMWIS problem must also be NP-hard.

3. Applications

Although the considered MWIS problem looks rather
abstract and artificial, it still can be applied to many
practical situations. This is true not only for its conven-
tional variant but also for its robust variants. The most
notorious application is facility location [24], where
locations for certain facilities (e.g. warehouses) should
be chosen, so that some kind of profit is maximized
and the facilities are not too close one to another. Also
very interesting application is described in [25]. It deals
with selection of programme slots of television channels
for giving an advertisement. One would like to choose
the slots that do not overlap in time, while attract-
ing as many viewers as possible. In this section, we
will describe in more detail an application dealing with
labeling of a digital map. It is a slightly modified version
of the application from [26].

We consider a digital map of a geographical region,
which is used within a mobile app. The map stores
positions of many locations, so-called points of interests
(POI-s). Each POI is assigned a positive number inter-
preted as its importance. The POI-s are divided into
categories, e.g. restaurants, cinemas, shopping malls,
etc. The user observes the map through a rectangular
window. It means that, at any moment, only a part of
the map is visible. The user can move the window in all
directions, or use zoom-in or zoom-out operations to
shrink or extend the visible area of the map.

The main purpose of our app is to inform the user
about existence of certain POI-s. Therefore, the app
tries to show the positions of all POI-s that residewithin
the currently displayed area. The user can select only
particular categories of POI-s to be shown, e.g. only
restaurants, or only cinemas, or only restaurants and
cinemas, etc.

Our app marks the position of a POI by displaying
its label (i.e. a text or icon) at the appropriate place
within the display. Unfortunately, it can happen that
two or more labels overlap if the corresponding POI-s
are too close or if the displayed area of themap is too big
due to zooming-out. Overlapping of labels should be
avoided since it spoils readability of the display. In order
to prevent overlapping, our app should show only the

labels of more important POI-s and hide the remaining
labels.

So we are confronted with the following problem:
which of the overlapping labels should be shown, and
which should be hidden? The problem can be solved
by constructing the so-called conflict graph. Vertices
of that graph correspond to POI-s that belong to the
currently displayed area and the currently selected cate-
gories. The weight of a vertex is equal to the importance
measure of the corresponding POI. Any two vertices are
connected by an edge if and only if the corresponding
labels would overlap on the current display.

Obviously, an independent set of the conflict graph
determines a set of POI-s whose labels can be dis-
played without overlapping. Moreover, a maximum-
weight independent set specifies the set of POI-s whose
total importance is as large as possible and whose labels
do not overlap. Thus to decide which labels should
be shown and which should be hidden, our app must
solve the MWIS problem on the current conflict graph.
Note that the conflict graph changes whenever the user
selects different categories of POI-s, or moves the win-
dow, or zooms the displayed area. Thus the MWIS
problem has to be solved many times and as quickly as
possible.

Let us now discuss about uncertainty of vertex
weights within the considered conflict graph. Indeed,
those weights are uncertain since they reflect relative
importance of particular POI-s obtained by subjective
judgement. Obviously, any consistent set of importance
measures can be interpreted as a scenario for weights.
Ideally, each user of our app should have its own sce-
nario. However, a more practical option is to divide
users into profiles, such as young men, young women,
middle-aged men, etc. Then scenarios could be associ-
ated with profiles rather than with individual users.

If the profile of the current user is known, then
the associated MWIS problem instances can be solved
by using the appropriate scenario, which means that
the conventional (single scenario) variant of the MWIS
problem is solved. On the other hand, if the user pro-
file is not known, then all available scenarios should be
taken into account. The best way how to handle more
scenarios is to solve a robust variant of theMWIS prob-
lem. The obtained robust solution would be acceptable
for any scenario, although not optimal. If some partial
information about the user is known, e.g. that he/she is
a young person, then a reduced set of scenarios could be
used; the associated MWIS problem would be simpler
but still robust.

4. Properties of our evolutionary algorithm

Having inmind thementionedNP-hardness of the con-
ventional MWIS problem, we propose an approximate
algorithm for solving the RMWIS problem based on
evolutionary computing. As described in many books,

AUTOMATIKA 527

e.g.[27–29], an evolutionary algorithm (EA) is a ran-
domized computing procedure whichmaintains a pop-
ulation of chromosomes. Each chromosome represents
a feasible solution to a given instance of an optimiza-
tion problem. The population is iteratively changed,
thus giving a series of population versions called gen-
erations. Change is accomplished through application
of evolutionary operators, such as crossovers or muta-
tions, which create or modify chromosomes. During
the whole process, more “fit” populationmembers have
more chance to “survive”, and less fit are discarded.
The best chromosome in the last generation should
represent a nearly optimal solution to the considered
problem instance.

In order to construct a good EA for the RMWIS
problem, we will consider four original crossover oper-
ators and fivemutations. Also, wewill propose a flexible
recovery operator, which canmodify an infeasible chro-
mosome tomake it feasible. Altogether twenty EA vari-
ants will be considered, where any of them combines
one particular crossover with one particular mutation.
We will apply each EA variant to each of the three
RMWIS problem variants.

The mentioned operators (crossovers, mutations,
recovery) will be described inmore detail in subsequent
sections. The remaining building blocks of our EA are
realized in rather standard ways. Indeed:

• The data structure used to represent a chromosome
is a list of graph vertices, which can be sorted accord-
ing to various criteria. The listed vertices should con-
stitute a feasible independent set, i.e. they should sat-
isfy the constraint that no two of them are connected
by an edge.

• Fitness of a chromosome is assessed by computing
its objective-function value according to the cho-
sen robustness criterion. Depending on the crite-
rion, the robust objective function (1), (2) and (3),
respectively, is used, combined with the conven-
tional objective function (4).

• Selection of a “good” chromosome for crossover (or
a “bad” chromosome for disposal) is based on tour-
nament selection [27,29]. Thus a certain number of
chromosomes is picked up randomly, and the most
(or least) fit of them is chosen.

• New chromosomes produced by crossovers are
inserted into the population as described in [30].
The procedure relies on the concept of similarity.
We say that two chromosomes are similar if their
robust objective-function values differ less than 1%
of the best value within the population. Insertion is
accomplished according to the following two rules.
If there exists another chromosome in the popula-
tion that is similar to the new one, then the bet-
ter of those two “twins” is retained and the other
one is discarded. If there is no similar chromo-
some, then the new one is retained and some other

“bad” chromosome is selected by tournament and
discarded.

Note that according to our rules, the population size
always remains the same. Indeed, whenever a chro-
mosome is inserted, another one is discarded. Note
also that the whole algorithm supports so-called elitism
[27,29], i.e. the best chromosome within the popula-
tion is discarded only if it is replaced by an even better
chromosome.

Since an EA usually requires many iterations, it is
important that a particular iteration can be computed
quickly. Therefore, in our crossover and recovery oper-
ators, we will mostly rely on greedy strategies. It is
true that greedy decisions often lead to an unsatisfac-
tory local optimum.However, such premature termina-
tion of computing can be avoided by efficient mutation
operators.

Our greedy strategies are mostly inspired by the
vertex-selecting rule from [19], which maximizes:

c(vi) = wi

d(vi) + 1
. (8)

Here, wi is again the weight of vertex vi, and d(vi) is its
degree (number of adjacent vertices). Justification for
the above expression is illustrated by Figure 1. Indeed,
for the shown graph and shown weights of vertices,
a vertex-selecting rule which takes into consideration
only weights would give an independent set of total
weight 7. On the other hand, the vertex-selecting rule
based on (8) would give an independent set of total
weight 10. Sometimes vertices with larger weights can
have many neighbours, so that better solutions can be
obtained by using a larger number ofmore independent
vertices with smaller weights.

The expression (8) can be generalized for the robust
case as follows:

c(vi) =
∑

s∈S ws
i

d(vi) + 1
. (9)

Thus according to our vertex-selecting rule, we give
priority to a vertex vi whose ratio (9) is the greatest
(provided that it is not adjacent to other already chosen
vertices). The ratio (9) we will be called relative vertex
contribution, and its numerator will be referred to as
total weight.

5. Crossover operators

Now we will describe our four original crossover oper-
ators that seem to be suitable for solving the RMWIS
problem. Any of our crossovers takes as input two exist-
ing chromosomes (parents) and produces a new chro-
mosome (child). Thereby both parents correspond to
feasible solutions of the considered RMWIS problem
instance. On the other hand, the child may for some

528 A. KLOBUČAR AND R. MANGER

Figure 1. A weighted graph illustrating various
vertex-selecting rules.

crossovers turn out to be infeasible, which is then com-
pensated by applying recovery. Each chromosome is
represented as a list of chosen vertices, and that list can
be sorted in various ways.

• Alternating vertices crossover (AVX). Our first
crossover operator, called AVX, assumes that within
each parent list the vertices are sorted according to
their relative vertex contributions (9) in descend-
ing order. The child chromosome is constructed by
choosing in alternation vertices from the first and
from the second parent, thereby following the order-
ing in both lists. Thus the child is initialized with the
first vertex from the first parent, then the first ver-
tex from the second parent is added, then the second
vertices from the first and second parent are in turn
appended, etc. In case of infeasibility (the candidate
vertex is identical or adjacent to some of already cho-
sen vertices) the next vertex from the sameparent list
is considered. If one of the parent lists gets exhausted,
the remaining vertices from the other parent list are
directly copied into the child (provided that they
are feasible). Although the child constructed in the
above way is always feasible, it is still handed over to
the recovery operator for possible improvement.

• Modified alternating vertices crossover (MAVX). The
next operator, denoted with MAVX, is almost the
same as AVX. The only difference is the way how
the parent lists are initially sorted. In AVX, the par-
ents are sorted according to relative vertex contri-
bution (9) in descending order. In MAVX, they are
sorted according to local relative vertex contribution,

again in descending order. Local relative vertex con-
tribution of a vertex vi is computed by the same for-
mula (9), except that the degree d(vi) is now assessed
“locally”, i.e. by considering only edges connecting vi
with vertices from the other parent.

• Randomly chosen vertices crossover (RVX). In RVX,
the parent lists do not need to be sorted in any partic-
ular order, but it is convenient to assume that they are
sorted according to vertex identifiers 1, . . . , n. The
child chromosome is constructed in n steps. In i-th
step it is decided whether to include vertex vi into
the child or not. The decision is guided by the situa-
tion found in one of the parents, i.e. if vi is present in
the chosen parent, then it will also be present in the
child, and vice-versa. In each step, choosing between
the two parents is done randomly, but not with equal
probability. More precisely, let the total relative ver-
tex contribution (the sum of relative contributions
of included vertices) for the first and for the second
parent be t1 and t2, respectively. Then the probability
of choosing the first parent is π1 = t1/(t1 + t2) and
the probability for the second parent is π2 = 1 − π1.
Thus the parent with larger total relative vertex con-
tribution, being considered asmore fit, is more likely
to be chosen. Obviously, the child chromosome cre-
ated by the above procedure may not be feasible, so
that it is always sent to the recovery operator for
postprocessing.
It is interesting to note that the RVX operator bears
some resemblance to the crossover from [23], and
even more resemblance to the crossover from [22].
However, our RVX is more complex and more gen-
eral since it takes into account multiple scenarios for
vertex weights.

• Modified randomly chosen vertices crossover (MRVX).
The last crossover operator, MRVX, works almost in
the same way as RVX. It differs only in the formula
for computing the probability π1. Instead of rela-
tive vertex contributions, now the robust objective
function (1), (2) and (3), respectively, is taken into
account. Indeed, depending on the chosen RMWIS
problem variant (max-min, min-max regret, or rel-
ative min-max regret), one of the following three
formulas is used:

π1 = FA(first parent)
FA(first parent) + FA(second parent)

, or

π1 = FD(second parent)
FD(first parent) + FD(second parent)

, or

π1 = FR(second parent)
FR(first parent) + FR(second parent)

.

Note that the max-min variant is a maximization
problem, where larger values are regarded as better,
while the other two variants are minimization prob-
lems, where smaller values are better. Consequently,
the above three formulas are adjusted so that, for

AUTOMATIKA 529

Figure 2. An example illustrating the AVX operator.

each robustness criterion, a more fit parent is more
likely to be chosen.

To seemore clearly howour crossovers work, we give
now two concrete examples. The example presented by
Figure 2 corresponds to AVX, while the example from
Figure 3 refers to RVX. Within both figures, the same
graph is drawn several times in order to show separately
each parent, their child, and the recovered version of
that child (if recovery is needed). Vertices are labelled
(in fact identified) according to their relative vertex
contributions (9) sorted in descending order, i.e. vertex
0 has the highest and vertex 8 the lowest contribution.

Let us now analyse in detail the example from
Figure 2. The first parent is shown in light grey colour,
i.e. it consists of vertices 0, 2, 3, 6 and 8. The second
parent is shown in black, i.e. it comprises vertices 1, 5
and 8. We can see that both parents are feasible. The
child obtained by AVX combines vertices 0 and 2 from
the first parent with vertices 5 and 8 from the second
parent, which is indicated by colours. As explained ear-
lier, AVX works in steps. In the first step the child is
initialized with the light grey vertex 0. In the second
step the black vertex 5 is inserted into the child after
skipping the infeasible black vertex 1. In the third step
the light grey vertex 2 is appended. In the fourth step
the black vertex 8 is chosen. After that, both parent
lists become exhausted (since the remaining light grey
vertices are infeasible) and the procedure is finished.
The obtained child is feasible by construction, but
unfortunately it cannot be improved by adding more
vertices.

Now we analyse the example from Figure 3. Again,
the first and the second parent are shown by light
grey and black colour, respectively, and the vertices are
labelled according to their relative contribution (9). We
see that the first parent contains vertices 0, 2, 3, 6 and 8,
while the second parent consists of vertices 1, 4, 6 and 7.
The child obtained by RVX in its recovered form com-
prises vertices 0, 2 and 6 from the first parent, vertex 4
from the second parent, and the reintroduced vertex 7
shown in dark grey. As explained before, RVX works in
steps. During its step i, RVX decides whether to include
vertex i into the child chromosome or not. The decision
is guided by the situation found in the parent that has
randomly been chosen within that step. In our exam-
ple, the light grey parent is more likely to be chosen
since its total relative contribution is larger. Suppose
that the random choices made in nine steps are in turn:
light grey, light grey, light grey, black, black, black, light
grey, light grey and light grey, respectively. Then the ini-
tially obtained chromosome turns out to be infeasible
since its chosen vertices 4 and 8 are adjacent. The final
child chromosome is obtained by applying the recov-
ery operator from the next section. As we can see, the
recovery operator first removes the light grey vertex 8
to assure feasibility and then adds the dark grey vertex
7 for improvement.

6. Recovery operator

Our recovery operator takes as input a chromosome
that may ormay not correspond to a feasible solution of
a considered RMWIS problem instance. The operator

530 A. KLOBUČAR AND R. MANGER

Figure 3. An example illustrating the RVX operator with recovery.

produces a modified version of the same chromosome,
which is in the first place feasible, but hopefully also
more fit than the original version. The whole comput-
ing procedure consists of two phases:

(1) Check if the given chromosome is feasible. If not,
modify it so that it becomes feasible.

(2) Try to improve the chromosome obtained in the
first phase by further modification.

In the currently implemented variant of the opera-
tor, a chromosome is represented as a list of vertices that
are sorted according to their total weights in descend-
ing order. The first phase of our procedure (assuring
feasibility) is accomplished by rewriting the vertices
from the original into a new (possibly shorter) list.
Vertices are rewritten one by one, by following the
original ordering. Thereby, any vertex may be skipped
from rewriting if it would spoil feasibility of the already
formed part of the new list.

The second phase of computing (improvement) is
accomplished by inserting more vertices into the list
obtained in the first phase. Thereby, only vertices from
the given graph that have not been used in the original
chromosome are considered. As we want to maintain
genetic diversity, we tend to combine different ver-
tex selecting rules. Therefore, for the second phase of
recovery the candidates for insertion are processed in
random order. Again, any of them is skipped if its
insertion would spoil feasibility of the current list.

A concrete example of recovery has already been
shown within Figure 3. Note that in Figure 3 both

phases of recovery mentioned above (assuring feasibil-
ity, improvement) are applied. An additional example
comprising only improvement will be given by Figure 5.

The described recovery operator allows many vari-
ants that have not been implemented at this moment,
but could easily be tested in the future. For instance, the
initial ordering of vertices could be different: instead
of total weight we could use some other sorting crite-
rion, e.g. the relative vertex contribution (9). Also, in
the improvement phase, the vertices to be inserted can
be processed in some other order, e.g. according to their
total weights.

7. Mutation operators

Generally speaking, mutation is important because it
maintains diversity of chromosomes from one genera-
tion to another. It also helps that the whole evolutionary
process does not get stuck too early in a local optimum.
In case of the RMWIS problem, the role of mutation
would be to introduce new vertices, which exist in the
given graph but are not used by current chromosomes.

The idea of mutation is that it should take an exist-
ing chromosome and modify it through a small and
apparently random change. In our case, a chromosome
is in fact a list of chosen vertices. A mutation should
make a change of that list by removing some vertices
and inserting some other vertices. We will describe five
mutation operators that work along that line.

• Simple replacement mutation (SRM). The SRM oper-
ator replaces a randomly chosen vertex in the

AUTOMATIKA 531

original chromosome with a new vertex chosen ran-
domly among those in the graph that have not been
used by the original chromosome. The modified
chromosome obtained in this way does not need to
be feasible, so that it must further be processed by
the recovery operator.
It can be noted that the SRM operator is in some
aspects similar to the mutation from [23]. Still, our
SRM can be regarded as more deterministic, since it
always replaces only one vertex within the chromo-
some.

• Weight-increasing replacement mutation (WIRM).
The WIRM operator is similar to SRM. But now the
idea is that the overall procedure should be guided
or at least influenced by a chosen scenario. Indeed,
an old (existing) vertex within the chromosome is
again replaced by a new (currently unused) vertex,
and feasibility is again reestablished by applying the
recovery operator. However, the choice of the two
vertices is not completely random. Instead, care is
taken that the new vertex has a larger weight than
the old one according to the chosen scenario.

• Weight-decreasing replacement mutation (WDRM).
The WDRM operator is similar to WIRM. But this
time we replace the chosen vertex with a vertex hav-
ing a smaller weight. Although WDRM spoils solu-
tions, it also introduces new vertices which would
otherwise be ignored.

• Local search replacement mutation (LSRM). For each
scenario, wemake a new better chromosome (if pos-
sible) by improving the worst vertex in the original
chromosome. The worst vertex v is a vertex with the
smallest weight. If there is a neighbour v̄ of v that has
a larger weight than v and is not adjacent to the other
vertices in the original chromosome, we replace v
with v̄. If there are more such vertices v̄, we replace v
with the one among them having the largest weight.
Finally, among all new chromosomes obtained for
different scenarios, we choose the one that achieves
the best value of the used robust objective function
(i.e. (1), (2) or (3)). Although the constructed chro-
mosome is always feasible, it is still handed over to
the recovery operator for possible improvement.

• Complementary mutation (CM). The CM operator
can be regarded as an extreme variant of mutation,
where a large number of new vertices is introduced
simultaneously. For a given original chromosome,

CM first determines the set X ⊆ V of vertices in the
graph G that are used by that chromosome. Next,
the new chromosome ismade of vertices fromV \ X
by using the greedy vertex selecting rule according
to (9). More precisely, the vertices from V \ X are
sorted according to their relative vertex contribu-
tion in descending order. Then, they are inserted
in turn into the new chromosome. Again, any of
those insertions is skipped if it would spoil feasibility
of the partially formed chromosome. Although the
constructed chromosome is always feasible, it is still
handed over to the recovery operator for possible
improvement.

Some of the described mutation operators are illus-
trated by the following two figures. Thereby Figure 4
corresponds to SRM and Figure 5 to CM. Within both
figures the same graph is again drawn several times to
allow showing separately the original chromosome, its
mutated version and the recovered version (if recovery
is applied). The meaning of vertex labels (identifiers) is
the same as in Figures 2 and 3.

Let us proceed with explaining Figure 4 in more
detail. The original chromosome consists of vertices 0,
2, 3, 6 and 8, shown in light grey colour on the left-
hand side of the figure. The mutated chromosome is
shown in a similar manner on the right-hand side, and
it comprises vertices 0, 2, 3, 6 and 7. Thereby the origi-
nal vertices are still light grey, and the newly introduced
vertex is black. So we see that SRM has replaced vertex
8 with 7. The obtained chromosome is already feasible,
and it cannot further be improved.

Now we analyse Figure 5. The original chromosome
is again shown on the left-hand side of the figure -
it consists of vertices 0, 2, 3, 6 and 8 coloured light
grey. TheCMoperator constructs themutated chromo-
some from the complementary vertices 1, 4, 5 and 7, by
using the greedy vertex selecting rule (9) as explained
before. The result is shown on the right-hand side of
the figure – it comprises vertices 1, 4 and 7 which
are painted black. Note that the complementary ver-
tex 5 has been skipped since it is adjacent to 4. The
obtained chromosome is feasible, but it is still handed
over to the recovery operator for improvement. The
recovery operator improves the chromosome by adding
vertex 6 painted dark grey in the lower part of the
figure.

Figure 4. An example illustrating the SRM operator.

532 A. KLOBUČAR AND R. MANGER

Figure 5. An example illustrating the CM operator with recovery.

8. Testing and results

As there are (to the best of our knowledge) no bench-
marks for robust variants of the MWIS problem, we
have generated our own two test groups, each com-
prising 30 problem instances based on random graphs.
Any graph from the first group consists of 300 ver-
tices, 30,000 edges and 10 scenarios for vertex weights.
A graph from the second group has the same num-
ber of vertices and scenarios, but only 20,000 edges.
Generally speaking, problem instances from the sec-
ond group are harder to solve since their graphs are
sparser, thus allowing more independent sets. In all
instances and all scenarios, vertex weights range from
1 to 300. Indeed, we did not want to have vertices
with extremely large weights since they would make
optimal solutions too predictable and too easy to
find. A full specification of all problem instances is
available in our repository at the address http://
hrzz-rodiopt.math.pmf.unizg.hr.

The chosen problem instances from our two test
groups can be regarded as large enough to be non-
trivial, but still small enough to be solved exactly by
a general-purpose optimization package. Indeed, all
instances (written in their ILP form (5), (6) or (7))
can be solved to optimality by the IMB ILOG CPLEX
Optimization studio [12]. However, slightly more com-
plex instances, e.g. those with 300 vertices but 10,000
or 15,000 edges, cannot be processed by CPLEX any-
more (at least not on our computer) since they produce
out-of-memory errors. Moreover, such slightly more
complex instances cannot even be solved approximately
by relaxation, since the obtained relaxed solutions usu-
ally consist of decision variables xi equal to 0.5, i.e.

variables that cannot easily be rounded to a feasible set
of 0-s and 1-s.

Our EA for solving the RMWIS problem has been
implemented in the C++ programming language by
using the Microsoft Visual Studio programming pack-
age [31]. The implementation supports all previously
mentioned EA variants obtained by combining one
among four proposed crossover operators with one
among five mutation operators. The program source
code can again be downloaded from our repository at
the addresshttp://hrzz-rodiopt.math.pmf.
unizg.hr.

The implemented algorithm has been tested on a
computer with an Intel Core i5–6600K @ 3.50GHz
processor and 16 GB of RAM, running a 64-bit operat-
ing system. The same computer has also been used for
running CPLEX. During all tests, the number of itera-
tions (generations) in the evolutionary process has been
set to 100,000. The frequency of applying crossovers
vs. mutations has been set to 95% vs. 5%. It means that
in each iteration exactly one crossover or mutation has
been executed, while mutation has been activated only
occasionally with probability 5%. The initial popula-
tion has been assembled from three types of solutions
of conventional MWIS problem instances. More pre-
cisely, for each particular scenario the corresponding
(conventional) optimal solution has been included, as
well as the greedy solution obtained by using the vertex-
selecting rule (8) and the greedy solution obtained by
using the rule based on plain weights. If such initial
population turned out to be smaller than 30, additional
chromosomes have been created from the original ones
by applying mutations.

AUTOMATIKA 533

Aswehave just seen, our EA relies heavily on optimal
solutions of conventional problem instances for partic-
ular scenarios. Indeed, such solutions are inserted into
the initial population. But even more importantly, they
are needed as parameters within two of our three robust
objective functions, i.e. within (2) and (3). For our
relatively small problem instances, the required opti-
mal conventional solutions could be computed exactly
by CPLEX. However, for larger instances, exact solv-
ing would become impossible due to NP-hardness of
the conventional MWIS problem. Therefore, we have
decided to perform the required computations only
approximately, i.e. by a method that is applicable even
for very large problem instances. It means that the so-
called exact optimal solutions within the initial popu-
lation are in fact high-quality approximations of those
solutions. Also, the parameters within the robust objec-
tive functions used by the EA are in fact approximate.

To find high-quality approximate solutions of the
involved conventional problem instances, we have used
the same EA as for robust instances. Indeed, a conven-
tional instance can be considered as a robust instance
with only one scenario conforming to the absolute cri-
terion of robustness. The initial population in such
case is rather small, but as mentioned earlier, it can
be increased by mutations. Since our EA partly relies
on random choices, repeated executions of the same
computational task usually do not produce the same
results. Consequently, for any given conventional prob-
lem instance, the corresponding computation has been
repeated 10 times and the best obtained solution has
been retained.

As our EA is an approximate algorithm, the most
important indicator of its performance is its accuracy.
In our tests involving robust problem instances, we have
measured accuracy by computing the relative errors
of approximate solutions versus exact (truly optimal)
solutions. More precisely, in each test, we have com-
puted relative difference between the robust objective-
function value obtained by the EA solution and the
corresponding optimal robust objective-function value
assessed by CPLEX. Thereby the authentic version of
the robust objective function has been used, whose
parameters have been determined exactly by CPLEX.

In our tests, we have solved each of the 30 prob-
lem instances from each of the 2 test groups by each
of the 20 crossover/mutation combinations, according
to each of the 3 robustness criteria. As already men-
tioned, repeated executions of the same task usually do
not produce the same solution due to randomized com-
puting. Consequently, for any given problem instance,
crossover/mutation combination and robustness crite-
rion, the corresponding computation has been repeated
10 times.

The results of our tests are summarized in Table 1.
Six parts of the table correspond to 3 robustness crite-
ria vs. 2 test groups. Each part contains average errors

for different combinations of crossovers andmutations.
The errors obtained through 10 repeated executions
of the same computational task have been averaged.
The collected values have further been averaged over
test groups. In this way, fairly reliable indicators of
performance have been obtained.

Let us now analyse in more detail the results
obtained with the absolute robustness criterion. CM
can be regarded as the best mutation. For both test
groups the CM operator gives the lowest errors com-
bined with the RVX and MRVX crossovers and the
lowest in general. If we compare crossover operators,
RVX and MRVX are better then the AVX and MAVX
for both test groups. Putting it all together, the best aver-
age error in general for the first test group is 1.64%, and
it is accomplished by RVX combined with CM. On the
other hand, the best average error for the second test
group is 3.50%, which is attained by MRVX combined
with CM.

Now we analyse the results obtained with the robust
deviation criterion. Again, CM can be regarded as the
best mutation. For both test groups, the CM operator
gives the lowest errors combined with the RVX and
MRVX crossovers, and the lowest in general. Further,
if we compare crossover operators, we see that again
RVX and MRVX give much lower errors than the AVX
and MAVX, respectively. In general, the best average
error for the first test group is 3.60%, and it is again
accomplished by RVX combined with CM. Regarding
the second test group, the best average error is 7.88%,
which is again achieved by MRVX combined with CM.

Finally, we analyse the results obtained with the rel-
ative deviation criterion for robustness. For the first
test group, it is very noticeable how the RVX crossover
produces extremely low errors compared to the other
3 crossovers. For the second test group, RVX is again
the best crossover, but it is not so significantly better as
for the first test group. When considering all combina-
tions of operators, the lowest possible average errors are
produced by the following combinations – RVX com-
bined withWIRM for the first test group and RVXwith
SRM for the second. The concrete values are 0.25% and
5.96%, respectively. For the first time, CM does not give
the lowest relative errors in general.

It is interesting that, for 4 out of 6 cases, the best
mutation turns out to be CM. Remember that CM is
an extreme variant of mutation, which creates a new
chromosome by using vertices not used by the original
chromosome, thus bringing more diversity to the pop-
ulation. For the other two cases, CM is not the best, but
its error is very close to the lowest.

Note that for all three criteria of robustness and
for both test groups our algorithm can assure average
relative errors less than 8%. This is quite satisfactory
if we take into account that such approximate solu-
tions are obtainedmuch faster than exact solutions. The
average execution time of CPLEX and of our EA are

534 A. KLOBUČAR AND R. MANGER

Table 1. Approximation accuracy of our EA – average relative errors.

300 vertices, 30,000 edges, 10 scenarios – absolute robustnes

SRM WIRM WDRM LSRM CM
AVX 5.61 % 7.16 % 6.98 % 7.23 % 6.41 %
MAVX 5.06 % 6.14 % 6.66 % 6.75 % 5.74 %
RVX 2.04 % 2.19 % 2.01 % 2.18 % 1.64 %
MRVX 2.36 % 2.19 % 2.51 % 2.19 % 1.90 %

300 vertices, 20,000 edges, 10 scenarios – absolute robustness
SRM WIRM WDRM LSRM CM

AVX 7.79 % 8.58 % 8.98 % 9.93 % 9.81 %
MAVX 7.5 % 8.89 % 8.97 % 9.02 % 8.66 %
RVX 4.35 % 4.39 % 4.67 % 4.76 % 3.67 %
MRVX 3.83 % 3.53 % 3.82 % 3.78 % 3.50 %

300 vertices, 30,000 edges, 10 scenarios – robust deviation
SRM WIRM WDRM LSRM CM

AVX 10.63 % 12.53 % 12.96 % 12.84 % 12.06 %
MAVX 10.17 % 12.36 % 12.28 % 12.49 % 11.45 %
RVX 4.17 % 4.69 % 4.98 % 5.10 % 3.60 %
MRVX 5.37 % 5.55 % 5.67 % 5.50 % 4.17 %

300 vertices, 20,000 edges, 10 scenarios – robust deviation
SRM WIRM WDRM LSRM CM

AVX 14.07 % 15.95 % 16.66 % 17.10 % 16.16 %
MAVX 13.93 % 14.90 % 15.02 % 15.79 % 14.32 %
RVX 9.60 % 9.93 % 9.76 % 8.82 % 8.50 %
MRVX 8.51 % 8.53 % 9.31 % 8.77 % 7.88 %

300 vertices, 30,000 edges, 10 scenarios – relative robust deviation
SRM WIRM WDRM LSRM CM

AVX 9.05 % 11.03 % 11.73 % 11.44 % 10.71 %
MAVX 9.54 % 10.69 % 11.09 % 10.24 % 9.30 %
RVX 0.34 % 0.25 % 0.36 % 0.37 % 0.39 %
MRVX 4.80 % 4.80 % 4.82 % 5.11 % 4.07 %

300 vertices, 20,000 edges, 10 scenarios – relative robust deviation
SRM WIRM WDRM LSRM CM

AVX 13.66 % 15.75 % 15.77 % 17.27 % 15.98 %
MAVX 13.48 % 15.29 % 15.12 % 15.18 % 14.83 %
RVX 5.96 % 6.49 % 6.14 % 7.87 % 6.21 %
MRVX 7.81 % 7.79 % 8.35 % 8.33 % 6.88 %

Table 2. Average CPU time in seconds needed by CPLEX to find
exact solutions.

Absolute Robust Relativerobust
robustness deviation deviation

30,000 edges 197 69 75
20,000 edges 978 2064 1942

Table 3. Average CPU time in seconds needed by our EA.

Absolute Robust Relative robust
robustness deviation deviation

30,000 edges 2.717 2.780 2.358
20,000 edges 3.136 3.230 2.814

summarized in Tables 2 and 3, respectively. As already
stated, CPLEX needs more time for sparser graphs
because they allowmore independent sets. In such case,
our algorithm will produce a solution in around 3 s,
which is around 690 times faster than CPLEXwould do
for robust deviation. The average execution time of our
EA depends not only on graph density, but also on the
chosen crossover and mutation operators. The values
shown in Table 3 correspond to those combinations of
operators that assure best accuracy, i.e RVXwith CMor
WIRM for the first test group and RVX or MRVX with
CM or SRM for the second test group.

From Tables 2 and 3, we see that our EA is in some
cases several hundreds of times faster than CPLEX.
One may wonder how such huge speedup is possible.

The explanation is simple: we compare here two algo-
rithms that belong to different categories. Each of them
has its own advantages and drawbacks. Indeed, the
algorithm used by CPLEX is based on a general branch-
and-bound or similar method, which can solve any
ILP problem (not only ours). It produces truly optimal
solutions, but has very large requirements regarding
computing time and space. On the other hand, our
EA is customized only to our problem. It runs fast but
produces approximate solutions, i.e. high-quality solu-
tions that are not guaranteed to be optimal in the strict
mathematical sense.

9. Conclusion

In this paper, we have implemented and tested an
approximate algorithm for solving the robust maxi-
mum weighted independent set (RMWIS) problem.
Our algorithm is based on evolutionary computing, and
it relies on custom-designed crossover and mutation
operators. We have proposed four crossovers, called
AVX, MAVX, RVX and MRVX, together with five
mutations, denoted by SRM, WIRM, WDRM, LSRM
and CM.We have also considered three robustness cri-
teria: absolute robustness, robust deviation and relative
robust deviation.

For testing, we have generated two test groups of
RMWIS problem instances. They are large enough to

AUTOMATIKA 535

be nontrivial, but still small enough to be solved exactly
by a general-purpose optimization package. The first
group contains denser graphs with 300 vertices, 30,000
edges and 10 scenarios for vertex weights. The second
group consists of sparser graphs with the same number
of vertices and scenarios but only 20,000 edges.

Our tests indicate that performance and relative
ranking of particular evolutionary operators are both
influenced by robustness criteria and graph density.
Indeed, for the first test group, the best solutions are
obtained by combining RVX with CM for absolute
robustness and robust deviation, but RVX with WIRM
for relative robust deviation. Further, for the second
group, the best solutions are produced by MRVX com-
binedwith CM for absolute robustness and robust devi-
ation, but RVX with SRM for relative robust deviation.

Our algorithm turns out to be between 25 and 690
time faster than the exact algorithm provided by the
IBM ILOG CPLEX Optimization studio. The actual
speedup depends on the chosen robust criterion and on
the involved graph density. The solutions obtained by
our algorithm are suboptimal, but their relative errors
vs. the corresponding exact optima (measured in terms
of robust objective-function values) are quite accept-
able. With most efficient combinations of evolutionary
operators, the expected errors range between 0.25% and
8%. The actual percentage depends again on the robust
criterion and graph density. The operators within our
algorithm work well because they successfully combine
deterministic greedy techniques for constructing solu-
tions with random processes that maintain diversity of
solutions.

The results of this paper are interesting since they
provide a practical way of solving large instances of
the RMWIS problem. Such large instances can occur in
real-life applications. We believe that our approximate
algorithm is accurate enough for practical purposes and
that its time requirements are tolerable.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work has been fully supported by Croatian Science
Foundation under the project IP-2018-01-5591.

ORCID

Ana Klobučar http://orcid.org/0000-0002-0260-5439
Robert Manger http://orcid.org/0000-0003-0953-6517

References

[1] Aissi H, Bazgan C, Vanderpooten D. Min-max and
min-max regret versions of combinatorial optimization
problems: A survey. Eur J Oper Res. 2009;197:427–438.

[2] Kouvelis P, Yu G. Robust discrete optimization and its
applications. Berlin: Springer; 1997.

[3] Garey MR, Johnson DS. Computers and intractability:
a guide to the theory of NP-completness. San Francisco
(CA): W.H. Freeman; 1979.

[4] Ben-Tal A, El Ghaoui L, Nemirovski A. Robust opti-
mization. Princeton (NJ): Princeton University Press;
2009.

[5] Bertsimas D, Sim M. Robust discrete optimization and
network flows. Math Program. 2003;98:49–71.

[6] Bertsimas D, SimM. The price of robustness. Oper Res.
2004;52:35–53.

[7] Aissi H, Bazgan C, Vanderpooten D. General approx-
imation schemes for min-max (regret) versions of
some (pseudo-)polynomial problems. Discr Optim.
2010;7:136–148.

[8] Bertsimas D, Brown DB, Caramanis C. Theory and
applications of robust optimization. SIAMRev. 2011;53:
464–501.

[9] Kasperski A, Zielinski P. Robust discrete optimiza-
tion under discrete and interval uncertainty: a survey.
In: Doumpos M, Zopounidis C, Grigoroudis E, et al.,
editors. Robustness analysis in decision aiding, opti-
mization, and analytics; p.113–143. Cham: Springer;
2016.

[10] Gross JL, Yellen J, Zhang P. Handbook of graph theory.
2nd ed. Boca Raton (FL): CRC Press; 2014.

[11] Jungnickel D. Graphs, networks and algorithms. 4th ed.
Berlin: Springer; 2013.

[12] IBM ILOG CPLEX Optimization Studio. CPLEX User’s
Manual, Version 12, Release 8. IBM Corporation [cited
2018 Oct 10]. Available from: https://www.ibm.com/
support/knowledgecenter/SSSA5P_12.8.0..

[13] Kasperski A, Zielinski P. Complexity of the robust
weighted independent set problems on interval graphs.
Optim Lett. 2015;9:427–436.

[14] Klobučar A, Manger R. Independent sets and vertex
covers considered within the context of robust opti-
mization. Math Commun. 2020;25:67–86.

[15] Klobučar A, Manger R. Solving robust variants of the
maximum weighted independent set problem on trees.
MDPI Math. 2020;8. [cited 2020 Mar 12]. Available
from: https://doi.org/10.3390/math8020285.

[16] Talla Nobibon T, Leus R. Robust maximum weighted
independent-set problems on interval graphs. Optim
Lett. 2014;8:227–235.

[17] Lamm S, Schulz C, Strash D, et al. Exactly solving the
maximum weight independent set problem on large
real-world graphs. In: Kobourov S, Mayerhenke H, edi-
tors. 2019 Proceedings of the Meeting on Algorithm
Engineering and Experiments (ALENEX), San Diego,
CA, Jan 7–8, 2019; p.144–158. Philadelphia (PA): SIAM;
2019.

[18] Kako A, Ono T, Hirata T, et al. Approximation algo-
rithms for the weighted independent set problem in
sparse graphs. Discr Appl Math. 2009;157:617–626.

[19] Sakai S, Togasaki M, Yamazaki K. A note on greedy
algorithms for the maximum weighted independent set
problem. Discr Appl Math. 2003;126:313–322.

[20] Cai S, Hou W, Lin J, et al. Improving local search for
minimumweight vertex cover by dynamic strategies. In:
Lang J, editor. Proceedings of the 27-th International
Joint Conference on Artificial Intelligence (IJCAI-18),
Stockholm, Sweden, Jul 13-19, 2018; p.1412–1418.
Freiburg-Vienna: IJCAI; 2018.

[21] Nogueira B, Pinheiro RGS, Subramanian A. A hybrid
iterated local search heuristic for the maximum weight
independent set problem. Optim Lett. 2018;12:
567–583.

http://orcid.org/0000-0002-0260-5439
http://orcid.org/0000-0003-0953-6517

536 A. KLOBUČAR AND R. MANGER

[22] Hifi M. A genetic algorithm-based heuristic for solv-
ing the weighted maximum independent set and some
equivalent problems. J Oper Res Soc. 1997;48:612–622.

[23] Nayeem SMA, Pal M. Genetic algorithmic approach to
find the maximum weight independent set of a graph. J
Appl Math Comput. 2007;25:217–229.

[24] Korte B, Vygen J. Combinatorial optimization – theory
and algorithms. 5th ed. Berlin: Springer; 2012.

[25] Saha A, Pal M, Pal TK. Selection of programme slots
of television channels for giving advertisement: a graph
theoretic approach. Inf Sci (NY). 2007;177:2480–2492.

[26] Barth L, Niedermann B, Nöllenburg M, et al. Tem-
poral map labeling: a new unified framework with
experiments. In: Ali M, Newsam S, Ravada S, et al.,
editors. Proceedings of the 24-th ACM SIGSPA-
TIAL International Conference on Advances in Geo-
graphicInformation Systems (SIGSPATIAL 2016), San

Francisco Bay Area, CA, Oct 31 – Nov 3, 2016; Article
23, p.1–10. New York (NY): ACM; 2016.

[27] Eiben AE, Smith JE. Introduction to evolutionary com-
puting. 2nd ed. Berlin: Springer; 2015. (Natural Com-
puting Series).

[28] Michalewicz Z. Genetic algorithms+ data structures =
evolution programs. 3rd ed. New York (NY): Springer;
1996.

[29] Talbi EG. Metaheuristics – from design to implementa-
tion. Hoboken (NJ): Wiley; 2009.

[30] Puljić K, Manger R. Comparison of eight evolution-
ary crossover operators for the vehicle routing problem.
Math Commun. 2013;18:359–375.

[31] Microsoft Corporation. Visual studio documentation
2017. [cited 2018 Oct 10]. Available from: https://docs.
microsoft.com/en-us/visualstudio/?view= vs-2017.

	1. Introduction
	2. Definitions and preliminaries
	3. Applications
	4. Properties of our evolutionary algorithm
	5. Crossover operators
	6. Recovery operator
	7. Mutation operators
	8. Testing and results
	9. Conclusion
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

