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ABSTRACT
This paper formulates an original hierarchical self-tuning control procedure to enhance the
disturbance-rejection capability of under-actuated rotary pendulum systems against exogenous
disturbances. The conventional state-feedback controllers generally make a trade-off between
the robustness and control effort in a closed-loop system. To combine the aforementioned char-
acteristics into a single framework, this paper contributes to develop and augment the baseline
Linear-Quadratic-Regulator (LQR) with a novel “adjustable degree-of-stability design” module.
This augmentation dynamically relocates the system’s closed-loop poles in the stable (left-half)
regionof the complexplanebydynamically adjusting a single hyper-parameter thatmodifies the
constituents of LQR’s performance index. The hyper-parameter is adaptively modulated online
via a pre-calibrated hyperbolic-secant-function that is driven by state-error variables. The per-
formance of the proposed adaptive controller is benchmarked against fixed-gain controllers via
credible hardware experiments conducted on the standard QNET Rotary Pendulum setup. The
experimental outcomes indicate that theproposedcontroller significantly enhances the system’s
robustness against exogenous disturbances and maintains its stability within a broad range of
operating conditions, without inducing peak servo requirements.
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1. Introduction

The formulation of robust control strategies to enhance
the performance and resilience of the under-actuated
rotary-inverted-pendulum (RIP) systems has posed a
great challenge to scientists [1]. The nonlinear char-
acteristics and open-loop instability of such multivari-
able under-actuated systems require an agile control
effort to prevent their performance from deteriorating
under the influence of environmental indeterminacies
and parametric uncertainties [2]. Extensive research
has been done to synthesize robust control strategies for
mechanisms belonging to the aforementioned class of
under-actuated systems.

Despite its reliability and simplicity, the flexibility
of a fixed-gain Proportional–Integral–Derivative con-
troller is limited by the linear weighted sum of the input
error-variables [3]. The fuzzy-logic control scheme
requires a large number of rules that are contrived in
accordancewith the expert’s knowledge [4]. The impre-
cise empirical construction of the fuzzy approximation
method inevitably degrades the control signal quality
under parametric variations [5]. The neural controllers
require large sets of training data to devise an accurate
inverse model [6]. Despite their robustness, the sliding-
mode controllers render highly discontinuous control

behaviour which injects chattering in the response
[7]. The ubiquitous Linear-Quadratic-Regulator (LQR)
renders optimal control decisions by minimizing a
quadratic cost-function that captures the variations in
states and control-input profile [8]. However, its per-
formance gets degraded under the influence of identi-
fication errors and modelling uncertainties [9]. More-
over, the selection of state and control weighting-factors
for the LQR’s cost-function is an ill-posed problem
[10]. The numerical ill-conditioning problem asso-
ciated with the LQR is generally solved by specify-
ing a predetermined “Degree-of-Stability” (DoS) in its
design [11]. Where in, the closed-loop poles of the sys-
tem are allocated on the left-hand of the line s = −β

in the complex s-plane, where, ′s′ is the Laplace opera-
tor and β > 0 is a preset hyper-parameter that defines
the DoS [12]. The DoS design of LQR improves the
controller’s phase-margin which enhances the system’s
damping against nonlinear disturbances and oscilla-
tions [13].

The self-tuning adaptive controllers provide a prag-
matic approach to strengthen the closed-loop sys-
tem’s immunity against bounded exogenous distur-
bances, under every operating condition, by dynami-
cally reconfiguring the controller’s behaviour [14,15].
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They adopt well-postulated state-driven analytical (or
logical) rules to automatically modify the controller’s
operational parameters which renders a robust con-
trol yield [16]. A plethora of adaptive state-feedback
control schemes for multivariable under-actuated sys-
tems has been proposed in the literature [17]. The
model-reference adaptive systems track the output of
a reference model to reconfigure the behaviour of the
operational controller [18]. However, identifying the
adaptation-rates for the Lyapunov gain-adjustment law
is a cumbersome task [19]. The gain-scheduling tech-
nique dynamically modifies the controller-parameters
by commuting between a predefined set of distinct
linear controllers, each designed to address a specific
operating condition, which is usually selected via a
state-error dependent look-up table(s) [20]. Postulat-
ing distinct linear controllers and guaranteeing their
asymptotic-stability, for every operating condition, is
a laborious task that often leads to the degradation
of control quality [21]. The State-Dependent-Riccati-
Equation based control schemes offer to generate robust
effort to regulate the performance of inherently unsta-
ble and nonlinear systems [22]. However, the accurate
definition of state-dependent-coefficient matrices to
fully realize the nonlinear characteristics of the system
is difficult due to the system’s complex dynamics [23].

The main contribution of this article is the method-
ical formulation of a hierarchical adaptive state-
feedback control strategy for a class of under-actuated
systems. First of all, the baseline Linear-Quadratic-
Regulator (LQR) is refurbished by using the prescribed
DoS design strategy. TheDoS design is digitally realized
by retrofitting the LQR’s cost-function with a time-
varying exponential function having a growth rate of
β . To further strengthen the robustness of the con-
troller, the DoS-based LQR design is augmented with
an online self-tuning strategy that adaptively modu-
lates the growth factor β by using a pre-calibrated
Hyperbolic-Secant-Function (HSF) that depends on
the state-error feedback. This arrangementmodifies the
LQR’s state-feedback gains after every sampling inter-
val. The HSF waveform is calibrated such that β is
enlarged when the system is in disturbed state, and
vice-versa. To ensure an asymptotically-stable control
behaviour, the HSF bounds are preset such that the
adjusted value of β always remains positive. Credible
hardware experiments are conducted on the standard
QNET Rotary Pendulum board to verify the efficacy
of the proposed self-tuning controller. The experimen-
tal results indicate that the proposed self-tuning con-
troller manifests rapid transits in the response with
strong damping against fluctuations and reasonable
control activity while maintaining the system’s stability
throughout the operating regime.

The idea of using the proposed adjustable DoS
mechanism to self-tune the LQR’s state-feedback
gains, with the aim to enhance the robustness of

under-actuated mechatronic systems against bounded
exogenous disturbances, has not been attempted in
the available open literature. Hence, this paper mainly
focuses on the realization and validation of the afore-
mentioned idea.

The remaining paper is organized as follows. The
mathematical model of the pendulum system is pre-
sented in Section 2. The baseline LQR is synthesized in
Section 3. The augmentation of LQRwithDoS design is
presented in Section 4. The proposed self-tuning con-
trol law is formulated in Section 5. The experimental
evaluation of the proposed controllers is presented in
Section 6. The article is concluded in Section 7.

2. Mathematical model of system

The Rotary-Inverted-Pendulum (RIP) is a nonlinear,
open-loop unstable, and under-actuated system [24].
Its inherent instability makes it an ideal mechatronic
platform to analyse and validate the performance of the
proposed control scheme [25]. The hardware schematic
of the RIP system is shown in Figure 1. The actuating
torque is applied via a permanent magnet DC geared
servomotor. The angular rotation of the motor dis-
places the pendulum’s arm, coupled to its shaft, which
energizes the pendulum’s rod to swing up and bal-
ance itself vertically. The angular-displacements of the
arm and the rod are denoted as α and θ , respectively.
The state-space model of a linear system is given by
Eq. 1.

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (1)

where, x is the state-vector, y is the output-vector, u is
the control input signal, A is the state matrix, B is the
input matrix, C is the output matrix, and D is the feed-
forward matrix. The state-vector and the control input-
vector of the RIP system are identified in Eq. 2.

x(t) = [
α(t) θ(t) α̇(t) θ̇(t)

]T , u(t) = Vm(t)
(2)

Figure 1. Hardware schema of an RIP setup.
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Table 1. Modelling parameters of RIP system.

Symbol Description Value

Mp Mass of pendulum 0.027 kg
lp Pendulum centre of mass to pivot length 0.153 m
Lp Length of pendulum rod 0.191 m
R Length of horizontal arm 0.083 m
Jm Motor shaft moment of inertia 3.00×10−5 kg.m2

Marm Mass of arm 0.028 kg
g Gravitational acceleration 9.810m/s2

Je Moment of inertia about motor shaft pivot 1.23×10−4 kg.m2

Jp Moment of inertia about pendulum pivot 1.10×10−4 kg.m2

Rm Motor armature resistance 3.30�

Lm Motor armature inductance 47.0 mH
Kt Motor torque constant 0.028 N.m
Km Motor back-electromotive force constant 0.028 V/(rad/s)
Tm Maximum torque 0.14 Nm

where, Vm is the voltage signal applied to control the
DC motor. The nominal state-space model of the RIP
system is defined in Eq. 3, [26].

A =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 a1 a2 0
0 a3 a4 0

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣
0
0
b1
b2

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,D =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ (3)

Where,

a1 = rM2
pl2pg

JpJe + Jel2pMp + JpMpr2
,

a2 = −KtKm(Jp + Mpl2p)

(JpJe + Jel2pMp + JpMpr2)Rm
,

a3 = Mplpg(Je + Mpr2)
JpJe + Jel2pMp + JpMpr2

,

a4 = −rMplpKtKm

(JpJe + Jel2pMp + JpMpr2)Rm
,

b1 = Kt(Jp + Mpl2p)

(JpJe + Jel2pMp + JpMpr2)Rm
,

b2 = rMplpKt

(JpJe + Jel2pMp + JpMpr2)Rm

Themodelling parameters for theQNETRIP system
are identified in Table 1 [26]. The open-loop poles of
the QNET RIP system are evaluated as −6.04, −0.25,
0.00, +5.99, which clearly indicates that the system is
open-loop unstable.

3. Baseline control scheme

The LQR belongs to the class of state-feedback con-
trollers that are widely favoured for optimal position-
regulation and reference-tracking control of multi-
variable electro-mechanical systems [10]. The LQR

yields optimal control decisions by minimizing a
quadratic cost-function, given by Eq. 4, that captures
the state-variations and control-input associated with
the dynamical system [8].

Jlq = 1
2

∫ ∞

0
[x(t)TQx(t) + u(t)TRu(t)]dt (4)

where, Q ∈ R
4×4and R ∈ R are the state- and

control-penalty matrices, respectively. These matrices
are selected such that, Q is a positive semi-definite
matrix and R is a positive definite matrix. The con-
trol input cost is preset to unity to economize the
control activity. The state-weighting factors are tuned
by iteratively minimizing the quadratic cost-function,
given in Eq. 5, which captures the real-time state-error
and control-input variations to minimize the system’s
position-regulation error and control energy expendi-
ture.

Je =
∫ ∞

0
|εα(t)|2 + |εθ (t)|2 + |u(t)|2dt (5)

such that, εθ (t) = π − θ(t), εα(t) = αref − α(t)

where, εα and εθ represent the error between the ref-
erence and actual angular position of pendulum’s arm
and rod, respectively. The cost-function Je gives equal
weight to the error minimization criteria and control
minimization criteria. The LQR with the cost-function
Jlq, expressed in Eq. 4, provides optimal state-feedback
gains with the lowest cost of Jlq. These optimal gains are
acquired for a specific set of penalty matrices, Q and
R. However, this selection does not necessarily imply a
good time-domain performancewith respect to Jlq [27].
Hence, in this research, the cost-function Je is used to
tune the state-weighting factors.

The iterative tuning procedure aids in fine-tuning
the weighting factors [28]. A large state-weighting fac-
tor minimizes the state-errors but also increases the
actuator’s servo requirements of the actuator, and vice
versa. Generally, a compromise is made between state-
error behaviour and the control activity. In this work,
the selection of state-weighting factors is limited within
[0, 100]. The tuning process is initiated with Q =
diag

(
1 1 1 1

)
. The iterative algorithm conducts

an exhaustive search in the direction of descending gra-
dient of Je. In every iteration, the pendulum is allowed
to balance for 5.0 s, and the corresponding cost Je is
evaluated and recorded. The iterative search is termi-
nated when the minimum cost is achieved. The tuned
Q and Rmatrices corresponding to this minimum cost
are given as follows.

Q = diag
(
38.2 52.6 5.3 2.1

)
,R = 1 (6)

The selected Q and R matrices are used to solve the
Algebraic-Riccati-Equation (ARE) shown in Eq. 7 [8].

ATP + PA − PBR−1BTP + Q = 0 (7)
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The solution of ARE is the symmetric positive-definite
matrix P ∈ R

4×4. The matrix P is used to evaluate the
fixed state-feedback gain vector, K , offline by using the
gain calculator shown in Eq. 8.

K = R−1BTP (8)

Using this expression, the state-feedback gains are eval-
uated as K = [−6.21 130.56 −4.22 17.83

]
. The

linear control law is expressed as follows.

u(t) = −Kx(t) (9)

This control law is also retrofitted with auxiliary state-
variables regarding the integral-of-error in α and θ .
The integral controllers effectively attenuate the steady-
state fluctuations and improve the system’s reference-
tracking accuracy. The integral control law is given by
Eq. 10.

ui(t) = K iρ(t) = [
ki,α ki,θ

] [
ρα(t)
ρθ (t)

]
(10)

such that, ρα(t) =
∫ t

0
εα(τ )dτ , ρθ (t) =

∫ t

0
εθ (τ )dτ

where, ρ(t) is the vector containing the error-integral
variables associated with α and θ . The integral gains are
also tuned by iteratively minimizing the cost-function,
Je. The search is initiated from Ki = [−1 −1

]
and

continued in the direction of descending gradient
of Je. The search is terminated until the minimum
cost is achieved for the gains. In this research, the
integral gain vector that yields the minimum cost
is Ki = [−2.05 −7.45 × 10−6]. The final expression
of Fixed-gain Optimal Controller (FOC) is given by
Eq. 11.

u(t) = −Kx(t) + Kiρ(t) (11)

If the system is controllable, the solution of ARE yields
an asymptotically-convergent control behaviour under
every operating condition.

4. Prescribed DoS-based controller

The fixed-gain LQR is enhanced by retrofitting it with
the prescribed Degree-of-Stability (DoS) design tech-
nique [29]. The LQR’s cost-function, Jlq, is augmented
with an auxiliary tool that forcibly relocates all the
closed-loop poles of the system on the left-hand side
of the vertical line s = −β on the s-plane, where β is a
prefixed positive hyper-parameter [30]. This technique
ensures the asymptotic stability of the controller’s oper-
ation by manipulating the position of the eigenvalues
of system matrix A on the left-hand side of the com-
plex s-plane. The conventional quadratic-cost-function
of LQR is altered by multiplying it with a time-varying
exponential factor of the form e2βt . The revised cost-
function is expressed as follows [13].

J∗lq = 1
2

∫ ∞

0
e2βt[x(t)TQx(t) + u(t)TRu(t)]dt (12)

The augmentation of LQR’s cost-function with the
exponential factor aids in shifting all the eigenvalues
of the system on the left-side of the line s = −β . The
purpose of including the exponential factor in J∗lq and
its contribution in manipulating the eigenvalues is sys-
tematically explained as follows. The expression of J∗lq
in Eq. 12 can be simplified as shown below.

J∗lq = 1
2

∫ ∞

0
[(eβtx(t))TQ(eβtx(t))

+ (eβtu(t))TR(eβtu(t))]dt (13)

This simplification suggests that the state-vector and
the control-input vector can be updated as shown in
Eq. 14 [13].

p(t) = eβtx(t),m(t) = eβtu(t) (14)

where, p(t) andm(t) are themodified state and control-
input vectors, respectively. With the substitution of the
modified vectors, the cost-function is expressed as fol-
lows.

J∗lq = 1
2

∫ ∞

0
[p(t)TQp(t) + m(t)TRm(t)]dt (15)

By taking the first derivative of both sides of p(t) expres-
sion in Eq. 14 and then substituting the original state
equation (shown in Eq. 1) in the resulting expres-
sion of ṗ(t), the revised state-equation of the system is
expressed via Eq. 16 [13].

ṗ(t) = (A + βI)p(t) + Bm(t) (16)

where, I is an identity matrix of order 4×4. The revised
state-equation transforms the state-matrix intoA + βI.
Hence, the expression of the ARE is also revised as
shown below [13].

(A + βI)TP∗ + P∗(A + βI) − P∗BR−1BTP∗ + Q = 0
(17)

The revised ARE expression uses the same Q and R
matrices as prescribed in Eq. 6. However, it is obvi-
ous that the fixed solution of the revised ARE, P∗, now
depends on the preset value of β as well. The (fixed)
state-feedback gain vector is re-computed offline via
Eq. 18.

Kd = R−1BTP∗ (18)

SinceKd depends onP∗; therefore,β indirectly changes
the gain vector as well. In brief, the augmentation of
LQR’s cost-function with the exponential factor, e2βt ,
ends up transforming the state-matrix of the system
fromA intoA + βI, which clearly shows that the varia-
tion in the eigenvalues of the modified system depends
on the value ofβ . In practice, theDoS scheme is realized
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by adding the term, βI, in the system’s nominal state-
matrix A. The control law dictated by the DoS-based
Optimal Controller (DOC) is shown in Eq. 19.

u(t) = −Kdx(t) + Kiρ(t) (19)

The DOC is also a fixed-gain controller. Choosing a
suitable value of β is an ill-posed problem. A very small
value ofβ brings the eigenvalues closer to the origin and
inevitablymakes the system sluggish. A relatively larger
value of β pushes the eigenvalues farther from the ori-
gin and increases the response speed. However, in real-
time hardware applications, this arrangement also con-
tributes highly discontinuous control activity and peak
servo requirements which unavoidably perturbs the
system’s state-response and induces oscillations in it.
For a time-optimal behaviour, a range of [0, 1.0] is iden-
tified for selection of β in this research. The fixed value
of β is tuned by iteratively minimizing the quadratic
cost function, Je, shown in Eq. 5. A random value is
chosen from the population to initiate the search and β

is optimized by searching in the direction of descend-
ing gradient of Je. After every iteration, the pendulum’s
performance is measured and the cost is evaluated. The
value of β that yields theminimum cost of Je is selected.
In this research, the value of β is preset at +0.516. The
resulting state-feedback gains are evaluated as Kd =[−8.79 158.16 −5.51 21.73

]
. The integral gains

are maintained at Ki = [−2.05 −7.45 × 10−6], as
prescribed in Section 3.

The proposed scheme configures a single parame-
ter, β , to re-adjust the closed-loop poles on the left
and improve the stiffness of the control effort against
state variations. Alternatively, similar control behaviour
can also be achieved by appropriately manipulating the
coefficients of penalty matrices. However, this tech-
nique is avoided because it is computationally intensive.
Instead of re-tuning all coefficients of Q and R matri-
ces, this section employs a simpler yet effective method
to achieve the desired behaviour by tuning a single
parameter, β .

5. Adjustable DoS-based controller

The fixed value of β lacks the degree-of-freedom to
flexibly manipulate the damping strength and response
speed of the control procedure under state-variations
and disturbances.Hence, this section contributes to for-
mulate and retrofit the baseline LQR with an online
self-adjusting DoS mechanism. The proposed mech-
anism indirectly modifies the state-feedback gains of
the LQR by dynamically adjusting the factor β via a
pre-calibrated nonlinear scaling function that depends
on the real-time variations in the state-error variables.
The position-regulation error in the arm and rod is
diagnosed by computing the weighted sum of all the
state-error variables. The online parameter-adjustment
function is configured such that, the magnitude of β

is enlarged smoothly when the weighted-sum of state-
error variables increases, and vice versa. This arrange-
ment forcibly moves the eigenvalues farther away from
the imaginary-axis to deliver a stiff control effort under
a disturbed state, and vice versa. The aforementioned
rationale enhances the system’s response speed and
damping against oscillations caused by exogenous dis-
turbances. It penalizes a high-deviation of the state-
errors more than a smaller value of the state-errors.

The self-adjusting DoS mechanism is formulated by
using an expert adaptive system that complies with the
aforementioned rules. Several mechanisms have been
proposed in the literature. The fuzzy and neural infer-
ence schemes are computationally expensive because
they either require a large set of empirically-defined
logical rules or a large set of training data to accu-
rately update the critical controller parameters, respec-
tively [4–6]. The online iterative-learning algorithms
put an excessive recursive computational burden on
the embedded processor [31]. The hyperbolic and sig-
moidal scaling functions have also been extensively
used to self-tune the controller-gains for robotic sys-
tems [27,32]. These nonlinear functions can be easily
implemented in the control software by programming
simple algebraic equations that can be easily solved
online, after every sampling interval, to update the
desired parameters [33, 34]. Hence, in this research,
the nonlinear scaling approach is chosen due to its
computational economy for online applications. Apart
from complying with the aforementioned meta-rules,
the proposed nonlinear function is also required to
possess the following properties:

• Continuity: This feature allows a smooth transition
of the parameter as the operating conditions change.

• Even-symmetry: This feature allows for online
adjustment of the parameter on the basis of the
magnitudes of the state-error variables only.

• Boundedness: This feature restricts the updated
parameter value between pre-defined limits, which
prevents the controller from entering in the unstable
region of operation.

The hyperbolic-Tangent-Function is avoided due to
its odd-symmetry [16]. The zero-mean Gaussian func-
tion is avoided because it computes the square of the
input variable to establish even-symmetry, after every
sampling instant, which inevitably increases the com-
mand execution time. Hence, in this work, the online
reconfiguration of β is done by means of a Hyperbolic-
Secant-Function (HSF) that is driven by the real-time
variation in the state-error variables [19,33]. The HSF
waveform is shown in Figure 2.

The waveform exhibits the desired properties and
ensures a smooth transition of β across the entire oper-
ating regime [34]. It contributes gentle parameter vari-
ations in the equilibrium-state and rapid variations in
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Figure 2. Waveform of the hyperbolic-secant-function.

the disturbed-state of the system. The HSF used for the
dynamic adjustment of β is formulated as follows.

β(z, t) = βmax − [(βmax − βmin) × sech(z(t))] (20)

The parameters,βmax andβmin, are predetermined pos-
itive constants that define the upper and lower bounds
of the function, respectively. The selection range of
these bounds is [0, 1.0], as prescribed for fixed β in the
Section 4. The variable, z(t), is the linear weighted sum
of the state-error variables as shown below.

z(t) = σεα(t) + δεθ (t) + με̇α(t) + γ ε̇θ (t) (21)

The parameters σ , δ, μ, and γ , are predetermined
positive scaling coefficients associated with each state-
error variable. This computation is beneficial because
it informs the HSF regarding the real-time changes in
the system’s state-error variables. It unifies the cumu-
lative effect of the four state-error variables into a sin-
gle variable, which helps the HSF to detect the dis-
turbances in the time-domain response. The classical
state-error variables (εαand εθ ) inform theHSF regard-
ing the actual deviation in the state-variables at a given
instant. The error-derivative variables (ε̇αand ε̇θ ) help
the HSF to anticipate the changes in the classical state-
errors and to amplify the control action if these changes
are consistent. This self-learning capability enables the
HSF to adapt β with the objective to improve the con-
troller’s response speed and strengthen its damping
against overshoots and oscillations.

The selection range of the scaling coefficients is
experimentally identified for the RIP system with the
objective to prevent wasteful control activity; that is,
to avoid the application of unnecessarily high control
in the equilibrium-state and insufficient control in the
disturbed state. Consider the following scenario: Under
large disturbances, the state-responses deviate from the
reference. In the deviation phase, the polarities of errors
and the corresponding error-derivatives are the same.
Hence, the positive scaling coefficients will allow an
increment in the magnitude of z(t). Consequently, the
HSF will amplify the value of β to deliver a stiff con-
trol action. When the responses converge to the ref-
erence, the polarities of errors and the corresponding

Table 2. Empirically tuned parameters of SHF.

Parameters Range Tuned value

βmin [0, 1.0] 0.312
βmax [0, 1.0] 0.715
σ [0, 100] 7.82
δ [0, 100] 23.37
μ [0, 100] 2.19
γ [0, 100] 6.73

error-derivatives are opposite. In this phase, the pos-
itive scaling coefficients will allow a decrement in the
magnitude of z(t). Hence, the HSF would reduce β to
deliver a soft control action.

The bounds of β(z, t) and the scaling coefficients of
z(t) are tuned by iteratively minimizing the quadratic
cost function, Je, shown in Eq. 5. For each parame-
ter, a random value is chosen from the specified range
and the iterative search is conducted in the direction of
descending gradient of Je until the candidate solution
with minimum cost is obtained. The tuned parameter
values are shown in Table 2. The preset limits of HSF
ensure the asymptotic-stability of the adaptive con-
troller. The augmentation of the existing DoS-based
LQR with the state-error dependent HSF, expressed in
Eq. 20, adaptively manipulates the location of the sys-
tem’s closed-loop poles on the left-hand side of the
adjustable vertical line s = −β(z, t). Themodified cost-
function is expressed as follows.

J′lq = 1
2

∫ ∞

0
e2β(z,t)t[x(t)TQx(t) + u(t)TRu(t)]dt

(22)
Consequently, the modified ARE is presented in Eq. 23.

(A + β(z, t)I)TP(t) + P(t)(A + β(z, t)I)

− P(t)BR−1BTP(t) + Q = 0 (23)

The modified ARE is solved online, after every sam-
pling interval, to deliver the updated solution P(t). The
time-varying state-feedback gain vector is computed
via Eq. 24.

Kf (t) = R−1BTP(t) (24)

The control law representing the proposed Self-
Tuning Optimal Controller (STOC) equipped with the
adjustable DoS design is given in Eq. 25.

u′(t) = −Kf (t)x(t) + Kiρ(t) (25)

The integral gains are kept fixed at Ki = [−2.05
−7.45 × 10−6], as prescribed originally in Section 3.
Their adaptive adjustment is not attempted because the
“error-integral” variables were originally introduced in
the control law to enhance integral damping. The pro-
posed adaptive scheme manipulates the solution P(t),
which leads to the onlinemodification of theKf (t) vec-
tor only. The block diagram of the proposed STOC is
shown in Figure 3. The STOC scheme can be applied
to other under-actuated systems as well; given that, the
nominal model and a pre-calibrated nonlinear scaling
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Figure 3. Block diagram of the proposed STOC architecture.

function of β(.) for the specific system are available a
priori.

6. Experimental analysis

This section presents the details regarding the hard-
ware setup and the experimental procedure to analyse
the performances of the fixed-gain FOC, DOC, and the
STOC in the physical environment.

6.1. Experimental setup

The hardware setup of QNET RIP that is used to test
the proposed controller via real-time experiments is
shown in Figure 4 [26]. The real-time variations in
θ and α are measured via onboard rotary encoders.
The measurements from each encoder are acquired
via the NI-ELVIS II data-acquisition board that digi-
tizes the measurements at a sampling rate of 1000Hz
and then serially transmits it to the LabVIEW-based
software control application at 9600 bps. The software
is operated on a 2.0GHz personal computer with 6.0
GB RAM. The customized control application is devel-
oped using the “Block Diagram” tool in the LabVIEW’s
virtual instrument file. The front-end of this control
application is used as a graphical-user-interface to visu-
alize and record the real-time state and control-input
variations of the system. The control software uses the
acquired measurements to update the gains and gen-
erate the corresponding control signals. The software
uses the built-in real-time clock of the digital computer
to execute the programme and schedule the succes-
sive updates in the controller parameter(s) after every
sampling interval. The control signals are serially trans-
mitted to a motor driver circuit, commissioned on the
QNET hardware setup, which translates and amplifies
them into pulse-width-modulated signals to drive the
DC servomotor.

6.2. Tests and results

The performance of STOC is benchmarked against
FOC and DOC by conducting “five” unique hardware-

Figure 4. QNET Rotary Pendulum Board.

in-the-loop experiments on the QNET RIP platform.
The pendulum rod is manually lifted and allowed to
balance at the beginning of every trial. The experimen-
tal results, depicting θ and α, are plotted in “degrees” to
simplify the graphical visualization. The description of
the test-cases and the corresponding graphical results
are presented as follows.

6.2.1. Position-regulation
This test-case examines the capability of the proposed
controllers to balance the pendulum rod vertically
while maintaining the arm at its initial position with
minimum deviations, under nominal conditions. In
this test case, external disturbances or modelling errors
are not applied. The corresponding variations in the
response of θ , α, Vm, Kd and Kf (t) are shown in
Figure 5.

6.2.2. Impulsive-disturbance rejection
The immunity of closed-loop system against exoge-
nous disturbances is assessed by applying a pulse
signal directly in the control-input (Vm) of the sys-
tem. The applied pulse has a magnitude of −5.0V
and time-duration of 0.1 s. The disturbance signal
is sequentially injected in the control input at t ≈
6.0, 9.5, 13.0, and 16.0 s mark. The corresponding
variations in θ , α, Vm, Kd and Kf (t) are shown in
Figure 6.
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Figure 5. Position-regulation response of QNET RIP under normal conditions.

6.2.3. Step-disturbance attenuation
The controller’s resilience against abrupt parametric
changes or step variations in the torque is analysed by
applying a step disturbance signal of−5.0V in the con-
trol input (Vm) of the system at t ≈ 8.5 s mark. The
corresponding variations in θ , α, Vm, Kd and Kf (t) are
shown in Figure 7.

6.2.4. Modelling-error compensation
The controller’s robustness against identification-errors
andmodelling-uncertainties is examined by attaching a
mass of 0.10 kg beneath the base of pendulum’s arm, via

a hook, as shown in Figure 4. This arrangement changes
the system’s state-spacemodel permanently, and hence,
perturbs the pendulum’s dynamic behaviour. The addi-
tionalmass is attached to the arm at t ≈ 8.0 smark. The
corresponding variations in θ , α, Vm, Kd and Kf (t) are
shown in Figure 8. It is to be noted that the proposed
modification is introduced in the pendulum’s hardware
setup for this test-case only.

6.2.5. Sinusoidal-disturbance suppression
The performance of the controllers under the influ-
ence of lumped-disturbance is examined by applying a
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Figure 6. Position-regulation response of QNET RIP under impulsive disturbances.

low amplitude high-frequency sinusoidal signal, d(t) =
1.5 sin(20π t), in the control input of the closed-loop
system. This scenario emulates the phenomenon of
measurement noise emerging in the practical engineer-
ing systems. The corresponding variations in θ , α, Vm,
Kd and Kf (t) are shown in Figure 9.

6.3. Discussions

The experimental results are examined based on the
following Key-Performance-Indicators (KPIs):

• The root-mean-squared value of error (RMSEx) in
the pendulum’s angular responses (θ or α).

• The transient- recovery time (ts) taken by the
response to settle within ±2% of the reference.

• The magnitude of peak overshoot or undershoot
(Mp,x) under transient disturbances.

• The offset-error (Eoffset) in the arm’s position under
step-disturbance.

• The peak-to-peak amplitude of oscillations in arm
angle (αp−p) under step-disturbance.

• The mean-squared value of DC motor voltage
(MSVm).
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Figure 7. Position-regulation response of QNET RIP under step-disturbances.

• The peak value of DC motor voltage (Vm,p) under
transient disturbances.

The aforementioned KPIs are the standard perfor-
mance measures that are used in the available literature
to analyse the reference-tracking accuracy and con-
trol energy expenditure of a pendulum system, under
the influence of exogenous disturbances [26,33]. These
KPIs examine the average position-regulation error, the
transient-recovery response, the controller’s damping
strength against overshoots (and oscillations), as well
as the motor’s average and peak servo requirements,

respectively. All of these measures help in evaluat-
ing the controller’s time-domain performance and
disturbance-rejection capability under different practi-
cal scenarios. The numerical values of these KPIs, for
each test-case, are recorded in Table 3.

The FOC demonstrates poor time-domain response
in every test case. However, it exerts significantly lesser
control input than DOC. The DOC shows reasonable
improvement in the position-regulation accuracy of the
arm and the rod as compared to FOC. However, it
improves the robustness at the cost of higher control
activity than FOC and STOC. The qualitative analysis
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Figure 8. Position-regulation response of QNET RIP under modelling-error.

of experimental results validates the superior robust-
ness and adaptability of the proposed STOC. In Test-
A, the RIP exhibits minimum RMSE in the responses
of θ and α under the influence of STOC. The con-
trol energy expended by STOC is almost 23.3% and
15.3% lesser than the energy consumed by FOC and
DOC, respectively. In Test-B, the STOC demonstrates
relatively faster transient-recovery with strong damp-
ing to attenuate the peak magnitude of overshoots. The
control-input expenditure as well as the peak-servo
requirement of STOC is significantly lesser than FOC
and DOC. In Test-C, the STOC effectively attenuates

the influence of the applied step-disturbance by con-
tributingminimumfluctuations and offset from the ref-
erence position in the response of θ and α, respectively.
In Test-C, the step-disturbance permanently displaces
the arm from its reference position. However, despite
the perturbations, the STOC manages to effectively
compensate for the artificially inducedmodelling-error
by demonstrating minimum offset error from αref .
Furthermore, it exhibits minimal deviations in the
angular-responses of θ and α. In Test-E, the STOC
effectively damps the sinusoidal disturbance signal.
Under the influence of STOC, the arm accurately tracks
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Figure 9. Position-regulation response of QNET RIP under sinusoidal-disturbance.

the reference position with the minimum RMSE. Fur-
thermore, the peak-to-peak magnitude of oscillations,
caused by the disturbance, is also limited to 10.25
degrees only.

The experimental results clearly validate the supe-
rior robustness of STOC. It surpasses the other two con-
troller variants by exhibiting enhanced response speed,
damping strength, noise suppression, modelling-error
attenuation capability. The control energy expendi-
ture of the STOC is relatively lesser than DOC and
FOC. Furthermore, the STOC framework maintains

the asymptotic-stability of the closed-loop system in
every testing scenario.

7. Conclusion

This paper presents a hierarchical adaptive optimal
control scheme for a class of multivariable under-
actuated systems by retrofitting the LQ state-feedback
controllers with an original adjustable degree-of-
stability design scheme. The proposed approach sig-
nificantly enhances the controller’s position-regulation
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Table 3. Summary of experimental results.

Controllers

Test KPI FOC DOC STOC

A RMSEθ (degrees) 0.58 0.42 0.32
RMSEα (degrees) 16.95 12.25 9.96
MSVm (V2) 7.04 8.92 6.73

B RMSEθ (degrees) 0.84 0.64 0.43
|Mp,θ | (degrees) 3.48 2.82 1.93
ts,θ (s) 0.80 0.59 0.38
RMSEα (degrees) 12.56 11.75 9.61
MSVm (V2) 7.79 10.78 7.45
Vm,p (V) −9.19 −12.26 −7.97

C RMSEθ (degrees) 1.19 0.55 0.50
RMSEα (degrees) 31.47 27.93 21.24
Eoffset (degrees) −38.65 −34.50 −25.88
αp−p (degrees) 25.20 21.42 15.19
MSVm (V2) 26.27 29.03 25.78

D RMSEθ (degrees) 1.19 0.56 0.48
RMSEα (degrees) 18.07 14.80 11.38
MSVm (V2) 11.41 12.88 10.31

E RMSEθ (degrees) 0.51 0.36 0.34
RMSEα (degrees) 9.94 9.90 8.68
MSVm (V2) 12.27 12.99 10.90

accuracy and robustness against parametric uncertain-
ties by dynamically adjusting the location of eigen-
values (and hence, the controller gains). Apart from
improving the controller’s robustness, the proposed
framework also preserves its asymptotic stability under
every operating condition. These propositions are jus-
tified via credible hardware experiments conducted on
the QNET RIP system. The results also indicate that
the proposed system consumes comparatively lesser
control input energy than the other controller vari-
ants while attenuating the bounded exogenous distur-
bances. The proposed scheme is reliable, simple, and
does not put any recursive computational burden on
the embedded processor. Thus, it can be easily real-
ized usingmodern-day digital computers. In the future,
the performance of the proposed self-tuning control
scheme can be investigated by using soft-computing
techniques. Meta-heuristic algorithms can be tested
to improve the tuning and parameter selection proce-
dure. Moreover, the efficacy of the proposed adaptive
controller can be investigated by applying it to other
under-actuated electro-mechanical systems.
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