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ABSTRACT
This paper investigates the� − φ generalized synchronizationbetweennon-identical fractional-
order systems characterizedbydifferent dimensions anddifferent orders. The� − φ generalized
synchronization combines the inverse matrix projective synchronization with the generalized
synchronization. In particular, the proposed approach enables � − φ generalized synchroniza-
tion to be achieved between n-dimensional master system and m-dimensional slave system in
different dimensions. The technique, which exploits nonlinear controllers, stability property of
integer-order linear systems and Lyapunov stability theory, proves to be effective in achieving
the � − φ generalized synchronization. Finally, the approach is applied between 4-D and 5-D
fractional hyperchaotic systems with the aim to illustrate the capabilities of the novel scheme
proposed herein.
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1. Introduction

Over the last years, great efforts have been devoted
to the study of synchronization in chaotic systems
[1,2]. Chaotic systems are, nonlinear dynamical sys-
tems, characterized by trajectories that separate expo-
nentially in the course of the time, even when they start
from two nearby initial states (i.e, sensitivity to initial
conditions). Given two systems in themaster-slave con-
figuration, the objective in synchronization is to make
the slave system variables synchronized in timewith the
corresponding master system variables. Year after year,
different types of synchronization have been proposed
in the literature, for continuous-time systems as well
as discrete-time systems [3–6]. Recently, the topic of
synchronization between different dimensional chaotic
and hyperchaotic systems attract more and more atten-
tions. Until now, many effective control schemes have
been introduced to achieve chaos synchronization
between dynamical systems with different dimensions
such as full state hybrid projective synchronization [7],
inverse matrix projective synchronization [8], general-
ized synchronization [9], inverse generalized synchro-
nization [10], hybrid synchronization [11],� − � syn-
chronization [12], Q-S synchronization [13], reduced
order synchronization [14] and increased order gen-
eralized synchronization [15]. Recently, a new type
of synchronization, called � − φ generalized synchro-
nization, has been proposed to synchronize chaotic
and hyperchaotic systems with different dimensions.

This new type is constructed by combining the inverse
matrix projective synchronization (based on a matrix)
with the generalized synchronization (based on a func-
tional relationship). The � − φ generalized synchro-
nization was applied with successfully in discrete-time
and continuous-time systems [16,17].

Referring to fractional-order systems, researches
have shown that fractional-order differential systems,
as generalizations of well-known integer-order differ-
ential systems, are characterized by chaotic (hyper-
chaotic) dynamics [18]. Specifically, researches have
shown that chaos is achievable when the system order is
less than 3, whereas hyperchaos can be obtained when
the system order is less than 4 [19]. Recently, research
about fractional-order hyperchaotic systems gains a
lot of interest from both theoretical and applied point
of view include colour image encryption algorithm
and applications of different types of synchronization
[20,21]. However, few types of generalized synchro-
nization have been proposed for fractional chaotic and
hyperchaotic systems compared to integer-order ones.
Moreover, most of the approaches are related to the
generalized chaos synchronization of fractional-order
systems with identical dimensions [22,23]. Very few
methods for synchronizing different dimensional frac-
tional chaotic andhyperchaotic systemshave been illus-
trated [24–29].

In this work, a further contribution to the topic of
chaos synchronization of fractional-order systems with
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different dimensions is provided. Namely, the paper
investigates the � − φ generalized synchronization,
with index d, of non-identical fractional-order sys-
tems characterized by different dimensions and differ-
ent orders. Note that the synchronization index d corre-
sponds to the dimension of the synchronization error.
Specifically, by exploiting fractional Laplace transform
and classical Lyapunov stability theory, the � − φ gen-
eralized synchronization between two fractional-order
systems for the case d = m is proved, showing that the
zero solution of the error system is globally asymptot-
ically stable. Additionally, by using the stability theory
of linear integer-order systems, the � − φ generalized
synchronization for the case d<m is demonstrated.
The approach presents the remarkable feature of being
both rigorous and applicable to awide class of commen-
surate and incommensurate fractional-order systems
with different dimension and different orders. The con-
ceived scheme is general and the only restriction on
the scaling functions is that they must be differentiable
functions.

The paper is organized as follows. In Section 2,
some basic notions on fractional calculus are given.
In Section 3, the � − φ generalized synchronization
with index d is defined. In Section 4, two different
theorems are provided, which cover different synchro-
nization cases, with indices d = m, and d<m, respec-
tively. Finally, in order to show the capabilities of the
conceived synchronization schemes, Section 5 illus-
trated the � − φ generalized synchronization between
two new 4-D and 5-D fractional hyperchaotic systems,
when the synchronization indices are d = 5, d = 4,
d = 3 and d = 2. Concluding remarks are given in
Section 6.

2. Preliminaries

Definition 2.1 ([30]): The Riemann–Liouville frac-
tional integral operator of order p>0 of the function
f (t) is defined as,

Jpf (t) = 1
�(p)

∫ t

0
(t − τ)p−1f (τ ) dτ , t > 0. (1)

Definition2.2 ([31]): TheCaputo fractional derivative
of f (t) is defined as,

Dp
t f (t) = Jm−p

(
dm

dtm
f (t)

)

= 1
�(m − p)

∫ t

0

f (m)(τ )

(t − τ)p−m+1 dτ , (2)

form − 1 < p ≤ m, m ∈ IN, t > 0.

Lemma 2.1 ([32]): The Laplace transform of the
Caputo fractional derivative rule reads

L
{
Dp
t f (t)

}
= spF (s) −

n−1∑
k=0

sα−k−1f (k) (0) ,

(
p > 0, n − 1 < p ≤ n

)
. (3)

Particularly, when p ∈ (0, 1], we have L{Dp
t f (t)} =

spF(s) − sp−1f (0).

Lemma 2.2 ([33]): The Laplace transform of the Rie-
mann–Liouville fractional integral rule satisfies

L
{
Jqf (t)

} = s−qF (s) ,
(
q > 0

)
. (4)

Lemma 2.3 ([34]): Suppose f (t) has a continuous kth
derivative on [0, t] (k ∈ N, t > 0), and let p, q>0 be
such that there exists some 	 ∈ N with 	 ≤ k and p,
p + q ∈ [	 − 1, 	]. Then

Dp
t D

q
t f (t) = Dp+q

t f (t) (5)

Remark 2.1: Note that the condition requiring the
existence of the number 	 with the above restrictions
in the property is essential. In this study, we consider
the case that p, q ∈]0, 1] and p + q ∈]0, 1]. Apparently,
under such conditions this property holds.

3. Problem statement

The master and the slave systems are in the following
forms

Dp
t X(t) = F(X(t)), (6)

Dq
t Y(t) = G(Y(t)) + U, (7)

where X(t) ∈ Rn, Y(t) ∈ Rm are states of the master
system (6) and the slave system (7), respectively, 0<p,
q<1, Dp

t , D
q
t are the Caputo fractional derivatives of

orders p and q, respectively, F : Rn → Rn, G : Rm →
Rm and U = (ui)1≤i≤m is a vector controller.

Definition 3.1: The master system (6) and the slave
system (7) are said to be � − φ generalized synchro-
nized in dimension d, if there exists a controller U =
(ui)1≤i≤m, a function matrix �(t) = (�ij(t))d×m and
differentiable function φ : Rn → Rd such that the syn-
chronization error

e (t) = � (t)Y (t) − φ (X (t)) , (8)

converge to zero asymptotically, i.e, limt→+∞ ‖e(t)
‖ = 0.

Remark 3.1: When (�,φ(.)) = (I,X(t)), (�,φ(.)) =
(I,−X(t)), (�,φ(.)) = (�(t),X(t)) and (�,φ(.)) =
(I,φ(X(t))) complete synchronization, anti- synchro-
nization, inversematrix projective synchronization and
generalized synchronization will appear, respectively.
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4. Different schemes of synchronization

In this section, we discuss two schemes of � − φ gen-
eralized synchronization.

4.1. Master and salve systems description

Consider the following master system

Dp
t X(t) = f (X(t)), (9)

whereX(t) ∈ Rn is the state vector of themaster system,
0<p<1,Dp

t is theCaputo fractional derivative of order
p and f : Rn → Rn.

As the slave system, we consider the following con-
trolled system

Dq
t Y(t) = BY(t) + g(Y(t)) + U, (10)

where Y(t) ∈ Rm is the state vector of the slave system,
0<q<1,Dq

t is theCaputo fractional derivative of order
q, B ∈ Rm×m, and g : Rm → Rm are the linear part and
the nonlinear part of the slave system, respectively, and
U = (ui)1≤i≤m is a vector controller.

4.2. � − φ generalized synchronization in
dimensionm

In this case, the error system between the master sys-
tem (9) and the slave system (10), is defined as

e (t) = � (t)Y(t) − φ (X(t)) , (11)

where �(t) = (�ij(t))m×m and φ : Rn → Rm.
The error system (11) can be derived as

ė (t) = �̇ (t)Y(t) + � (t) Ẏ(t) − Dφ (X(t)) Ẋ(t),
(12)

whereDφ(X(t)) = (∂φi/∂xj)m×n.

Remark 4.1: We can not use the fractional deriva-
tive operator to Equation (11), because the fractional
derivative of the product of two functions implies hav-
ing an infinite sum,which includes fractional-order and
integer-order derivatives of the functions [35].

The error system (12) can be written as

ė (t) = (B − C) e (t) + � (t) Ẏ(t) + R, (13)

where C ∈ Rm×m is a control constant matrix to be
selected later and

R = (C − B) e (t) + �̇ (t)Y(t) − Dφ (X(t)) Ẋ(t).
(14)

Hence, we have the following result.

Theorem 4.1: The master system (9) and the slave sys-
tem (10) are globally � − φ synchronized in dimension
m, if the following conditions are satisfied:

(i) �(t) is an invertible matrix and �−1(t) its inverse
matrix.

(ii) U = −BY(t) − g(Y(t)) + J1−q(−�−1(t) × R).
(iii) (C − B)T + (C − B) is a positive definite matrix.

Proof: Substituting the control law (ii) into Equation
(10), the slave system can be described as

Dq
t Y(t) = J1−q (−�−1 (t) × R

)
. (15)

Applying the Laplace transform to (15) and letting
F(s) = L(Y(t)), we obtain,

sqF(s) − sq−1Y(0) = sq−1L
(−�−1 (t) × R

)
, (16)

multiplying both the left-hand and right-hand sides
of (16) by s1−q and applying the inverse Laplace trans-
form to the result, we get the following equation

Ẏ (t) = −�−1 (t) × R. (17)

Now, the error system (13) can be described as follows

ė (t) = (B − C) e (t) . (18)

Construct the candidate Lyapunov function in the form
V(e(t)) = eT(t)e(t), we obtain,

V̇ (e(t)) = ėT(t)e(t) + eT(t)ė(t)

= eT(t) (B − C)T e(t) + eT(t) (B − C) e(t)

= −eT(t)
[
(C − B)T + (C − B)

]
e(t).

By using (iii), we get V̇(e(t)) < 0. Thus, from the Lya-
punov stability theory, it is immediate that lim t−→+∞‖
e(t)‖ = 0. So, the zero solution of the error system (18)
is globally asymptotically stable, and therefore, themas-
ter system (9) and the slave system (10) are globally
synchronized in dimensionm. �

4.3. � − φ generalized synchronization in
dimension d

In this case, we assume that the synchronization dimen-
sion d<m. The error system between the master sys-
tem (9) and the slave system (10) is considered as

e (t) = �(t)Y(t) − φ (X(t)) , (19)

where�(t) = (�ij(t))d×m andφ : Rn → Rd. The error
system (19) can be described as

ė (t) = −diag (l1, l2, . . . , ld) e (t) + �1(t)Ẏ1(t)

+ �2(t)Ẏ2(t) + T, (20)

where (li)1≤i≤d are positive control constants, Ẏ1(t) =
(ẏ1(t), . . . , ẏd(t))T , Ẏ2(t) = (ẏd+1(t), . . . , ẏm(t))T , �1
(t) = (�ij(t))d×d, �2(t) = (�ij(t))d×(m−d) and

T = diag (l1, l2, . . . , l3) e (t) + �̇(t)Y(t)

− Dφ (X(t)) Ẋ(t), (21)

where, in this case, Dφ(X(t)) = (∂φi/∂xj)d×n.



AUTOMATIKA 557

Figure 1. Attractors of the fractional system (29) with p = 0.996 and initial conditions (0.1, 0.1, 0.1, 0.1) in different 2D projections.

Theorem 4.2: The master system (9) and the slave sys-
tem (10) are globally � − φ synchronized in dimension
d under the following control law

(u1, u2, . . . , ud)T = −B1 − G1 − J1−q (
�−1

1 (t) × T
)
,

(22)
and (

ud+1, ud+2, . . . , um
)T = −B2 − G2, (23)

where B1 = (bij)d×m, B2 = (bij)(m−d)×m, G1 = (gi)1≤i≤d
and G2 = (gi)d+1≤i≤m.

Proof: By inserting the control law (22)–(23) into
Equation (10), we can rewrite the slave system as
follows(

Dq
t y1 (t) , . . . ,Dq

t yd (t)
)T = J1−q (−�−1

1 (t) × T
)
,

(24)
and

Dq
t yi (t) = 0, i = d + 1, . . . ,m. (25)

By applying the fractional derivative of order 1−q to
both the left and right sides of Equations (24) and (25),
we obtain

Ẏ1(t) = (
ẏ1, ẏ2, . . . , ẏd

)T
= D1−q

t

((
Dq
t y1 (t) , . . . ,Dq

t yd (t)
)T)

= D1−q
t J1−q (−�−1

1 (t) × T
)

= −�−1
1 (t) × T, (26)

and also we get

ẏi (t) = 0, i = d + 1, . . . ,m. (27)

Now, by using Equations (26) and (27), the error sys-
tem (20) can be written as

ėi (t) = −liei (t) , 1 ≤ i ≤ d, (28)

it is immediate that all solutions of error system (28) go
to zero as t → +∞. Therefore, the master system (9)

and the slave system (10) are globally � − φ general-
ized synchronized in dimension d. �

5. Application to new 4-D and 5-D fractional
hyperchaotic systems

In this section, we will present some numerical simu-
lations for� − φ generalized synchronization to verify
and illustrate the effectiveness of the theoretical analy-
sis in Section 4. As the master system we consider the
following 4-D fractional hyperchaotic system

Dpx1 = x2,

Dpx2 = −x1 + x2x3 + αx1x3x4,

Dpx3 = 1 − x22,

Dpx4 = x3 + βx1x3 + γ x1x2x3,

(29)

where x1, x2, x3 and x4 are states. This system, as
shown in [36], exhibits hyperchaotic behaviours when
(α,β , γ ) = (8,−2.5,−30) and p = 0.996. Using
Grunwald–Letnikov approximation method, attractors
in 2-D and 3-D, of the master system (29) are shown in
Figures 1 and 2. In addition, Lyapunov exponents (LE)
are plotted in Figure 3.

The slave system is defined as

Dqy1 = −ay1 + y2y3 + u1,

Dqy2 = −by2 + y5 + u2,

Dqy3 = −cy3 + gy4 + y1y2 + u3,

Dqy4 = dy4 − hy3 + u4,

Dqy5 = ey5 − y2y21 + u5,

(30)

where yi and ui, (i = 1, 2, 3, 4, 5) are states and con-
trollers, respectively. This system, as shown in [37],
exhibits hyperchaotic behaviour when q = 0.95, (a, b,
c, d, e, g, h) = (10, 60, 20, 15, 40, 50, 10) and (u1, u2, u3,
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Figure 2. Attractors of the fractional system (29) with p = 0.996 and initial conditions (0.1, 0.1, 0.1, 0.1) in different 3D projections.

Figure 3. Lyapunov exponents of fractional system (29) as a
function of p ∈ [0.9, 1].

u4, u5) = (0, 0, 0, 0, 0). Compare system (30) with sys-
tem (10), one can have

B =

⎛
⎜⎜⎜⎜⎝

−10 0 0 0 0
0 −60 0 0 1
0 0 −20 50 0
0 0 −10 15 0
0 0 0 0 40

⎞
⎟⎟⎟⎟⎠ ,

g =

⎛
⎜⎜⎜⎜⎝

y2y3
0

y1y2
0

−y2y21

⎞
⎟⎟⎟⎟⎠ .

Different views of attractor of the uncontrolled sys-
tem (30) and Lyapunov exponents are shown in Fig-
ures 4–6, respectively.

According to � − φ generalized synchronization
approach, the error system between the master sys-
tem (29) and the slave system (30) can be described

by

e (t) = � (t) × (
y1, y2, y3, y4, y5

)T − φ (x1, x2, x3, x4) .
(31)

By selecting the scaling matrix �(t) and the scaling
function φ in different dimensions, we get in the fol-
lowing different synchronization results.

5.1. � − φ generalized synchronization in 5-D

In this case, the scaling matrix �(t) and the scaling
function φ are selected as

� (t) =

⎛
⎜⎜⎜⎜⎝

t + 1 0 0 0 0
0 t2 + 2 0 0 0
0 0 exp (t) 0 0
0 0 0 4 0
0 0 0 0 5

⎞
⎟⎟⎟⎟⎠ , (32)

and

φ (x1, x2, x3, x4) =

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4

x1x2 + x3x4

⎞
⎟⎟⎟⎟⎠ . (33)

Using the notations presented in subsection 4.2, we get

�−1 (t) =

⎛
⎜⎜⎜⎜⎝

1
t+2 0 0 0 0
0 1

t2+2 0 0 0
0 0 exp (−t) 0 0
0 0 0 1

4 0
0 0 0 0 1

5

⎞
⎟⎟⎟⎟⎠ and
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Figure 4. Phase portraits of the fractional system (30) with u1 = u2 = u3 = u4 = u5 = 0, q = 0.95 and initial conditions
(1, 1, 1, 1, 1) in different 2D projections.

Figure 5. Phase portraits of the fractional system (30) with u1 = u2 = u3 = u4 = u5 = 0, q = 0.95 and initial conditions
(1, 1, 1, 1, 1) in different 3D projections.

Dφ (X(t)) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
x2 x1 x4 x3

⎞
⎟⎟⎟⎟⎠ ,

and the control matrix C can be chosen as

C =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 50 0
0 0 −10 16 0
0 0 0 0 41

⎞
⎟⎟⎟⎟⎠ . (34)

It is easy to show that (C − B)T + (C − B) is a positive
definite matrix. Then, the controllers u1, u2, u3, u4 and

u5 are designed as follows

u1 = −ay1 + y2y3 − J0.05
[

1
t + 1

(
10e1 + y1 − ẋ1

)]
,

u2 = −by2 + y5 − J0.05
[

1
t2 + 2

(
60e2 + 2ty2 − ẋ2

)]
,

u3 = −cy3 + gy4 + y1y2

− J0.05
[
exp (−t)

(
20e3 + exp (t) y3 − ẋ3

)]
,

u4 = dy4 − hy3 − J0.05
1
4

(e4 − ẋ4) ,

u5 = ey5 − y2y21

− J0.05
1
5

(e5 − x2ẋ1 − x1ẋ2 − x4ẋ3 − x3ẋ4) .

(35)

The error system, in this case, can be described as
follows

ė1 = −10e1,
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Figure 6. Lyapunov exponents of fractional system (30) as a
function of q ∈ [0.94, 1].

Figure 7. Time-history of the synchronization errors e1, e2, e3,
e4 and e5.

ė2 = −60e2,

ė3 = −20e3, (36)

ė4 = −e4,

ė5 = −e5,

and the state variables of the errors e1, e2, e3, e4 and e5
versus time are depicted in Figure 7.

5.2. � − φ generalized synchronization in 4-D

In this case, �(t) and φ are chosen as

� (t) =

⎛
⎜⎜⎝
1 0 0 0 t + 1
0 2 0 0 0
0 0 3 0 t
0 0 0 exp t cos t

⎞
⎟⎟⎠ , (37)

and

φ (x1, x2, x3, x4) =

⎛
⎜⎜⎝

x1
x2
x3

x1x2x3x4

⎞
⎟⎟⎠ . (38)

According to the notations described in subsection 4.3,
the matrix �1(t) is given by

�1 (t) =

⎛
⎜⎜⎝
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 exp t

⎞
⎟⎟⎠ . (39)

So,

�−1
1 (t) =

⎛
⎜⎜⎝
1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 exp (−t)

⎞
⎟⎟⎠ and

Dφ (X(t)) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

x2x3x4 x1x3x4 x1x2x4 x1x2x3

⎞
⎟⎟⎠ .

The control constants (li)1≤i≤4 can be chosen as

(l1, l2, l3, l4) = (1, 2, 3, 4) .

Based on Equations (22) and (23), the controllers
u1, u2, u3, u4 and u5 are constructed as follows

u1 = ay1 − y2y3 − J0.05
(
e1 + y5 − ẋ1

)
,

u2 = by2 − y5 − J0.05
(
e2 − 1

2
ẋ2

)
,

u3 = cy3 − gy4 − y1y2 − J0.05
(
e3 + 1

3
y5 − 1

3
ẋ3

)
,

u4 = −dy4 + hy3 − J0.05
[
exp (−t)

(
4e4 + y4 exp t

+ cos ty5 − ẋ1x2x3x4 + ẋ2x1x3x4
+ ẋ3x1x2x4 + ẋ4x1x2x3

)]
,

u5 = −ey5 + y2y21. (40)

The error system, in this case, can be described as
follows

ė1 = −e1,

ė2 = −2e2,

ė3 = −3e3,

ė4 = −4e4.

(41)

Figure 8 displays the time evolution of the errors
e1, e2, e3 and e4.

5.3. � − φ generalized synchronization in 3-D

In this case, we take �(t) and φ as follows

� (t) =
⎛
⎝3 0 0 4 t2
0 1 0 3 sin t
0 0 t + 1 5 t

⎞
⎠ , and

φ (x1, x2, x3, x4) =
⎛
⎝ x1

x2
x23 + x24

⎞
⎠ .
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Figure 8. Time-history of the synchronization errors e1, e2, e3
and e4.

So,

�1 (t) =
⎛
⎝3 0 0
0 1 0
0 0 t + 1

⎞
⎠ ,

�−1
1 (t) =

⎛
⎜⎝

1
3 0 0
0 1 0

0 0
1

t + 1

⎞
⎟⎠ and

Dφ (X(t)) =
⎛
⎝1 0 0 0
0 1 0 0
0 0 2x3 2x4

⎞
⎠ .

In this case, the control constants (li)1≤i≤3 can be cho-
sen as: (l1, l2, l3) = (0.1, 0.2, 0.3) and the control law is
given by

u1 = ay1 − y2y3 − 1
3
J0.05

(
0.1e1 + y52t − ẋ1

)
,

u2 = by2 − y5 − J0.05
(
e2 − 1

2
ẋ2

)
,

u3 = cy3 − gy4 − y1y2 − J0.05
1

t + 1
× (

0.3e3 + y3 + y5 − 2x3ẋ3 − 2x4ẋ4
)
,

u4 = −dy4 + hy3.

u5 = −ey5 + y2y21.

(42)

The error system will be

ė1 = −e1,

ė2 = −2e2,

ė3 = −3e3,

(43)

and the error function evolution, in this case, is shown
in Figure 9.

5.4. � − φ generalized synchronization in 2-D

In this case, �(t) and φ are given by

� (t) =
⎛
⎝1 0 ln (t + 1) 4 t

0 2 3
1

t + 1
t5

⎞
⎠ , and

Figure 9. Time-history of the synchronization errors e1, and e2.

φ (x1, x2, x3, x4) =
(

x1x2
x3 + x4

)
.

So,

�1 (t) =
(
1 0
0 2

)
,�−1

1 (t) =
(
1 0
0 1

2

)
and

Dφ (X(t)) =
(
x2 x1 0 0
0 0 1 1

)
.

Consequently, by taking (l1, l2) = ( 12 , 2), the controllers
are obtained in the following form

u1 = ay1 − y2y3 − 1
3
J0.05

×
(
1
2
e1 + 1

t + 1
y3 + y5 − x2ẋ1 − ẋ2x1

)
,

u2 = by2 − y5 − 1
2
J0.05

× (−2e2 + 4t3y4 + 5t4y5 − ẋ3 − ẋ4
)
,

u3 = cy3 − gy4 − y1y2,

u4 = −dy4 + hy3,

u5 = −ey5 + y2y21.

(44)

In this case, the error functions can be written as

ė1 = −1
2
e1,

ė2 = −2e2,
(45)

and the numerical results are plotted in Figure 10.

Figure 10. Time-historyof the synchronizationerrors e1, e2 and
e3.
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6. Concluding remarks

In this paper, the problem of � − φ generalized
synchronization with index d has been investigated
between different dimensional fractional hyperchaotic
systems. The novelty relies on the fact that the approach
combines two different synchronization types, i.e.the
inverse matrix projective synchronization (based on
a matrix �) and the generalized synchronization
(based on a functional relationship φ). The technique
has exploited nonlinear controllers and stability the-
ory integer-order systems in order to synchronize n-
dimensional master system and m-dimensional slave
system. The approach has proved to be effective in
achieving synchronized dynamics not only when the
synchronization index d equals m, but even if the syn-
chronization index d is less than m. This represents,
in the authors’ opinion, a remarkable finding of the
present paper. Finally, the � − φ generalized synchro-
nization was successfully applied between 4-D frac-
tional hyperchaotic systems (as the master system) and
5-D (as the slave system), with the aim to highlight the
capabilities of the new scheme conceived herein. The
Grunwald–Letnikov approximation method has been
used to solve the fractional-order hyperchaotic systems.

As a concluding remark, we would observe that the
basic idea of the present paper, i.e. the combination of
two different synchronization types in order to create a
novel synchronization scheme, can be further general-
ized.Namely, by considering two different synchroniza-
tion types as “building blocks”, several new synchro-
nization schemes can be obtained using the technique
developed herein. Consequently, the approach illustrat-
ing herein can be considered as a “methodology” to
create new synchronization schemes starting from two
well-established synchronization types.
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