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ABSTRACT
The problemof the robust fault estimation and robust fault-tolerant control, for a class of nonlin-
ear time-delayedMarkov jump systems (MJSs) with both actuator and sensor faults, was studied.
Firstly, by extending the system state, the actuator fault state vector, the sensor fault state vector
and the original system state vector were extended to auxiliary state variables, and the origi-
nal system was extended to a generalized system. Then, for the singular system, a generalized
observer was designed to achieve the simultaneous estimation of its actuator faults, sensor
faults and original system state. In addition, based on the observer estimation, a state feedback
fault-tolerant controller was designed to make the closed-loop system stable and meet certain
performance indicators. By solving linearmatrix inequality, sufficient conditions for the existence
of generalized observer and fault-tolerant controller were given. Finally, a numerical example
and a practical example were given to demonstrate the effectiveness of the proposed approach.
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1. Introduction

Markov jump systems (MJS) are systems consist-
ing of several subsystems or modes that can be
abstracted as time evolution and event-driven mecha-
nisms that randomly switch from one mode to another
at different times. During the operation, it will be
affected by the external disturbance, human interven-
tion and sudden changes in the external environment
or damage to the internal components of the system.
Because of this characteristic, MJS have been exten-
sively studied by scholars in the field of control in the
past few decades, and some achievements have been
made.

In the actual control system, the faults of compo-
nents, such as actuator and sensor faults inside the sys-
tem, sudden changes in the external environment, the
presence of external disturbances and network trans-
mission delays, often lead to sudden changes in the
structure and parameters of the system, reduce the
stability performance of the system, and even lead to
catastrophic accidents. In order to ensure that the sys-
tem can still work normally in the presence of faults
and external interference, the fault tolerance and anti-
interference ability of the system are very important.
Therefore, the stability analysis [1–5], fault detection
and filtering [6–9], fault estimation and fault-tolerant
control [10–14] of the system have attracted exten-
sive attention of scholars, and have become a research
hotspot in the field of control.

In [1], stochastic MJS with mixed time-varying
delays and unknown partial transfer rate are discussed,

and their exponential stability in the mean square is
analysed. To obtain the less conservative stabilization
condition, an appropriate weighting method is pro-
posed in [2]. In [6], the H∞ filtering problem is studied
for MJS with unknown transition probability. In [7],
the H∞ filtering problem of discrete state MJS with
time-varying delay is studied. A sliding surface is then
constructed and a sliding mode controller is synthe-
sized to ensure that the associated Markovian jump
systems satisfy the reaching condition. Moreover, an
observer-based sliding mode control problem is inves-
tigated in [9]. Although some attempts on fault esti-
mation and fault-tolerant control for MJS have already
been reported [14–18], the achieved results are only
focused either on actuator faults [14] or on sensor
faults [16]. Specially, the [15–18] have studied the prob-
lem of fault estimation and fault-tolerant control for
a class of MJS with both actuator faults and sensor
faults, but the upper bounds of faults and their deriva-
tives need to be learned in advance. According to the
above introduction, it is of great significance and prac-
ticality to carry out fault estimation and fault-tolerant
control for MJS with actuator faults, sensor faults and
external interference. In [19], the paper focuses on the
fault-tolerant control (FTC) approach using fault esti-
mation (FE) and fault compensation within the control
system in which the design is achieved by integrat-
ing together the FE and FTC controller modules. In
[20], the paper is concerned with the sliding mode
control of uncertain nonlinear systems against actuator
faults and external disturbances based on delta operator
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approach. At present, there are few studies on this issue
at home and abroad, so it is worthwhile to discuss these
issues in depth [21,22].

In this paper, a generalized observer design method
is proposed for a class of nonlinear Markov jump sys-
tems with time-delays to estimate the original state of
the system, actuator faults and sensor faults simulta-
neously. Based on the observer estimation, a design
method of state feedback fault-tolerant controller is
proposed to make the system stable and meet certain
performance indexes in the case of simultaneous actu-
ator and sensor fault and external disturbance, and
the effectiveness of the proposed method is verified by
numerical simulation.

The contributions of this paper are concluded as
follows:

(1) In the case of uncertain state transition probability,
the simultaneous estimation of actuator and sen-
sor is given for a class of MJS with delay link and
parameter uncertainty.

(2) This paper assumes that the state transition proba-
bility matrix has uncertainty in its estimated value,
which is more practical than [15,16].

(3) In the design process of this paper, the informa-
tion about actuator or sensor faults is not required
to be determined in advance, thus leading to great
advantages over the results in [22–24].

2. Problem statements

Consider a class of nonlinear time-delayed Markov
jump systems with the following form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eẋ(t) = A(rt)x(t) + Ad(rt)x(t − τ) + B(rt)u(t)
+ D(rt)ω(t)+ E(rt)fa(t)
+ g(x(t), x(t− τ))

y(t) = C(rt)x(t) + F(rt)fs(t)
x(t) = ϕ(t), t ∈ [−τ , 0]

(1)
where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input vector, y(t) ∈ Rq is the control output vec-
tor, w(t) ∈ Rp is the external disturbances input which
belongs to L2[0,∞), L2[0,∞) represents the square
integrable vector function space, fa(t) ∈ Rs and fs(t) ∈
Rw are unknown actuator faults and sensor faults,
respectively. ϕ(t) is the continuous initial state function
on [−τ , 0], τ is the lag time constant of the system. x0
and r0 represent the initial state and the initial mode
of the system, respectively. g(x(t), x(t − τ)) represent
the non-linear term of the system. The mode jumping
process {rt , t ≥ 0} is a Markov process with continuous
time discrete state in the finite space� = {1, 2, · · · ,N},
and its state transition probability is as follows:

p(rt+h = j|rt = i) =
{

πijh + o(h), i �= j
1 + πijh + o(h), i = j

(2)

whereh > 0, lim
h→0

= o(h)/h = 0,πij represents the state

transition probability from state i at time t to state
j at time t + h. If j �= i, then πij > 0, else πii =
−∑N

j=1,j �=i πij.A(rt),Ad(rt),B(rt),D(rt),E(rt),C(rt) and
F(rt) are constant matrices with appropriate dimen-
sions.

Before system analysis, the following assumptions
are made:
Assumption 1: Weassume that the actuator faults fa(t),
sensor faults fs(t) and the external disturbance ω(t) are
divisible and satisfy the following equations

fa(t) ∈ L2[0,∞), ḟa(t) ∈ L2[0,∞),

fs(t) ∈ L2[0,∞), ḟs(t) ∈ L2[0,∞),

ω(t) ∈ L2[0,∞).

Assumption2: ThematrixNi, Li, Ti andQi with appro-
priate dimensions satisfy the following equation

TiĀi − LiC̄i − NiTiE = 0,TiE + QiC̄i = In+q+w (3)

Assumption 3: The matrix Bi with appropriate dimen-
sions satisfies BiBTi = I.

Definition 1 ([16]): TheMarkov jump system (1) with
u(t) = 0,ω(t) = 0, fa(t) = 0 is said to be stochastically
admissible if for all initial transitions x0, initial modal-
ities r0 and all finite functions ϕ(t) defined on [−τ , 0],
the following inequality holds:

E
{∫ ∞

0
||x(t,ϕ(t), r0)||2dt

}
< ∞ (4)

where E{·} represents the mathematical expectation,
and || · || represents the European norm of the vector.

Definition 2 ([22]): Given the scalar γ > 0, the
Markov jump system (1) is said to be stochastically sta-
ble and meet γ disturbance attenuation, if there exists
a constant M(x0, r0) and M(0, r0) = 0, such that the
following inequality holds:

E
{∫ ∞

0
[zT(t)z(t)dt − γ 2ωT(t)ω(t)]dt

}

≤ M(x0, r0) (5)

Lemma 1 ([25]): If the nonlinear term g(x(t), x(t − τ))

of the system satisfies the Lipschitz condition, then there
exists scalar ρ1, ρ2 satisfies the following formula:

E
{∫ ∞

0
[zT(t)z(t)dt − γ 2ωT(t)ω(t)]dt

}

≤ M(x0, r0) (6)

Lemma 2 ([26]): Given thematrix X and Y with appro-
priate dimension, if there exist a scalar ε > 0 and vector
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x ∈ Rn, y ∈ Rn such that

2xTXYy ≤ ε−1xTXTXx + εyTYTYy (7)

Define a new state variable x̄(t) =
⎡
⎣x(t)
fa(t)
fs(t)

⎤
⎦ ∈ Rn+q+w,

then system (1) can be equivalently transformed into⎧⎪⎨
⎪⎩
E ˙̄x(t) = Āix̄(t) + Ādix(t − τ) + B̄iu(t)

+ D̄iω(t) + ḡ(x(t), x(t − τ))

y(t) = C̄ix̄(t)
(8)

where

E = [
In 0 0

]
, Āi =

⎡
⎣Ai Ei 0
0 0 0
0 0 0

⎤
⎦ ,

Ādi =
⎡
⎣Adi

0
0

⎤
⎦ , B̄i =

⎡
⎣Bi
0
0

⎤
⎦ , D̄i =

⎡
⎣Di
0
0

⎤
⎦ ,

ḡ(x(t), x(t − τ) =
⎡
⎣g(x(t), x(t − τ)

0
0

⎤
⎦ ,

C̄i = [
Ci 0 Fi

]
.

The system (8) is a generalized system with state vari-
ables including the original system state, actuator faults
and sensor faults. If an effective observer is designed for
the system (8), then the original system state, actuator
faults and sensor faults can be estimated simultane-
ously.

3. Main results

3.1. Robust observer design

For the system (8), we propose a generalized observer
that can simultaneously estimate the original system
state, actuator and sensor faults. The observer design
is as follows:⎧⎪⎨

⎪⎩
ż(t) = Niz(t) + Liy(t) + TiĀdix̂(t − τ)

+ TiB̄iu(t) + Tiḡ(x̂(t), x̂(t − τ))

ˆ̄x(t) = z(t) + Qiy(t)
(9)

where z(t) ∈ Rn+q+w is the observer intermediate vari-
able, x̂(t) and x̂(t − τ) are the estimated state of x(t)
and time-delayed state of x(t − τ), respectively, ˆ̄x(t) is
the estimated state of x̄(t),Ni, Li,Ti andQi are matrices
to be solved with appropriate dimensions.

Definition e(t) = x̄(t) − ˆ̄x(t), then from the formula
(7), formula (9) and assumption 2, we can obtain the
following formula:

e(t) = x̄(t) − ˆ̄x(t) = x̄(t) − z(t) − QiC̄ix̄(t)

= (In+q+w − QiC̄i)x̄(t) − z(t)

= TiEx̄(t) − z(t) (10)

then we can obtain the following error dynamic system:

ė(t) = TiE ˙̄x(t) − ż(t)

= TiĀix̄(t) + TiĀdix(t − τ)

+ TiB̄iu(t) + TiD̄iω(t)

+ Tiḡ(x(t), x(t − τ)) − Niz(t) − Liy(t)

− TiĀdix̂(t − τ) − TiB̄iu(t) + NiTiEx̄(t)

− Tiḡ(x̂(t), x̂(t − τ)) − NiTiEx̄(t)

= Nie + (TiĀi − LiC̄i − NiTiE)x̄(t)

+ TiĀdix̃(t − τ) + TiD̄iω(t)

+ Tiḡ(x̃(t), x̃(t − τ)) (11)

where

x̃(t − τ) = x(t − τ) − x̂(t − τ) (12)

ḡ(x̃(t), x̃(t − τ)) = ḡ(x(t), x(t − τ))

− ḡ(x̂(t), x̂(t − τ)) (13)

According to assumption (2),

TiĀi − LiC̄i − NiTiE

= TiĀi − LiC̄i − Ni(In+q+w − QiC̄i)

= TiĀi − (Li − NiQi)C̄i − Ni = 0 (14)

Then the error dynamic system (11) can be simpli-
fied to the following formula:

ė(t) = Nie + TiĀdix̃(t − τ) + TiD̄iω(t)

+ Tiḡ(x̃(t), x̃(t − τ)) (15)

LetA = 1, thenA set of special solutions to equation
(14) are as follows:

Ni = TiĀi − KiC̄i, Li = Ki + NiQi (16)

The following theorem is one of the main results
of this paper, which not only gives sufficient condi-
tions for the existence of the generalized observer, but
also guarantees the robust stability of the error dynamic
system (15).

In this paper, ∗ stands for symmetric transposition.

Theorem 1: For the error dynamic system (15), given
the scalars γ > 0 and ε1 > 0, if there exist positive defi-
nite symmetry matrices Pi > 0, Ri > 0, a matrix Yi and
matrices ρ1 and ρ2 with appropriate dimensions, the
following inequality holds:⎡

⎣
11
∗
∗


12

22
∗


13

23

33

⎤
⎦ < 0 (17)

where


11 = ĀT
i T

T
i Pi − C̄T

i Y
T
i + PiTiĀi − YiC̄i + 2ε1ρT

1 ρ1I

+ ε−1
1 PiTiTT

i Pi + Ri +
N∑
j=1

πijPj + I,
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12 = PiTiĀdi,
13 = PiTiD̄i,


22 = −Ri + 2ε1ρT
2 ρ2I,
23 = 0,


33 = −γ 2I, Yi = PiKi.

then there is an observer (9), which can make the error
dynamic system (15) asymptotically stable and can meet
H∞ performance γ .

Proof: Defined the following Lyapunov-Krasovskii
function

V(e(t), i) = eT(t)P(rt)e(t) +
∫ t

t−τ

eT(θ)R(rt)e(θ)dθ

(18)

Then along with the error dynamic system (15), the
weak infinitesimal operator of V(e(t), i) is as follows:

�V(e(t), i) = eT(t)(Ni
TPi + PiNi)e(t)

+ 2eT(t)PiTiĀdie(t − τ)

+ 2eT(t)PiTiD̄iω(t) + eT(t)
N∑
j=1

πijPje(t)

+ 2eT(t)PiTiḡ(x̃(t), x̃(t − τ))

+ eT(t)Rie(t) − eT(t − τ)Rie(t − τ)

(19)

From lemma 1 and lemma 2, we can obtain that

2eT(t)PiTiḡ(x̃(t), x̃(t − τ))

≤ 2ε1[eT(t)ρT
1 ρ1e(t) + eT(t − τ)ρT

2 ρ2e(t − τ)]

+ ε−1
1 eT(t)PiTiTT

i Pie(t) (20)

Substituting the formula (16) and (20) into the formula
(19), we can obtain:

�V(e(t), i)

≤ eT(t)(ĀT
i T

T
i Pi − C̄T

i K
T
i Pi + PiTiĀi

− PiKiC̄i)e(t)

+ 2eT(t)PiTiĀdie(t − τ) + 2eT(t)PiTiD̄iω(t)

+ eT(t)
N∑
j=1

πijPje(t) + ε−1
1 eT(t)PiTiTT

i Pie(t)

+ 2ε1[eT(t)ρT
1 ρ1e(t) + eT(t − τ)ρT

2 ρ2e(t − τ)]

+ eT(t)Rie(t) − eT(t − τ)Rie(t − τ) (21)

If assuming that ω(t) = 0, then we can obtain that

�V(e(t), i)

≤ eT(t)(ĀT
i T

T
i Pi − C̄T

i K
T
i Pi

+ PiTiĀi − PiKiC̄i)e(t)

+ 2eT(t)PiTiĀdie(t − τ) + eT(t)
N∑
j=1

πijPje(t)

+ 2ε1[eT(t)ρT
1 ρ1e(t) + eT(t − τ)ρT

2 ρ2e(t − τ)]

+ ε−1
1 eT(t)PiTiTT

i Pie(t) + eT(t)Rie(t)

− eT(t − τ)Rie(t − τ)

= ξT(t)
1ξ(t) (22)

where


1 =
[

′

11 
12
∗ 
22

]
, ξ(t) =

[
e(t)

e(t − τ)

]
,


′
11 = ĀT

i T
T
i Pi − C̄T

i Y
T
i + PiTiĀi − YiC̄i

+ 2ε1ρT
1 ρ1I + ε−1

1 PiTiTT
i Pi + Ri +

N∑
j=1

πijPj.

It can be seen from the formula (17) that 
1 < 0, that
is �V(e(t), i) ≤ 0. As can be seen from definition 1, the
error dynamic system (15) is asymptotically stable.

It is discussed below that under the zero initial con-
dition, the error dynamic system (15) meets H∞ per-
formance γ .

Under the zero initial conditions, for any non-
zero external disturbance ω(t) ∈ L2[0,∞], the weak
infinitesimal operator of V(e(t), x(t), i) along the error
dynamic system (15) is as follows:

�Vω(e(t), i)

≤ eT(t)(Ni
TPi + PiNi)e(t)

+ 2eT(t)PiTiĀdie(t − τ)

+ 2eT(t)PiTiD̄iω(t) + eT(t)
N∑
j=1

πijPje(t)

+ 2ε1[eT(t)ρT
1 ρ1e(t) + eT(t − τ)ρT

2 ρ2e(t − τ)]

+ ε−1
1 eT(t)PiTiTT

i Pie(t) + eT(t)Rie(t)

− eT(t − τ)Rie(t − τ) (23)

Introduce the following performance function:

J = eT(t)e(t) − γ 2ωT(t)ω(t) + �Vω(e(t), i) (24)

then

eT(t)e(t) − γ 2ωT(t)ω(t) + �Vω(e(t), i)
= ςT(t)
2ς(t) (25)

where


2 =
⎡
⎣
11 
22 
13

∗ 
12 
23
∗ ∗ 
33

⎤
⎦ ,

ς(t) =
⎡
⎣ e(t)
e(t − τ)

ω(t)

⎤
⎦

It can be seen from the formula (17), 
2 < 0, that is,
J = eT(t)e(t) − γ 2ωT(t)ω(t) + �Vω(e(t), i) < 0.
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Figure 1. Design mechanism block diagram.

According to Dynkin’s formula,

E
{∫ ∞

0
[eT(t)e(t) − γ 2ωT(t)ω(t)]dt

}

+ E{Vω(e(t), i)} − E{Vω(e0, r0)} < 0 (26)

where e0, r0 are the initial values of corresponding vari-
ables, respectively.

It can be obtained from the formula (26) that

E
{∫ ∞

0
[eT(t)e(t) − γ 2ωT(t)ω(t)]dt

}

< E{Vω(e0, r0)} (27)

It can be seen from definition 2 that the error dynamic
system (15) is asymptotically stable and meetsH∞ per-
formance γ . This completes the proof.

According to the conclusion of theorem 1, the
algorithm for solving the control law is given as follows,
and the specific design mechanism in Figure 1.

Step 1: From assumption 2, we can obtain the matri-
ces Ti and Qi.

Step 2: Apply the LMI toolbox to solve the inequality
(17). If there is a solution, we can obtain the matrix Ki
through Ki = P−1

i Yi.
Step 3: Substituting Ki into the formula (16), we can

obtain matrices Ni and Li.
Step 4: The coefficient matrices of the observer have

been solved so that the error of the observer converges
to zero. In addition, the estimation of the state, actua-
tor faults and sensor fault can be obtained from x̂(t) =[
In 0 0

] ˆ̄x(t), f̂a(t) = [
0 Iq 0

] ˆ̄x(t) and
f̂s(t) = [

0 0 Iw
] ˆ̄x(t), respectively. �

3.2. Fault-tolerant controller design

Based on the observer design, we propose a method
of state feedback fault-tolerant control design, which
makes the system relatively stable.

The design of state feedback fault-tolerant controller
is as follows:

u(t) = K̄ix̂(t) − BTi Eif̂a(t) (28)

where x̂(t) and f̂a(t) are the estimated values obtained
by the observer formula (9).

According to the assumption 3, substituting formula
(28) into formula (1), the closed-loop system is as fol-
lows:

Eẋ(t) = Aix(t) + Adix(t − τ) + BiK̄ix̂(t) − Eif̂a(t)

+ Diω(t) + Eifa(t) + g(x(t), x(t − τ))

= (Ai + BiK̄i)x(t) − BiK̄ix̃(t) + Adix(t − τ)

+ Diω(t) + Eif̃a(t) + g(x(t), x(t − τ))

= (Ai + BiK̄i)x(t) − �ie(t) + Adix(t − τ)

+ Diω(t) + g(x(t), x(t − τ)) (29)

where

x̃(t) = x(t) − x̂(t), f̃a(t) = fa(t) − f̂a(t),

�i = [
BiK̄i −Ei 0

]
.

Theorem 2: For the closed-loop system (29), given the
scalars μ > 0, ε1 > 0 and ε2 > 0, if there exist positive
definite symmetry matrices Ui > 0, Vi > 0, a matrix K̄i
andmatrices ρ1 and ρ2 with appropriate dimensions, the
following inequality holds:⎡

⎣�11 �12 �13
∗ �22 �23
∗ ∗ �33

⎤
⎦ < 0 (30)

where

�11 = (Ai + BiK̄i)
TUi + Ui(Ai + BiK̄i) + 2ε2ρT

1 ρ1I

+ ε−1
2 UiUT

i + Vi + I +
N∑
j=1

πijUj,

�12 = UiAdi,�13 = UiDi,�22 = −Vi + 2ε2ρT
2 ρ2I,

�23 = 0, �33 = −μ2I.

then there is a robust fault-tolerant controller (28), which
can make the closed-loop system (29) asymptotically sta-
ble and can meet H∞ performance δ =

√
μ2 + βγ 2, β

is a positive scalar given in the proof below.

Proof: Defined the following Lyapunov-Krasovskii
function:

V(x(t), i) = xT(t)U(rt)x(t) +
∫ t

t−τ

xT(θ)V(rt)x(θ)dθ

(31)

Then along the closed-loop system (29), the weak
infinitesimal operator of V(x(t), i) is as follows:

�V(x(t), i)

= xT(t)[(Ai + BiK̄i)
TUi + Ui(Ai + BiK̄i)]x(t)
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− 2xT(t)Ui�ie(t) + 2xT(t)UiAdix(t − τ)

+ 2xT(t)UiDiω(t) + xT(t)
N∑
j=1

πijUjx(t)

+ 2xT(t)Uig(x(t), x(t − τ))

+ xT(t)Vix(t) − xT(t − τ)Vix(t − τ) (32)

The analysis process of theorem 2 is similar to that of
theorem 1, then

J′ = xT(t)x(t) − μ2ωT(t)ω(t) + �V(x(t), i)

≤ xT(t)x(t) − μ2ωT(t)ω(t)

+ xT(t)[(Ai + BiK̄i)
TUi

+ Ui(Ai + BiK̄i)]x(t) + 2xT(t)UiAdix(t − τ)

+ 2xT(t)UiDiω(t) + xT(t)
N∑
j=1

πijUjx(t)

+ ε−1
2 xT(t)UiUT

i x(t) − 2xT(t)Ui�ie(t)

+ 2ε2[xT(t)ρT
1 ρ1x(t) + xT(t − τ)ρT

2 ρ2x(t − τ)]

+ xT(t)Vix(t) − xT(t − τ)Vix(t − τ)

= ηT(t)
3η(t) − 2xT(t)Ui�ie(t) (33)

where


3 =
[
�11 �12 �13
∗ �22 �23∗ ∗ �33

]
,

η(t) =
⎡
⎣ x(t)
x(t − τ)

ω(t)

⎤
⎦

As can be seen from the formula (30),

J′ = xT(t)x(t) − μ2ωT(t)ω(t) + �V(x(t), i)

≤ −min
i∈N λmin(−
3)(||x(t)||2 + ||x(t − τ ||2

+ ||ω(t)||2) − 2xT(t)Ui�ie(t)

≤ −σ0(||x(t)||2 + ||x(t − τ ||2 + ||ω(t)||2)
+ 2σ1||x(t)||||e(t)|| (34)

where

σ0 = −min
i∈N λmin(−
3), σ1 = max

i∈N
||Ui�i|| (35)

Defined a new Lyapunov-Krasovskii function as fol-
lows:

V(x(t), e(t), i) = V(x(t), i) + βV(e(t), i) (36)

Given a positive scalar β > (σ 2
1 /σ0), as can be seen

from the formula (34),

lV(x(t), e(t), i) + xT(t)x(t) − μ2ωT(t)ω(t)

= lV(x(t), i) + βlV(e(t), i) + xT(t)x(t)

− μ2ωT(t)ω(t)

≤ −min
i∈N λmin(−
3)(||x(t)||2

+ ||x(t − τ ||2 + ||ω(t)||2)
− 2xT(t)Ui�ie(t) − β||e(t)||2 − β||e(t − τ)||2

+ βγ 2||ω(t)||2

≤ −σ0(||x(t)||2 + ||x(t − τ ||2 + ||ω(t)||2)
+ 2σ1||x(t)||||e(t)|| − β||e(t)||2

− β||e(t − τ)||2 + βγ 2||ω(t)||2

≤ −σ0||x(t)||2 + 2σ1||x(t)||||e(t)||
− β||e(t)||2 + βγ 2||ω(t)||2

≤ −(
√

σ0||x(t)|| −
√

β||e(t)||)2 + βγ 2||ω(t)||2

≤ βγ 2||ω(t)||2 (37)

then

lV(x(t), e(t), i) + xT(t)x(t)

≤ βγ 2||ω(t)||2 + μ2||ω(t)||2 = δ2||ω(t)||2 (38)

According to Dynkin’s formula,

E
{∫ ∞

0
[xT(t)x(t) − δ2ωT(t)ω(t)]dt

}

+ E{V(e(t), x(t), i)} − E{V(e0, x0, r0)} < 0 (39)

where e0, x0 and r0 are the initial values of the corre-
sponding variables.

According to the formula (39), we can obtain that

E
{∫ ∞

0
[xT(t)x(t) − δ2ωT(t)ω(t)]dt

}

< E{V(e0, x0, r0)} (40)

It can be seen from definition 2 that the closed-loop
system (29) is asymptotically stable and meetsH∞ per-
formance δ. This completes the proof. �

Theorem 3: For the closed-loop system (29), given the
scalars μ > 0, ε1 > 0 and ε2 > 0, if there exist positive
definite symmetry matrices Wi > 0, Ui > 0 and Vi > 0,
a matrix K̄i and matrices ρ1 and ρ2 with appropriate
dimensions, the following inequality holds:⎡

⎢⎢⎢⎢⎢⎢⎣

�̂11 AdiWi DiWi Wiρ
T
1 I Wi

∗ �̂22 0 0 0 0
∗ ∗ −μ2I 0 0 0
∗ ∗ ∗ − 1

2ε
−1
2 I 0 0

∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (41)

where

�̂11 = WiAi
T + ȲT

i Bi
T

+ AiWi + BiȲi + V̂i +
N∑
j=1

πijÛj,
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�̂22 = −Vi + 2ε2ρT
2 ρ2I.

Then K̄i = ȲiW−1
i is a robust fault-tolerant control law

of the closed-loop system (29).

Proof: Let

Wi = U−1
i , K̄i = ȲiW−1

i , V̂i = WiViWi,

Ûj = WiUjWi

Multiplying diag{ Wi I I} on the left and right
of the formula (30), according to Schur complement
theorem, formula (30) is equivalent to formula (41).
This completes the proof.

The fault-tolerant controller design procedure is
listed following the Step 4 in the previous section.

Step5: Solving the formula (41), we can obtain
matrix K̄i, then according to the estimated state x̂(t) and
actuator faults f̂a(t), the fault-tolerant controller (28) is
constructed. �

4. Simulation analysis

4.1. Numerical examples

The parameters of the nonlinear Markov jump time-
delayed system are selected as follows [22,27]:

Mode 1

A1 =
⎡
⎣−5 0 1

0 −7.5 0
2 0 −5

⎤
⎦,

Ad1 =
⎡
⎣0.2 0 0.1
0.1 0 0
0 0.1 0

⎤
⎦ ,

B1 =
⎡
⎣0
1
0

⎤
⎦ , D1 =

⎡
⎣0.2
0.2
0

⎤
⎦ , E1 =

⎡
⎣0.2
0.1
0.1

⎤
⎦ ,

C1 =
[
1 0 0
0 0 1

]
, F1 =

[
0.01
−2

]
.

Mode 2

A2 =
⎡
⎣−6 0 1.1

0 −8 0
0 0 −5

⎤
⎦ ,

Ad2 =
⎡
⎣ 0.1 0 0.05
0.05 0 0
0 0 0

⎤
⎦ ,

B2 =
⎡
⎣0
1
0

⎤
⎦ , D2 =

⎡
⎣0.2
0.2
0

⎤
⎦ , E2 =

⎡
⎣ 0.3
0.05
0.1

⎤
⎦ ,

C2 =
[
1 0 0
0 0 1

]
, F2 =

[
0.01
−2

]
.

In mode 1 and mode 2, we assume that ε1 = ε2 =
1, the delay time is 3s, and the transition probability

matrix is

πij =
[−0.4 0.4
0.3 −0.3

]
.

According to step 1, we can obtain

T =

⎡
⎢⎢⎢⎢⎣

0.5 0 −0.0017 0 −0.0017
0 1 0 0 0

−0.0017 0 0.8333 0 0.3333
0 0 0 1 0

−0.0017 0 0.3333 0 0.3333

⎤
⎥⎥⎥⎥⎦ ,

Q =

⎡
⎢⎢⎢⎢⎣

0.5000 0.0017
0 0

0.0017 0.1667
0 0

0.0017 −0.3333

⎤
⎥⎥⎥⎥⎦

Apply the LMI toolbox to solve the inequality (17).
According to steps 2∼3, we can obtain

N1 =

⎡
⎢⎢⎢⎢⎣

−1.4149 0 −0.4126
−1.5287 −7.5000 −0.1558
0.2460 0 −3.2661

−0.9653 0 −0.2343
−1.6792 0 −0.7953

0.5000 1.8531
0 0.2963

−0.0017 −1.8185
0 0.4589

−0.0017 −1.7693

⎤
⎥⎥⎥⎥⎦ ,

N2 =

⎡
⎢⎢⎢⎢⎣

−2.0500 0 0.4129
−1.2437 −8.0000 −0.0098
−0.5914 0 −3.3561
−3.8215 0 −0.0412
−0.3103 0 −0.8245

0.5000 0.3008
0 0.0072

−0.0017 −1.6306
0 0.0441

−0.0017 −1.6910

⎤
⎥⎥⎥⎥⎦ ,

L1 =

⎡
⎢⎢⎢⎢⎣

−1.7935 0.2323
0.7646 0.0285
1.5434 −0.8400
0.4831 0.0406
1.5103 −0.4186

⎤
⎥⎥⎥⎥⎦ ,

L2 =

⎡
⎢⎢⎢⎢⎣

−1.9738 0.1107
0.6218 0.0037
0.2974 −0.8293
1.9107 0.0131
0.1611 −0.4183

⎤
⎥⎥⎥⎥⎦ .

Finally, according to step 5, we can obtain δ =
2.4062, and the state feedback gain matrix is as follows:

K1 = [
0.5704 −0.4129 2.6731

]
,

K2 = [
24.7483 2.4475 22.7443

]
.
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Figure 2. Actual and estimated value of state x1.

Figure 3. Actual and estimated value of state x2.

Figure 4. Actual and estimated value of state x3.

For the convenience of simulation, we set the initial
state as x0( 0.1 −0.01 0.1 ), the actuator faults and
the sensor faults as fa(t) = sin(t) and fs(t) = cos(t),
respectively. The system state variable estimation is
shown in Figures 2–4.

It can be seen from Figures 2–4 that the observer
designed in this paper has a good estimation effect

Figure 5. Actual and estimated value of state x1.

Figure 6. Actual and estimated value of state x2.

on the state variables. The fault-tolerant controller is
designed to make sure the system under the condi-
tion of actuator and sensor faults has a certain anti-
interference ability and fault tolerance, the simulation
results prove the effectiveness of the method.

In addition, it is compared with the method in [26].
But in this paper, the sensor failure and actuator fail-
ure are considered, which is more consistent with the
actual control system. Considering that the states of the
jump system cannot be directly obtained, in [26], under
the action of the observer and the controller, the closed-
loop state curves x1, x2 and x3 are shown in Figures
5–7, respectively. After about 2s, the system reached sta-
bility. If the method in this paper is adopted, the state
curvesx1, x2 and x3 are shown in Figures 2–4, respec-
tively. After about 1.5s, the system is stable, and the
oscillation of the state trajectory curves is smaller. It
can be seen that the controller designed in this paper is
slightly better than [26] in terms of dynamic response
speed. At the same time, in this paper, the sensor fail-
ure and actuator failure are also considered,more in line
with the actual control system.
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Figure 7. Actual and estimated value of state x3.

4.2. Practical examples

In order to further verify the method designed in this
paper, a simulation is carried out for a practical exam-
ple to verify the effectiveness of the designed method.
A linearized quadcopter model is selected [22, 27], the
parameter matrix is as follows:

A(t) =
⎡
⎣ −1.46 0 2.428
0.1643 + 0.5β(t) −0.4 + β(t) −0.3788

0.3107 0 −2.23

⎤
⎦

Ad1 =
⎡
⎣0.1 0 0.1
0.1 0 0
0 0.1 0.2

⎤
⎦ ,

Ad2 =
⎡
⎣ 0.1 0 0.05
0.03 0 0
0 0.05 0.1

⎤
⎦

B1 = B2 =
⎡
⎣0
1
0

⎤
⎦ , D1 = D2 =

⎡
⎣0.2
0.2
0

⎤
⎦ ,

E1 =
⎡
⎣ 0

−0.1
0

⎤
⎦ , E2 =

⎡
⎣−0.1

0
−0.3

⎤
⎦

C1 = C2 =
[
1 0 0
1 0 1

]
,

F1 = F2 =
[−1
1

]

wherein β(t) is the uncertain model parameter, which
is subjected to a Markov process r(t) with N=2:

β(t) =
{

−1, r(t) = 1
−2, r(t) = 2

The selection of other parameters is the same as that
of the numerical example in Section 4.1.

For the convenience of simulation, we set the
initial state as x0( −0.1 −0.1 −0.1 ), the actua-
tor faults and the sensor faults as fa(t) = sin(t) and

Figure 8. Actual and estimated value of state x1.

Figure 9. Actual and estimated value of state x2.

Figure 10. Actual and estimated value of state x3.

fs(t) = cos(t), respectively, and the delay time as 3s.
The system state variable estimation is shown in
Figures 8–10.

It can be clearly seen from Figures 8–10 that the
system has certain fluctuations in the initial operat-
ing state. After a short adjustment process, the system
reaches a stable state. The simulation results verify the
effectiveness of the proposed method.
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5. Conclusion

In this paper, robust fault estimation and fault-
tolerant control for a class of nonlinear Markov jump
time-delayed systems with both actuator and sensor
faults were studied. Firstly, a generalized system is con-
structed by expanding the system state. Then a gen-
eralized observer design method is proposed for the
system, and the simultaneous estimation of the origi-
nal state, actuator fault and sensor fault of the nonlin-
ear Markov jump time-delayed system is realized. In
addition, based on the estimation of observer, a design
method of state feedback fault-tolerant controller is
proposed to make the system stable and meet certain
performance indexes under the condition of simulta-
neous actuator and sensor failure and external inter-
ference. The sufficient conditions for the existence of
generalized observers and fault-tolerant controllers are
given by linear matrix inequalities. At last, a numerical
example is given to demonstrate the effectiveness of the
proposed method.
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Markovian switching. Int J Robust Nonlinear Control.
2014;24(15):2035–2047.

[5] KchaouM, El Hajjaji A, Toumi A. Non-fragile H∞ out-
put feedback control design for continuous-time fuzzy
systems. ISA Trans. 2015;54:3–14.

[6] Zhu LJ, Yin YY, Liu F, et al. H∞ filtering for uncer-
tain periodic Markov jump systems with periodic and
partly unknown information. Circ Syst Signal Process.
2019;13(09):1309–1319.

[7] Wang HJ, Xue AK, Wang JH, et al. Event-based H-
infinity filtering for discrete-timeMarkov jump systems

with network-induced delay. J Frankl Inst Eng Appl
Math. 2017;354(14):6170–6189.

[8] Shen H, Xu SY, Zhou JP, et al. Fuzzy H∞ filtering for
nonlinear Markovian jump neutral systems. Int J Syst
Sci. 2011;42(5):767–780.

[9] Li FB, Wu LG, Shi P, et al. State estimation and slid-
ing mode control for semi-Markovian jump systems
with mismatched uncertainties. Automatica. 2015;51:
385–393.

[10] Han CY, Wang W. Linear state estimation for Markov
jump linear system with multi-channel observation
delays and packet dropouts. Int J Syst Sci. 2019;50(01):
163–177.

[11] Li XH, Choon KA, Lu DK, et al. Robust simultaneous
fault estimation and nonfragile output feedback fault-
tolerant control for Markovian jump systems. IEEE
Trans Syst Man Cybern Syst. 2019;49(09):1769–1776.

[12] Li H, Shi P, Yao D. Adaptive sliding-mode control of
Markov jump nonlinear systems with actuator faults.
IEEE Trans Autom Control. 2017;62(4):1933–1939.

[13] LiuM, Cao XB, Shi P. Fuzzy-model-based fault-tolerant
design for nonlinear stochastic systems against simulta-
neous sensor and actuator faults. IEEETrans Fuzzy Syst.
2013;21(5):789–799.

[14] Chen LH, Huang XL, Fu SS. Fault-tolerant control
for Markovian jump delay systems with an adap-
tive observer approach. Circuits Syst Signal Process.
doi:10.1007/s00034-016-0277-8.

[15] Li HY, Gao HJ, Shi P, et al. Fault-tolerant control
of Markovian jump stochastic systems via the aug-
mented sliding mode observer approach. Automatica.
2014;50(7):1825–1834.

[16] Liu M, Shi P, Zhang LX, et al. Fault-tolerant control
for nonlinearMarkovian jump systems via proportional
and derivative sliding mode observer technique. IEEE
Trans Circ Syst Regul Pap. 2011;58(11):2755–2764.

[17] RenW,Wang C, Lu Y. Fault estimation for time-varying
Markovian jump systems with randomly occurring
nonlinearities and time delays. Frankl Inst. 2017;354(3):
1388–1402.

[18] Lu D, Li X, Liu J, et al. Fault estimation and fault-
tolerant control of Markovian jump system with mixed
mode-dependent time-varying delays via the adaptive
observer approach. Dyn Syst Meas Contr. 2017;139:3.

[19] Lan J, Patton RJ. A new strategy for integration of fault
estimation within fault-tolerant control. Automatica.
2016;69(1):48–59.

[20] Gao Y, Wu L, Shi P, et al. Sliding mode fault-tolerant
control of uncertain system: A delta operator approach.
Int J Robust Nonlinear Contr. 2017;27(18):4173–
4187.

[21] Li X, Zhu F. Fault-tolerant control for Markovian jump
systems with general uncertain transition rates against
simultaneous actuator and sensor faults. Robust Non-
linear Contr. 2017;27:4245–4274.

[22] Li X, Zhu F. Simultaneous estimation of actuator and
sensor faults for uncertain time-delayed Markovian
jump systems. Acta Autom Sin. 2017;43(1):72–83.

[23] Shi P, Liu M, Zhang LX. Fault-tolerant sliding-mode-
observer synthesis of Markovian jump systems using
quantized measurements. IEEE Trans Ind Electron.
2015;62(9):5910–5918.

[24] LiuM, Shi P. Sensor fault estimation and tolerant control
for itô Stochastic systemswith a descriptor slidingmode
approach. Automatica. 2013;49(5):1242–1250.

[25] Jiang B, Gao C, Xie J. Passivity based sliding mode con-
trol of uncertain singularMarkovian jump systems with

http://orcid.org/0000-0002-0544-0289


AUTOMATIKA 31

time-varying delay and nonlinear perturbations. Appl
Math Comput. 2015;271:187–200.

[26] He S, Liu F. Observer-based passive control for nonlin-
ear uncertain time-delay jump systems. J Math Phys.
2009;29A(2):334–343.

[27] Li X, Karimi HR, Wang Y, et al. Robust fault estimation
and fault-tolerant control for Markovian jump systems
with general uncertain transition rates. J Frankl Inst.
2018;355:3508–3540.


	1. Introduction
	2. Problem statements
	3. Main results
	3.1. Robust observer design
	3.2. Fault-tolerant controller design

	4. Simulation analysis
	4.1. Numerical examples
	4.2. Practical examples

	5. Conclusion
	Disclosure statement
	ORCID
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


