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ABSTRACT
In this paper, a new asinh-type control scheme with gravity compensation for the position con-
trol problemof robotmanipulators in joint space is presented. The properties and characteristics
of the asinh control structure make the position error and the motion velocity asymptoti-
cally converge to the equilibrium point. A strict Lyapunov function to formally prove global
asymptotic stability is developed. The tuning of the control gains is obtained by PSO (Particle
Swarm Optimization) technique without saturating the servomotors. To illustrate the effective-
ness and performance of the proposed scheme, an experimental comparative analysis between
the proportional-derivative (PD) and atanh controls against the proposed algorithm on a three
degrees of freedom direct-drive robot manipulator is carried out.
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1. Introduction

Robot manipulators have several applications such
as pick-and-place operations, paintings, circuit-board
assembly, drilling, palletizing, physiotherapy, robotic
operating rooms, etc. These applications are carried
out correctly through high-performance position con-
trol algorithms [1]. The joint position control problem
(also, so-called regulation) of robot manipulators con-
sists in moving freely in its workspace the manipulator
end-effector from any initial condition to a configura-
tion of fixed desired position, which is assumed to be
constant, regardless of its initial joint position [1,2].

The linear PD control is the simplest one to achieve
regulation of robot manipulators. This control guaran-
tees the global regulation objective [3]. However, the
PD control keeps a non-zero error in steady state. In
order to decrease this error, the proportional-integral-
derivative (PID) control is proposed. But until now, the
PID control lacks of global asymptotic stability. It is
valid only in a local sense [2,4,5].

The position problem of robot manipulators is still a
research area with challenging problems. It has become
a permanent and systematic scientific activity to design
new control schemes of high performance with several
potential applications. In [5], a fuzzy control scheme
with bounded torques is presented and the global
asymptotic stability via Lyapunov theory is proven with
an experimental evaluation. Studies on the stability
properties of robot manipulators under the action of
saturated PID control are reported in [6]. A global

stable nonlinear PID with saturated functions is devel-
oped in [7]. Experimental results on a 2-degrees-of-
freedom (dof) robot manipulator are presented. In [8],
the global asymptotic regulation under input constrains
is addressed. A saturated PID control in agreementwith
Lyapunov’s directmethod andLaSalle’s invariance prin-
ciple is presented. The proposed approach is illustrated
via simulations.

In [9], a nonlinear PID control with bounded torque
is presented. Global asymptotic stability is proven via
Lyapunov stability theory, and experimental results are
included. In [10] a saturated control of a general class
of uncertain nonlinear systems with time-delayed actu-
ation and additive bounded disturbances is analyzed.
The performance of the controller is demonstrated
via simulation on a two-dof planar robot manipula-
tor. The authors in [11] propose the formulation of 2
PD schemes to control a flexible joint robot manip-
ulators subject to actuator saturation, while simulta-
neously guaranteeing asymptotic stability about equi-
librium point of the closed-loop system. Experimental
results on a single-link flexible-joint manipulator are
reported.

In [12], a saturated PID control of double integra-
tor with bounded disturbance and sufficient condi-
tions for stability is analyzed. The effectiveness of the
proposed control scheme is validated via numerical
simulations. A PID-type control with global position
stabilization for bounded inputs is analyzed in [13].
Experimental tests on a two-dof robot manipulator are
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presented. In [14] a family of nonlinear PID-like con-
trols is described. Lyapunov theory is used to establish
conditions for local asymptotic stability. Experimental
results complement the proposed schemes. The work
in [15], addresses the problem of robust regulation and
trajectory tracking via energy shaping to stabilize a
control scheme with two terms; a partial linearizing
state-feedback and a linear PID loop around two pas-
sive outputs. In this work, no experimental/ simulation
results are included.

Recently, a nonlinear switching PDplus gravity com-
pensation is analyzed with global asymptotic stability
through Lyapunov’s direct method [16]. Experimental
results of the proposed control on a one-dof robotic
system are presented. In [17], a torque to position con-
version method for position commanded servomotors
in robot manipulators is presented. The proposed con-
version law is combined with a backstepping sliding
mode control. The stability analysis is shown through
Lyapunov’s theory. However, the conditions to ensure
stability are complex. They depend of structured uncer-
tainty due to modeling error and system noise due
to feedback. To validate the proposed method, exper-
imental studies are tested on a 3-dof mechanical sys-
tems. A nonlinear PID control is proposed in [18]. Lya-
punov stability is employed to prove global finite-time
stability.

In [19], a flexible one-dof manipulator with input
disturbances and output constraints is considered.With
the Lyapunov’s direct method, a boundary control with
tanh structure is designed to regulate the joint position
and suppress elastic vibration simultaneously. Numer-
ical simulations are analyzed to demonstrate the effec-
tiveness of the proposed scheme. In [20], the study of
the PID control to regulate the position of a robot whit
4-dof by decoupling the dynamic model is presented.
This work does not present stability analysis. Numeri-
cal simulations for a planar robot are carried out. The
work [21] adopts a PID position regulation with proof
of global asymptotic stability using LaSalle invariance
principle taking into account the electric dynamics of
the permanent magnet synchronous actuators of the
robot. Experimental results on a two dof direct-drive
robot are analyzed. In [22] the regulation problem for
a one-dof Euler-Lagrange system with the motor elec-
tric dynamics is considered. The global stability anal-
ysis is carried out through a PID control using LaSalle
invariance principle.

The work [23] deals with the problem of control-
ling a 7-dof Baxter robot, whose joints have bounded
position, velocity, and acceleration/torque. The con-
trol schemes used are PD-Type. Stability analysis is
not studied in this work. Simulation results are pre-
sented. In [24], the problem of robust tracking control
of electrically flexible joint robots through a nonlin-
ear PID-type proposed control scheme is addressed.

Experimental results demonstrate high performance
of the proposed control on a flexible-joint electri-
cally driven robot. On the other hand, since the pio-
neering work of Takegaki and Arimoto in 1981 [3]
on energy shaping methodology, which uses a spe-
cial class of artificial potential energies for generat-
ing control schemes, the derivative control action is
employed to obtain damping injection for avoiding
overshoot reduction in the transient response. The
method of energy shaping has been followed by several
authors [25–28].

It is important to note that from previous works,
not all of them present experimental results. There are
still several papers with simulations only, which are
important, but do not reflect the robustness and actual
control performance in a real physical robot. In addi-
tion, we remark that few works develop asymptotic sta-
bility analysis using strict Lyapunov functions. Within
this context, in this paper using energy shaping, we
propose a asinh-type control scheme with gravity com-
pensation for the global regulation problem of robot
manipulators in joint space. The proposed algorithm
has properties, qualities and a different mathematical
structure to the previously cited works. The hyperbolic
structure acts like a nonlinear spring that tries to restore
the position error to zero, and the derivative action has
a behavior similar to a nonlinear damper that dissi-
pates the motion generated by the velocity. The above
features are used to obtain transitory-state response
without overshoots, good rising and settling time
and also to asymptotically drive the position error to
zero.

Therefore, the main contributions of this paper are
to formally prove that the closed-loop system equi-
librium point is globally asymptotically stable using
a new structure of strict Lyapunov function avoid-
ing to use the Krasovskii-LaSalle theorem (the pro-
posed strict Lyapunov function has not been used in
previous works). Moreover, an experimental compar-
ison between the well known PD control and control
algorithm with atanh structure against the proposed
algorithmon a three dof direct-drive robotmanipulator
is presented. The tuning of the control gains is obtained
by PSO technique guaranteeing that the demanded
torques remain inside the prescribed limits in the ser-
vomotors. These arguments constitute the motivation
for this work.

This paper is organized as follows. Section 2
describes the dynamics of rigid robots and its main
properties. The main results of this work, i.e. the pro-
posed asinh-type control and its global asymptotic
stability proof of the closed-loop system equilibrium
point are stated in the Section 3. Experimental results
are shown in the Section 4. Section 5 presents future
research to be handled. Finally, conclusions are given
in Section 6.
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2. Robot dynamics

The dynamics model for a serial n-link rigid robot with
viscous friction and n dof can be written as [1,2]:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + Bq̇ (1)

where q, q̇, q̈ ∈ R
n are the joint vectors of position,

velocity and acceleration, respectively; τ ∈ R
n is the

vector of applied torques to the robot joints; M(q) ∈
R
n×n is the inertia matrix; C(q, q̇) ∈ R

n×n represents
the matrix of centripetal and Coriolis torques; g(q) ∈
R
n is the vector of gravitational torques, and B ∈ R

n×n

is the matrix for the viscous friction.
We assume that all the robot links are revolute-type

joints. The equation of motion (1) has several funda-
mental properties to facilitate control scheme analysis
[1,2].

Property 2.1: The inertiamatrixM(q) ∈ R
n×n is sym-

metric and positive definite. It satisfies:

M(q) = MT(q) ⇐⇒ M−1(q) = M−T(q), ∀q ∈ R
n

(2a)

M(q) > 0 ⇐⇒ M−1(q) > 0, ∀q ∈ R
n (2b)

xTM(q)x > 0 ⇐⇒ xTM−1(q)x > 0, ∀q, x ∈ R
n

(2c)

Property 2.2: For robots having only revolute joints,
there exists a positive constant βM > 0 such that,
‖M(q)‖ ≤ λmax

M < βM ; where λmax
M is the maximum

eigenvalue of the inertia matrixM(q).

Property 2.3: If q̇ = 0, then the centrifugal and
Coriolis torques matrix C(q, q̇) satisfies C(q, 0) = 0 ∈
R
n×n ∀q ∈ R

n.

Property 2.4: The time derivative of the inertia matrix
Ṁ(q) is a symmetric matrix and satisfies: Ṁ(q) =
C(q, q̇)T + C(q, q̇).

Property 2.5: The centrifugal and Coriolis torques
matrixC(q, q̇) and the time derivative Ṁ(q) of the iner-
tia matrix satisfy: 12 q̇

T[Ṁ(q) − 2C(q, q̇)]q̇ = 0, ∀q, q̇ ∈
R
n. Thus,

[
Ṁ(q) − 2C(q, q̇)

]
is a skew-symmetric

matrix.

Property 2.6: For robots with revolute joints, there
exists a positive constant kc > 0, such that: ‖C(q, x)y‖
≤ kc‖x‖‖y‖, ∀q, x, y ∈ R

n. Note that, ‖C(q, q̇)q̇‖ ≤
kc‖q̇‖2.

Property 2.7: The viscous friction torque Bq̇ is a dis-
sipate energy that satisfies: q̇TBq̇ > 0, ∀q̇ �= 0 ∈ R

n; B
is a positive definite diagonal matrix, and λmin

B ‖q̇‖2 ≤
q̇TBq̇ ≤ λmax

B ‖q̇‖2, where λmin
B , λmax

B aremaximum and
minimum eigenvalues of the viscous friction matrix B,
respectively.

Property 2.8: If the robot manipulator has only revo-
lute joints, then the gravitational torque vector g(q) is
bounded ∀q ∈ R

n and there exists a constant kg such
that ‖g(q)‖ ≤ kg , ∀q ∈ R

n.

3. Properties of the asinh-type control

This section describes themain properties and qualities
of the new asinh-type control scheme, which we denote
by asinh(·). Our motivation to use this function as con-
trol structure is based on the following: This function is
a vectorialmap, asinh(x) : Rn → R

n; being asinh(x) =[
asinh(x1) · · · asinh(xn)

]T continuous in x ∈ R
n. It is

not a bounded function. But it is a monotonically
increasing function and located within the first and
third quadrants; it is an odd function and symmetric
about the origin. It is also approximately linear close
to the origin. When x takes large values, its behavior is
similar to ln(2x), as shown in Figure 1. As x approaches
positive (negative) infinity, asinh(x) approaches posi-
tive (negative) infinity, respectively. However, its first
partial derivative (gradient (∂/∂x) asinh(xi), for i =
1, 2, . . . , n) is bounded. Therefore, its growth rate is
slower than the PD control and exponential increasing
of the hyperbolic functions (sinh and cosh functions).
All these qualities represent key elements to design the
control structure, as well as tuning the control gains
and avoiding the saturation of the servo-amplifiers. The
above features are used to drive the position error and
to obtain energy dissipation from the derivative term.

Within the group of inverse hyperbolic functions,
in addition to the asinh function, there are also the
atanh and acosh functions. However, the acosh func-
tion is defined only |xi| ≥ 1 (at least where real vectors
are concerned), for i = 1, 2, . . . n. Its behavior is only in
the first quadrant, so it does not return negative values,
then this function could not be evaluated as a control
scheme.

On the other hand, for the case of the atanh func-
tion, it is found in the first and third quadrants

Figure 1. Behavior of the function asinh(x).
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and it is an odd function, which is symmetric with
respect to zero. The atanh-type control scheme τ atanh =
1
2 ln((1 + xi)/(1 − xi)) is defined only for |xi(t)| < 1,
for i = 1, 2, . . . , n; when xi is the ith position error
(defined as the difference between the desired posi-
tion and the robot response), then the range of desired
references are limited. When its argument xi is close
to 1, the numerical value of the atanh function grows
exponentially, requesting very large torque magni-
tudes, which is a disadvantage. While the proposed

control asinh(xi) = ln(xi +
√
x2i + 1) ∀xi ∈ R, with

i = 1, 2, . . . , n, its domain is the whole Euclidean space.
We present some useful mathematical properties of

the function asinh(x)which can be used in the stability
analysis of the proposed asinh control scheme.

Property 3.1: The Euclidean-norm of the gradient
∂ asinh(xi)/∂xi is bounded, for i = 1, 2, . . . , n, satisfies:∥∥∥∥∥
[
∂ asinh(x1)

∂x1
∂ asinh(x2)

∂x2
· · · ∂ asinh(xn)

∂xn

]T∥∥∥∥∥
=

∥∥∥∥∥∥
[ 1√

1 + x21

1√
1 + x22

· · · 1√
1 + x2n

]T
∥∥∥∥∥∥

≤
{√

nρ∗, ∀x ∈ R
n

ρ∗‖x‖, ∀x ∈ R
n (3)

where ρ∗ is a positive constant and represents an upper
bound.

Property 3.2: There exist positive numbers δu, δl ∈
R+ (see the Shafer-Fink inequalities in [29]), such as:

(δl + 1)
∥∥∥∥ x
δl + √

1 + x2

∥∥∥∥ ≤ ‖asinh(x)‖

≤ (γ u + 1)
∥∥∥∥ x
γ u + √

1 + x2

∥∥∥∥ ≤ δu‖x‖ (4)

where the n × 1 vector

(γ + 1)x
γ + √

1 + x2

=
⎡
⎣ (γ + 1)x1

γ +
√
1 + x21

,
(γ + 1)x2

γ +
√
1 + x22

, . . . ,

× (γ + 1)xn
γ + √

1 + x2n

]T

;

being δl ∈ (0, 2]. We define δu = γ u + 1, γ u ∈ R+,
and considering δu as an upper bound. The inequal-
ity (4) holds true if and only if

γ u ≥
√
1 + ρ2 asinh(ρ) − ρ

ρ − asinh(ρ)
,

for all ρ ∈ R+ span the interval 0 < ‖x‖ ≤ ρ.

Property 3.3: Since the function asinh(x) is an odd
function, i.e. asinh(−x) = −asinh(x), then if � ∈
R
n×n is a positive definite diagonal matrix, we obtain:

λmin
� (δl + 1)

‖x‖2
[δl +

√
1 + ‖x‖2]2

≤ xT� asinh(x) ≤ δuλmax
� ‖x‖2 (5)

where λmin
� and λmax

� are the minimum and maximum
eigenvalues of the matrix �, respectively.

4. Analysis of global asymptotic stability

This section presents the global asymptotic stability
analysis of the new asinh-type control scheme. Given
any initial condition [q(0), q̇(0)]T ∈ R

2n, the posi-
tion control problem for robot manipulators consists
in proposing a control scheme such that, the applied
torque τ ∈ R

n to robot joints q(t) tend asymptot-
ically to a constant desired joint position qd ∈ R

n,
that is: limt→∞

[
q̃(t)
q̇(t)

]
→ 0 ∈ R

2n, ∀t ≥ 0, where q̃ ∈
R
n is the joint position error, which is defined as

q̃ = qd − q(t).
To resolve the position control problem, we propose

a control structure τ composed by functions asinh(·)
to drive both the position error and derivative action
terms, plus a component of gravity compensation.
Consider the following control scheme, given by

τ = Kp asinh(q̃) − Kv asinh(q̇) + g(q) (6)

where asinh(q̃), asinh(q̇) ∈ R
n represent the propor-

tional and derivative control terms, respectively. These
terms play similar qualitative roles as the P and D con-
trol actions for the linear PD case. In other words, the
term Kp asinh(q̃) acts like a virtual nonlinear spring
that tries to restore each link to the desired set point,
and the derivative action −Kv asinh(q̇) has a behav-
ior similar to a virtual nonlinear damper that dissipates
the motion generated by the velocity q̇, consequently
opposes to motion. The proportional and derivative
control gains are denoted by Kp,Kv ∈ R

n×n, respec-
tively. Both gains are positive definite diagonalmatrices,
and τ ∈ R

n is the vector of applied torques.
The closed-loop system equation is obtained by

combining the robot dynamics model (1) and the con-
trol law (6) as follows:

d
dt

[
q̃
q̇

]
=

⎡
⎣ −q̇
M−1(qd − q̃)[Kp asinh(q̃) − Kv asinh(q̇)

−Bq̇ − C(qd − q̃, q̇)q̇]

⎤
⎦
(7)

which is an autonomous nonlinear differential equation.
In order to demonstrate that the state origin is the
unique equilibrium point, it is necessary to consider
the Properties 2.1 and 2.7 on the matrices M(qd − q̃)
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and B, respectively. The diagonal positive definite diag-
onal matrices Kp and Kv are proposed by the user. The
following assumptions are taken into account:

(a) The first component of (7) satisfies −q̇ = −Iq̇ =
0 ⇔ q̇ = 0, due to the fact that I ∈ R

n×n is the
identity matrix.

(b) For the second component in (7), we use the
Property 2.1 of the inertia matrix and its inverse
matrix are positive definite matrices. Since q̇ =
0 ∈ R

n the derivative control action satisfies:
Kv asinh(q̇) = 0 ∈ R

n ⇐⇒ q̇ = 0 ∈ R
n. Also, Bq̇

= 0 ∈ R
n ⇐⇒ q̇ = 0 ∈ R

n. Using property (2.3),
the vector of centripetal and Coriolis torques is the
zero vector. Thus, asinh(q̃) = 0 ⇐⇒ q̃ = 0 ∈ R

n.

Therefore, the state origin
[
q̃, q̇

]T = 0 ∈ R
2n exists

and it is the unique equilibrium point of the dynamic
system (7).

Proposition 4.1: Consider the robot dynamics model
(1) together with the control structure (6), then equi-
librium point [q̃, q̇]T = 0 ∈ R

2n of the closed-loop sys-
tem (7) is globally asymptotically stable in joint space.

Proof: To carry out the stability analysis, we propose
the following Lyapunov function candidate composed
by the sum of the robot manipulator kinetic energy,
artificial potential energy, plus a cross-term between
position error and velocity:

V(q̇, q̃)

= 1
2
q̇TM(qd − q̃)q̇

+
[√

q̃ asinh(q̃) −
√
q̃2 + 1 + 1

]T

Kp

×
[√

q̃ asinh(q̃) −
√
q̃2 + 1 + 1

]

− ε0

1 + ‖q̃‖asinh(q̃)
TM(qd − q̃)q̇

+ 1
2

ε20
[1 + ‖q̃‖]2 asinh(q̃)

TM(qd − q̃) asinh(q̃)

(8)

where ε0 is any positive number. It is important to note
that ε0 is only required for purposes of analysis, and
therefore, we do not need to know its numerical value.
Just it is needed to prove that it exists.

For simplicity, from (8) for the vector√
q̃ asinh(q̃) −

√
q̃2 + 1 + 1, we have used the follow-

ing notation:√
q̃ asinh(q̃) −

√
q̃2 + 1 + 1

=
[√

q̃1 asinh(q̃1) −
√
q̃21 + 1 + 1, . . . ,

×
√
q̃n asinh(q̃n) −

√
q̃2n + 1 + 1

]T

∈ R
n.

On the other hand, a strict Lyapunov function is a
globally positive-definite function, whose time deriva-
tive along the trajectories of the closed-loop system (7)
yields a globally negative-definite function. Then Lya-
punov’s direct method allows to conclude global
asymptotic stability, avoiding to use the Krasovskii-
LaSalle theorem. For the sake of completeness, we pro-
vide an outline of the proof that the Lyapunov function
candidate (8) is a positive-definite function. It can be
rewritten as follows:

V(q̇, q̃) = 1
2

[
q̇ − ε0

1 + ‖q̃‖asinh(q̃)
]T

M(qd − q̃)

×
[
q̇ − ε0

1 + ‖q̃‖asinh(q̃)
]

+
[√

q̃ asinh(q̃) −
√
q̃2 + 1 + 1

]T
Kp

×
[√

q̃ asinh(q̃) −
√
q̃2 + 1 + 1

]
(9)

Since M(qd − q̃) is a positive definite matrix by Prop-
erty 2.1, the first term of (9) is radially unbounded and
a positive definite function for q̇ and q̃ for any ε0 > 0.
Similarly for the second term,which is also positive def-
inite in the variable q̃, because Kp is a positive definite
diagonal matrix.

Now, we proceed to obtain the time derivative of the
Lyapunov function candidate (8) along the trajectories
of the closed-loop equation (7). Substituting the accel-
eration joint vector q̈ from closed-loop equation (7), we
get:

V̇(q̇, q̃)

= q̇TKp asinh(q̃) − q̇TKv asinh(q̇) − q̇TBq̇

− q̇TC(q, q̇)q̇ + 1
2
q̇TṀ(q)q̇ − q̇TKp asinh(q̃)

+ ε0

1 + ‖q̃‖

[ q̇√
1 + q̃2

]T

M(qd − q̃)q̇

− ε0
q̃T q̇

‖q̃‖[1 + ‖q̃‖]2 asinh(q̃)
TM(qd − q̃)q̇

− ε0

1 + ‖q̃‖ asinh(q̃)TṀ(qd − q̃)q̇

− ε0

1 + ‖q̃‖ asinh(q̃)TKp asinh(q̃)T

+ ε0

1 + ‖q̃‖ asinh(q̃)TBq̇

+ ε0

1 + ‖q̃‖ asinh(q̃)TKv asinh(q̇)
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+ ε0

1 + ‖q̃‖ asinh(q̃)TC(qd − q̃, q̇)q̇

+ ε20
[1 + ‖q̃‖]2 asinh(q̃)

TṀ(q) asinh(q̃)

− ε20
2[1 + ‖q̃‖]2

[ q̇√
1 + q̃2

]T

× M(qd − q̃) asinh(q̃)

+ ε20 q̃
T q̇

2‖q̃‖[1 + ‖q̃‖]3 asinh(q̃)
T

× M(qd − q̃) asinh(q̃) (10)

we use the following notation to represent the vector

[ q̇√
1 + q̃2

]
=

[ q̇1√
1 + q̃21

, · · · , q̇n√
1 + q̃2n

]T

∈ R
n.

Cancellation of some terms on its right-hand side of the
equation (10) is made to simplify it. For example, the
first and sixth terms are canceled; using the Property 2.5
of the skew-matrix on the fourth and fifth terms pro-
duces a zero term. Note that, in the ninth term, we use
the Property 2.4, Ṁ(qd − q̃), which has been replaced
by its equivalent expression. Therefore, it is canceled
with the thirteenth term. The same Property 2.4 is also
used in the fourteenth term, then we get:

V̇(q̇, q̃) = −q̇TKv asinh(q̇) − q̇TBq̇

+ ε0

1 + ‖q̃‖

[ q̇√
1 + q̃2

]T

M(qd − q̃)q̇

− ε0
q̃T q̇

‖q̃‖[1 + ‖q̃‖]2 asinh(q̃)
TM(qd − q̃)q̇

− ε0

1 + ‖q̃‖ asinh(q̃)TKp asinh(q̃)

+ ε0

1 + ‖q̃‖ asinh(q̃)TBq̇

+ ε0

1 + ‖q̃‖ asinh(q̃)TKv asinh(q̇)

+ ε0

1 + ‖q̃‖ asinh(q̃)TCT(qd − q̃, q̇)q̇

+ ε20
[1 + ‖q̃‖]2 asinh(q̃)

T

× [
C(qd − q̃, q̇) + CT(qd − q̃, q̇)

]
asinh(q̃)

− ε20
2[1 + ‖q̃‖]2

[ q̇√
1 + q̃2

]T

× M(qd − q̃) asinh(q̃)

+ ε20 q̃
T q̇

2‖q̃‖[1 + ‖q̃‖]3 asinh(q̃)
T

× M(qd − q̃) asinh(q̃) (11)

Now, we proceed to obtain upper bounds of all
terms of Lyapunov function (11). Observe that from
Property (3.1), the Euclidean-norm of the vector

[q̇/
√
1 + q̃2] satisfies: ‖q̇/

√
1 + q̃2‖ ≤ √

nρ∗‖q̇‖. We
also use the inequalities (3) and (5) from Proper-
ties 2.2, 2.6 and 2.7. After performing grouping alge-
braic and reduction of terms, equation (11) can be
rewritten as

V̇(q̇, q̃) ≤ −
[
λmin
B − [

(δuv + 1)λmax
Kv

+ ε0

1 + ‖q̃‖ (
√
nρ∗βM

+ (δup + 1)(βM + kc))
]]

‖q̇‖2

+ ε0

1 + ‖q̃‖ (δup + 1)
[
λmax
B + λmax

Kv

+ ε0(2kc(δup + 1) + (δup + 2)βM)
]
‖q̃‖‖q̇‖

− ε0

1 + ‖q̃‖
(δlp + 1)2λmin

Kp[
δlp + √

1 + ‖q̃‖2
]4 ‖q̃‖2 (12)

where δup , δuv ∈ R+ are positive numbers that satisfy the
upper inequality (4) of the Properties 3.2 and 3.3 for
the proportional and derivative terms of the proposed
control scheme (6), respectively. While, δlp ∈ R+ satis-
fies the lower inequality (4) from Properties 3.2 and 3.3
for the proportional term of the control algorithm (6).
The minimum and maximum eigenvalues of the gains
Kp and Kv are represented by λmin

Kp
, λmin

Kv
∈ R+ and

λmax
Kp

, λmax
Kv

∈ R+, respectively.
The previous upper bounds yield that the time

derivative V̇(q̇, q̃) in (12) can be expressed as

V̇(q̇, q̃) < −
[‖q̃‖
‖q̇‖

]T [
φ11 φ12
φ21 φ22

]
︸ ︷︷ ︸

�

[‖q̃‖
‖q̇‖

]

where the components of the matrix � ∈ R
2×2 are

given by

φ11 = ε0

1 + ‖q̃‖
(δlp + 1)2λmin

Kp[
δlp + √

1 + ‖q̃‖2
]4 (13a)

φ12 = φ21 = −1
2

ε0

1 + ‖q̃‖ (δup + 1)
[
λmax
B + λmax

Kv

+ ε0[2kc(δup + 1) + βM(δup + 2)]
]

(13b)

φ22 = λmin
B −

[
(δuv + 1)λmax

Kv + ε0

1 + ‖q̃‖ (
√
nρ∗βM

+ (δup + 1)(βM + kc))
]

(13c)

In order to ensure that � is a positive definite matrix,
the element φ11 must be positive. This condition is sat-
isfied due to that all constants ε0, δlp, λmin

Kp
are positive
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numbers. The determinant det[�] of the matrix � is
positive in the interval �,

� = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δlp+1)2λmin
Kp[

δlp + √
1 + ‖q̃‖2

]4[
λmin
B − (δuv + 1)λmax

Kv

]
(δlp+1)2λmin

Kp[
δlp+

√
1+‖q̃‖2

]4[√
nρ∗βM + (δup + 1)(βM + kc)

]
+ 1

4 (δ
u
p + 1)2(λmax

B + λmax
Kv

)2

,

(δlp+1)
√

λmin
Kp[

δlp+
√

1+‖q̃‖2
]2
√[

λmin
B − (δuv + 1)λmax

Kv

]
1√
2
(δup + 1)

√
λmax
B + λmax

Kv√√
nρ∗βM + (δup + 1)(βM + kc)

,

(δlp+1)2/3λmin
Kp

2/3

[
δlp+

√
1+‖q̃‖2

]2/3[
λmin
B − (δuv + 1)λmax

Kv

]2/3
1

41/3 (δ
u
p + 1)2/3

(
√
nρ∗βM + (δup + 1)(βM + kc))2/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

>
ε0

1 + ‖q̃‖ > 0 (14)

To complete the proof, observe that inequality (14) is
only sufficient to hold for any ε0:

λmin
B

δuv + 1
> λmax

Kv > 0 (15)

Thus, V̇(q̇, q̃) is a negative definite function. It is worth
mentioning that since both conditions V(q̇, q̃) > 0 and
V̇(q̇, q̃) < 0 are satisfied, then the proposed Lyapunov
function candidate is a strict Lyapunov function. Con-
sequently, the existence of a positive number ε0 is
ensured fulfilling inequality (14). Therefore, according
to Lyapunov’s direct method, we conclude asymptotic
stability of the origin

[
q̃, q̇

]T = 0 ∈ R
2n of the closed-

loop equation (7). In other words, q̃(t) and q̇(t) asymp-
totically converge to zero, as t −→ ∞. This completes
the proof. �

5. Experimental setup

To support our theoretical developments, this section
describes the robot manipulator setup and the exper-
imental results of the evaluated control schemes. The
experimental system is a direct-drive 3-dof robot arm
moving in three-dimensional space, whose workspace
is a sphere with radius of 1m, as it is shown in Figure 2.
The arm links are made of 6061 aluminum actuated by

Figure 2. Experimental robot manipulator.

Table 1. Servo actuators of the experimental robot.

Link Model Torque [Nm] Enconder [p/rev]

Base DR1060B60 60 1,638,400
Shoulder DR1100D100 100 1,015,808
Elbow DM1004C 4 2,621,440

brushless direct-drive servomotors from Parker Com-
pumotor to drive the robot joints without gear reduc-
tion. Advantages of this type of direct-drive actuators
include freedom from backslash, significantly lower
friction phenomena compared with actuators com-
posed by gear drives, and they work as an ideal source
of applied torque when they are operated in torque
mode. The servomotor models used in the experimen-
tal robot are listed in Table 1. The position information
q is obtained from their incremental encoders and the
velocity signals q̇ from standard backwards difference
algorithm applied to the position joint measurements.
The electronic interface of the robot manipulator is
composed by a motion control board. It is the PMDi
LC228 model manufactured by Precision MicroDy-
namic Inc. The real-time evaluated control algorithms
have been written in C language, and the sampling
rate was executed at 2.5ms on a Pentium-type host
computer.

6. Experimental results

The experimental results consist in studying the robot’s
behavior by moving it from an initial position to a fixed
desired configuration. The experiments consist of two
phases. The first one studies the performance of con-
trol schemes for a fixed set-point qd = [

π
4 ,

π
4 ,

π
4
]T rad.

The second part is to generate a set of random numbers
as set-points. The two experimental phases are carried
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out with the same tuning of control gains. An experi-
mental comparison is made between the following con-
trol schemes: PD [3], atanh and asinh algorithms,which
have been defined as τPD, τatanh and τasinh, respectively:

τPD = Kpq̃ − Kvq̇ + g(q) (16a)

τ atanh = Kpatanh(q̃) − Kv atanh(q̇) + g(q) (16b)

τ asinh = Kpasinh(q̃) − Kvasinh(q̇) + g(q) (16c)

The gravitational vector g(q) is required in the control
schemes: g(q) = [

g1(q), g2(q), g3(q)
]T, where g1(q) =

0, g2(q) = 1.0938 sin(q2 + q3) + 0.0667 cos(q2 + q3)
+ 10.915 sin(q2) − 0.2025 cos(q2), and g3(q) = 1.0938
sin(q2 + q3) + 0.0667 cos(q2 + q3). Note that from
Property 2.8, |g2(q)| < 12.07Nm and |g3(q)| < 1.16
Nm. To avoid saturation in the servomotors, the maxi-
mum torque of the control schemes for each ith joint
(with i = 1, 2, 3) must keep the following restric-
tions: |τ1| ≤ 60Nm, |τ2| ≤ 100 − 12.07 = 87.93Nm
and |τ3| ≤ 4 − 1.16 = 2.84Nm, corresponding to base,
shoulder and elbow joints, respectively.

The initial conditions for all experiments are set as:
q(0) = 0 ∈ R

3, then q̃(0) = qd ∈ R
3 and q̇(0) = 0 ∈

R
3. The experiment results lasted 5 s. However, in order

to expand the details of the transitory state, the position
errors and applied torques are plotted to 1.5 s.

To measure the performance of control algorithms,
the scalar–valued L2[q̃] norm of the position error
is used. A small L2 norm represents smaller position
error and thus a better performance [30]. A critical part
in the experimental evaluation of control algorithms is
the tuning of the gains, so the PSO technique, which
has been successfully applied in many applications. For
example, control gains tuned by PSO is an interesting
proposal in Robotics [31–34].

6.1. PSO-based-tuning for the control gains

PSO [31], is inspired by social behavior of animals like
ants and birds. PSO is a population based schemewhich
contains a set of swarm solutions called particles. This
scheme is an optimization problem, where each parti-
cle has a position in a multidimensional search space,
which contains all possible solutions within optimiza-
tion problem. The PSO algorithm searches for the opti-
mum solution among these possible solutions. Nowa-
days, the original PSO algorithm has been systemati-
cally improved [32–34].

The PSO algorithm is initialized to a group of ran-
dom particles via iteration to find the optimal solution,
by tracking individual best position and group best
position to adjust its ith current position xji ∈ R

i×d

and the speed of the particles to the target area, where
jth is the iteration and d is the dimension. Each ith
particle has a position defined in the search space for
i = 1, 2, . . . , np, where np is the number of particles

with respect to dth dimension of the search space. In
order to tune the control gains, the particles xji repre-
sent the proportional and derivative control gains on
a 6-dimensional search space in the PSO algorithm.
Each xji in the search space is a candidate that char-
acterizes the control gains, and this solution candidate
is represented by xji =

[
kjpi1 , k

j
pi2 , k

j
pi3 , k

j
vi1 , k

j
vi2 , k

j
vi3

]
∈

R
i×6, where kjpi1 , k

j
pi2 , k

j
pi3 and k

j
vi1 , k

j
vi2 , k

j
vi3 are the com-

ponents of the proportional and derivative control
gains for the base, shoulder, elbow joints, respectively.
The proportional and derivative matrices are Kp =
diag{kp1 , kp2 , kp3} and Kv = diag{kv1 , kv2 , kv3}. Their
corresponding velocities are defined as vji = [vjpi1 , v

j
pi2 ,

vjpi3 , v
j
vi1 , v

j
vi2 , v

j
vi3 ].

We have used the mathematical model for motion of
particles and updating their position described by [34].
The velocity vji ∈ R

i×6 and position xji ∈ R
i×6 of each

particle in the next iteration j are given by:

vj+1
i = wvji + c1ς1[xbesti − xji] + c2ς2[xbestgd − xji]

(17a)

xj+1
i = xji + vj+1

i (17b)

where xbesti is the individual best position of the ith par-
ticle xji, and xbestgd is the global best position of the
ith particle xji. The acceleration constant c1 is called
cognitive parameter, pulls each particle (proportional
and derivative gains) towards the local best position,
and constant c2 called social parameter, pulls the par-
ticle towards global best position; w represents the
swarm weight or the inertia factor. With constrained
factor [33], these constants take the form: c1 = χφ1,
c2 = χφ2,w = χ , beingφ1 = φ2 = 2.05,φ = φ1 + φ2,
κ = 1, χ = 2κ/|2 − φ −

√
φ2 − 4φ|, ς1, ς2 ∈ [0, 1]

random numbers as learning factor for individual par-
ticle.

PSO is based on the operation of the system
state. It adjusts the proportional and derivative par-
ticles search target space range with the following
minimum and maximum limits xji(t) ∈ [xmin, xmax],
xmin = [kp1min

, kp2min
, kp3min

, kv1min
, kv2min

, kv3min
], xmax

= [kp1max , kp2max , kp3max , kv1max , kv2max , kv3max ], respec-
tively. The minimum values of the proportional gains
have been set as [kp1min

, kp2min
, kp3min

] = [0.5823, 1.7,
0.97], while for the components of the derivative gain
are as follows: [kv1min

, kv2min
, kv3min

] = [
2.4, 3.1, 1.55

]
.

On the other hand, themaximumvalues for the compo-
nents of the proportional andderivative gains have been
set as: [kp1max , kp2max , kp3max ] = [83.19, 138.65, 5.54] and
[kv1max , kv2max , kv3max ] = [28.4, 32.3, 3.1].

The gains for the three evaluated control schemes
τPD, τ atanh and τ asinh, must prevent saturation of actu-
ators, which deteriorates the control system perfor-
mance and leads to thermal and mechanical prob-
lems. Thus, we use the next fitness functions to obtain
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Table 2. Tuning optimized by PSO algorithm for proportional and derivative gains.

Control scheme Proportional gain Derivative gain

τ PD Kp = diag{40.107, 50.0383, 5.093} Nm/rad Kv = diag{22.46, 31.5, 2.87} Nm sec/rad
τ asinh Kp = diag{37.6027, 62.8375, 5.4352} Nm Kv = diag{13.2, 11.5, 2.64} Nm
τ atanh Kp = diag{40.0262, 67.5914, 3.7289} Nm Kv = diag{25.612, 29.84, 3.62} Nm

a transient response with few oscillations and vibra-
tions as minimum as possible, better performance with
accepted overshoot, rising time and settling time.

f j+1
kpi (q̃j(t)) = 1

Texp
σkp

Texp∑
t=0

‖q̃j(t)‖2 (18a)

f j+1
kvi (q̇j(t)) = 1

Texp
σkv

Texp∑
t=0

[1 − 0.01e(−0.01 cosh(q̇j(t)))]2

(18b)

where f j+1
kpi and f j+1

kvi define the fitness values of the
ith particle for the proportional and derivative gains
related to mean error squared (MSE) criteria, respec-
tively. Texp = 5 s is the experimental time. The objec-
tive function is to determine the best xbesti and best xbestgd
from (17a)–(17b).

The PSO algorithm uses the particle population size
with np = 25, with j = 15 iterations. The update equa-
tions (17a) and (17b) are implemented in language C to
find the optimal values within a 6-dimensional search
space for the gains Kp and Kv. Each particle makes use
of the previous position and current velocity informa-
tion, while adjusting its own position to the best posi-
tion in the swarm.However, several trials were required
to ensure fast transient response, no oscillations, a min-
imum overshoot and smaller steady-state error, and
keeping the actuators within their torque capabilities.
According to the optimal fitness values of the particle
that correspond to proportional and derivative gains,
the optimized gains for each evaluated control τPD,
τ atanh and τ asinh are selected by the position xbestgd as
shown in Table 2.

6.2. Experimental results of the PD control

Figure 3 shows the position errors of the control
PD corresponding to three joints of the control
τPD. Observe that after a smooth transient response,
all the components tend asymptotically to a small
neighborhood of equilibrium point. The transient
response of position errors present small oscilla-
tions. A minimum overshoot is less than 0.02% with
respect to the set-point qdi. Furthermore, the robot’s
response achieves stationary-state time shorter than
0.6 s. The position errors in steady-state (at t = 0.6 s)
are [q̃1(t), q̃2(t), q̃3(t)]T = [0.127, 0.233, 0.357]T

degrees. Therefore, the Euclidean norm at this time is
‖q̃(0.6)‖ = 0.4448 degrees. A typical feature of PD con-
trol is that it presents an offset in stationary state, that is,

Figure 3. Position errors q̃(t) of the PD control.

Figure 4. Applied torques of the PD control.

holds nonzero larger position errors due to the presence
of static friction at the servomotors.

Figure 4 shows the applied control torques τPD for
each joint. Some oscillations in the transitory-state
are observed in the applied torques. These oscillations
are the effect of the derivative control action through
damping injection to avoid over impulses and peaks in
the position error signals. From experimental results,
all torque signals clearly evolve inside the prescribed
limits in Table 1.

6.3. Experimental results of the proposed control
τasinh

The experimental results corresponding to the posi-
tion errors of the proposed control asinh τ asinh are
shown in Figure 5. All position errors converge to
zero. A closer look reveals that at time t = 0.8 s, the
steady-state is reached, that is, 0.2 s longer than in
the case of the PD control τPD. However, control
response τ asinh has better settling-time/overshoot. In
other words, neither peak values nor overshoot are
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Figure 5. Position errors q̃(t) of the control τ asinh.

presented. Then, the transient response is improved
with respect to that of the PD control. This is due
to the damping injection effect of the hyperbolic-type
derivative control action−Kv asinh(q̇). Hence, the vec-
tor of position errors q̃(t) reduces its magnitude, with-
out over-impulses, neither oscillations, nor vibrations.
Because of the properties of the equilibrium point
attractor, the vector of position errors converges asymp-
totically towards zero. The position errors in steady-
state at t = 0.8 s for τ asinh are [q̃1(t), q̃2(t), q̃3(t)]T =
[0.01, 0.01, 0.015]T degrees. Thus, the steady-state
Euclidean norm is ‖q̃(0.8)‖ = 0.0206 degrees. The PD
control performance is improved by 59.798% through
τ asinh. Thus, the performance of the proposed control
scheme τ asinh is much better than the control τPD.

Figure 6 shows the applied torque of the algorithm
τ asinh to the robot’s joints. It can be observed that the
applied torques remain within the saturation limits.
Observe a large excursion in each torque signal dur-
ing the transitory phase. This is due to the derivative
control action with hyperbolic structure. Its damping
injection produces an over-damped type output (with
behavior similar to a nonlinear damper that dissipates
the motion generated by the velocity). The hyperbolic
term that depends on the position error acts like a non-
linear spring. The control scheme τ asinh has the quality
to drive the position error to zero, and obtains dissi-
pation energy from the derivative term to achieve a
response without overshoot, neither peaks. The con-
trol τ asinh increases its applied torque as high as it
is required as shown in Figure 6, holding the actua-
tor torque constraints. The transient response of the
robot manipulator is good without excessive oscilla-
tions and the vector of position errors q̃(t) reaches
smaller values in steady-state while, the servomotors
are capable of holding the robot manipulator at rest
for any desired joint positions vector qd. However, it
should be mentioned that the torque signals present
chattering, because the hyperbolic asinh function is
implemented through the natural logarithm function:

asinh(q̃i) = ln(q̃i +
√
q̃2i + 1), for i = 1, 2, 3, which

presents numerical problems and overflow.

Figure 6. Applied torques of the asinh control.

Figure 7. Position errors of the atanh control.

6.4. Experimental results corresponding to the
atanh control

The experimental position errors for the control τ atanh
are shown in Figure 7. The transient phase is very slow
comparedwith the PDand asinh algorithms. In fact, the
error signals take 2.6 s to reach the steady-state. In addi-
tion, the magnitudes of position errors are very large,
whichmeans that its performance is poor. For example,
the error signals at t = 2.6 s are [q̃1(t), q̃2(t), q̃3(t)]T =
[1.876, 1.876, 2.949]T degrees. Then, steady-state
Euclidean norm is ‖q̃(2.6)‖ = 3.9668 degrees, which is
not competitive with any of the PD and asinh control
schemes.

It is worth mentioning that the tuning process in
the proportional and derivative control gains for τ atanh
was very complicated due to the restrictions on q̃. An
overshoot in the response of the robot can cause that
the atanh function returns imaginary values. It is not
easy to obtain a competitive response with previous
control schemes. Figure 8 illustrates the profile of the
applied torques of the control scheme τ atanh. Note that
the torque response is fast. However, it logarithmically
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Figure 8. Applied torques of the atanh control.

decays, until it reaches a very small negative value. The
torque signals have values below the static friction of
the robot’s servomotors, keeping the response in steady-
state due to the gravitational torque with enormous
magnitudes in q̃.

6.5. Performance index

The performance of evaluated control schemes is
measured to obtain faster transient and steady state
response. Both requirements must be satisfied simul-
taneously. The control objective is achieved avoiding
input saturation in all experiments. To measure this
control objective, we use the root mean square of the
norm L2[q̃(t)], which is an objective numerical mea-
sure for the position error q̃(t). It is given by [30]:

L2[q̃(t)] =
√

1
Texp

∫ T

0
‖q̃(σ )‖2 dσ (19)

where Texp ∈ R+ represents the experimental time
(in our experiments, Texp = 5 s). The smaller L2[q̃(t)]
means smaller position error q̃(t) and it is the best eval-
uated controller performance. The control algorithm
τPD has a L2[q̃(t)] = 10.728 degrees. The proposed
control τ asinh, L2[q̃(t)] = 6.735 degrees, and for the
scheme τ atanh with a L2[q̃(t)] = 19.59 degrees. The
performance of the PD control scheme is improved by
64% through the proposed control τ asinh. With respect
to the atanh control performance τ atanh, it is roughly
improved 290.87% by τ sinh.

Another experimental test is carried out for 100 s
with the generation of 20 random set-points qd for
the evaluated control schemes with the same tun-
ing of gains. However, due to space limitations, we
only present the corresponding numerical results of
the average Euclidean-norm and the norm L2[q̃(t)]
corresponding to each evaluated control. The random
sequence is obtained by using each 5 s an uniformly
distribution random set-points between 0 and π

4 rad:
qdi = π

4 rand(·), where rand(·) is the random function,
which returns a random numbers in the interval (0,

1); qdi is ith set-point for i = 1, 2, 3 corresponding to
the base, elbow and shoulder joints, respectively. In this
experimental phase, the average of the error norms for
comparison is: ‖q̃(t)‖PD = 0.63 degrees, ‖q̃(t)‖asinh =
0.031 degrees and ‖q̃(t)‖atanh = 4.93 degrees corre-
sponding to τPD, τ asinh and τ atanh, respectively. On
the other hand, the average of the norms L2[q̃(t)] for
each evaluated scheme is: τPD has a L2[q̃(t)] = 11.55
degrees, for τ asinh, L2[q̃(t)] = 7.14 degrees, and for
τ atanh with a L2[q̃(t)] = 21.42 degrees. Note that a
similar performance ratio is maintained for the above
case qd = [π

4 ,
π
4 ,

π
4 ]

T rad. In general, τ asinh shows bet-
ter performance (smaller L2[q̃(t)]) than the PD and
atanh algorithms. Therefore, the usefulness of proposed
methodology is shown experimentally and it represents
an attractive solution of nonlinear control for industrial
applications and process automation.

7. Future research

The proposed control scheme τ asinh (6) keeps the con-
stant gains Kp and Kv. A further research is to analyze
the global asymptotic stability for the control version
with variable gains Kp(q̃) and Kv(q̇), and to propose
an automatic tuning-procedure for these gains and to
study the performance of an experimental robot.

8. Conclusions

In this paper, we have presented an new control scheme
with asinh-type structure to solve the position control
problem of robot manipulators in joint space. The pro-
posed scheme is supported by a rigorous global asymp-
totic stability analysis in the sense of Lyapunov. We
have designed a strict Lyapunov function to establish
conditions for ensuring global regulation.

The performance of evaluated control schemes is
measured to obtain good transient and better steady
state response. Based on the real-time experimental
results on a three degree-of-freedom direct-drive robot
manipulator, the performance of the proposed control
scheme has been compared with the PD and atanh
control algorithms. The tuning of the control gains is
obtained by a PSO algorithm avoiding saturation in
the applied control signals to the robot’s servomotors.
It is corroborated that the analytical result and the
asinh control structure is more efficient than the other
evaluated schemes

The proposed control has good transient response
and small steady-state position errors. Its mathematical
properties allow leading the position error to zero. The
control objective is achieved avoiding input saturation
in the experiments.

The effectiveness of the proposed asinh control have
been verified, because it shows great advantages over its
counterparts. It permits the implementation of poten-
tial applications. Our contribution helps, if modestly,
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to the development of a new control algorithm which
effectively exploits its properties like a nonlinear spring
to restore the position error to equilibrium point and
hyperbolic energy dissipation similar to a nonlinear
damper to obtain the transient-state response without
overshoots.
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