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Abstract—Mobility of Internet of Things (IoT) objects is a
key characteristic of IoT environments. It brings dynamicity,
uncertainty and raises many challenges when it is associated
with computation and network resources management for IoT
applications. The resources management problem under objects
mobility consideration is even more sensitive if we consider that
various IoT applications have stringent Quality of Service (QoS)
needs. Fog Computing is a distributed computation paradigm
that increases data centers computation and storage abilities
with nodes between end-users and the Cloud. Fog computing
offers a large distributed infrastructure to support IoT applica-
tions needs by bringing services closer to end users. However,
Fog infrastructures inherit the energy greediness characteristics
of both data centers and network infrastructures. This work
investigates the IoT services placement problem in the Fog as
an optimization problem to minimize energy consumption and
enhance QoS while considering mobility of IoT objects. We model
the placement problem as a multi-objective optimization problem
and we propose a location history based mobility model (HTM)
to estimate future locations of IoT mobile nodes. We propose
a framework composed of online strategies for IoT services
placement and a Mobility-aware Genetic Algorithm (MGA) for
services migrations. We evaluate our strategies through iFogSim
simulator and compare the proposed framework to migrations
and placement strategies from the literature based on Shortest
Access Point migration strategy (SAP) and with Penguins Search
Optimization Algorithm (PeSOA). Experiments show that the
proposed framework outperforms literature approaches for the
considered objectives and for various configurations of the mobile
environment.

Index Terms—IoT, Fog Computing, Mobility, Energy, QoS,
Optimization.

I. INTRODUCTION

THE Internet of Things (IoT) can be defined as a self-
adaptive and intelligent network of real-world smart

objects connected via the Internet to provide various numerical
applications [1]. Those applications have mostly stringent
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Quality of Service (QoS) requirements and their virtual com-
ponents need to be deployed and managed efficiently through
computing infrastructures. The mobility of the IoT objects
is a critical factor that may impact negatively management
decisions quality over time.

It has been shown that the exclusive usage of Cloud data
centers can not support efficiently the gigantic number of
IoT applications and their Quality of Service needs. Study
in [2] estimates that the number of connected objects will
reach 75 billions by the end of 2025. Authors in [3] present
studies that highlight the limits of actual Cloud paradigm
to support the needs of IoT applications response time. The
Round Trip Time measures (RTT) between a data center
located in Washington DC and a data center located in Salt
Lake City via a fiber link is around 41 ms. This value can
goes up to 120 ms with traffic contention. The RRTs from
Salt lake City data center to popular public Clouds such as
Amazon EC2, Google Cloud Engine and Microsoft Azure
Cloud were respectively in average around 55 ms, 13 ms and
25 ms. Those latencies can’t ensure IoT applications response
time requirements where applications such as vehicles control
or augmented reality streams require a response time less than
10 ms. Indoor geolocation and high speed trading applications
require a response time around 100 µs.

Fog/Edge computing is an emergent computation paradigm
aiming to support partial Cloud computation and storage work-
load at the edge of the network. It increases cloud data centers
abilities in order to reduce excessive usage of the network,
enhance privacy of users data and reduce applications response
time. However, taking management decisions in such heteroge-
neous and large scale infrastructures is a complex task owing
to the mobility of users, the high number and the heterogeneity
of IoT applications and computation nodes [4]. Furthermore,
the energetic impact of Fog and IoT infrastructures is huge. A
report of the International Energy Agency (IEA) [5] estimates
that the energy consumption of IoT applications in the fields
of intelligent lights, traffic control, and smart homes will be
around 46 TWh in 2025. Authors in [6] have found that,
if unchecked, Information and Communications Technology
(ICT) Greenhouse Gaz emission (GHGE) relative contribution
could grow from roughly 1–1.6% in 2007 to exceed 14%
of the 2016-level worldwide GHGE by 2040, accounting for
more than half of the current relative contribution of the
whole transportation sector. To ensure the sustainability of
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those environments, the energy parameter should be taken into
account in every ICT management strategy.

We can split the life cycle management of any application
in three phases: (1) Design, (2) Placement and (3) Mainte-
nance. In this work, we investigate the placement phase of
applications by considering the placement problem of IoT
services in a Fog infrastructure as a multi-objectives problem
to minimize both energy consumption of infrastructures and
reduce applications Quality of service (QoS) violations by
considering a dynamic environment driven by the mobility of
IoT objects.

This work comes as an extension of a previous presented
work [7]. The new contributions of this work can be summa-
rized as follows:
• proposing a taxonomy of mobility models in the literature

and a mobility model based on nodes locations history,
• proposing IoT services placement strategies that use the

mobility information of nodes and can trigger migrations
of services over time in order to improve the quality of
the placement,

• experimental validation of the proposed mobility model
and placement methods through simulations using MyI-
FogSim simulator.

The remainder of this paper is structured as follows: Sec-
tion II presents the state of the art of IoT services placement in
the Fog and mobility models. Section III gives a formalization
of the considered Fog-IoT system and the placement problem.
In section IV, we present the proposed mobility model used to
estimate IoT objects locations. Section V details the proposed
placement and migration framework and section VI reports
experimental results using MyiFogSim. Finally, section VII
concludes this work and gives some perspectives.

II. RELATED WORK

The following related work is divided into two parts. The
first part presents a brief overview and taxonomy about mobil-
ity models characteristics to position and understand the model
proposed in section IV. The second part is about works from
the literature that have tried to tackle IoT services placement
in the Fog by considering jointly or separately one of those
parameters: Energy, Quality of service (QoS), and Mobility.

A. Mobility Models Characteristics

A mobility model is used to describe the characteristics
of a moving object or a group of moving objects. Generally,
the model proposes descriptive formulas based on parameters
such as the previous positions of the object, the instants of
its positions, the time it spends at each location (pause time),
its speed, its direction, and the impact of other objects on its
movement. Mobility models can also be built from statistical
inferences and use probability laws to describe and estimate
the movement of objects. A mobility model can in some cases
anticipate the paths that the object will take and plays a key
role in the development and evaluation of decision models in
dynamic environments such as IoT and Fog.

In recent years, there have been very few new models or
proposed improvements to existing mobility models. Mainly,

new models are proposed exclusively for connected vehicle
systems. Work in [8] has shown that the mobility model can
impact the evaluation of network and resource management
strategies. Unrealistic mobility models can overestimate the
performances of the proposed strategies.

A mobility model can be categorized according to several
aspects (figure 1):

(1) The nature of motion data: several literature models can
be decomposed according to their source data into synthetic,
trace, or hybrid models. Works [8] and [9] have shown
that trace-based models are more realistic, relevant, and less
expensive than purely synthetic analytical models. Work in
[10] presents a mobility model based on the social behavior
of nodes, which is an important dimension regarding IoT
environments. The disadvantage of trace-based models is that
they can be applied and studied in limited scenarios and well-
defined environments. This can easily render them unusable in
other scenarios or other areas under study. Besides, statistical
studies on traces carried out at a given point in time may
become obsolete over time. To compensate for the above-
mentioned drawbacks, the literature attempts to identify peri-
odic behaviors that can be generalized from traces by varying
environments and increasing the duration of data collection.
The CRAWDAD project [11] proposes a wide variety of
hybrid mobility models: synthetic models improved by real
environments’ data.

The mobility model proposed in this work is based on trace
characterization to extract generic information. Other works
have also carried out the same approach using traces. [12]
focus on the mobility of cabs in the city of Beijing.

The majority of trace-based works are done on vehicle data
such as cabs or buses because it is less complex than identi-
fying patterns in passenger vehicles and IoT (for pedestrians)
objects’ movement. Authors in [13] focus on mobility behavior
in highways by collecting information such as arrival and
departure flows and vehicle density. Unfortunately, this study
can not be used in urban areas. [14] has worked on urban
area traces in the city of Cologne in Germany. It focuses
on vehicle streets’ density. [9] proposes a vehicle model in
an urban environment by considering a macroscopic origin-
destination approach. This method builds the model only
with the departure and arrival points of the mobile nodes.
[15] proposes a methodology to infer characteristics from a
statistical study on a sample of data.

(2) The granularity of the model’s parameters: Generally,
there are two levels of granularity for mobility metrics: (1)
microscopic and (2) macroscopic. Microscopic models give
a detailed view of the movement of an object at any given
time. These models, with fine granularity, take into account
the speed and direction of each object. They allow to represent
realistic and detailed mobile systems. This type of model is
very present in Ad-hoc vehicle networks (VANET). Macro-
scopic models focus on more generic data, for example, the
departure and arrival rates of objects in a given time interval
or the probability distribution of flows from point A to point
B. The macroscopic approach identifies points of interest that
influence the mobility behavior of nodes. Both microscopic
and macroscopic aspects are necessary to establish a realistic
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Fig. 1. Mobility models characteristics taxonomy

and comprehensive mobility model.
(3) Space and time dimensions: Mobility models can be

classified according to temporal dependence, spatial depen-
dence, or geographical restrictions. The work of [16] proposes
a classification of individual and group mobility patterns for
Ad-hoc networks. The latter groups them into random models,
temporal correlation models, spatial correlation models, and
geographic restriction models. However, today and particularly
in Internet of Things environments, several models combine
all the above characteristics. For IoT nodes’ mobility, it is
also important to consider the characteristics of IoT objects.
Moreover, if these objects are carried by pedestrians, social
behavior must also be considered.

(4) Mobile object classes: For the time being, we distinguish
three main families: Vehicular Networks (VANET), Flying
Ad-hoc Networks (FANET), and Mobile Ad-hoc Networks
(MANET). [17] has proposed a selection of existing mobility
models to best represent the systems of flying objects in a
network. It is necessary to exploit the specificities of IoT
objects and existing models to establish more precise models
which can be generic and adaptive over time.

(5) The moving system under consideration: A mobility
model can describe an individual movement or a group move-
ment.

B. IoT Services Placement int the Fog with Mobility, Energy
and QoS Considerations

Service placement problem in the Fog has been mainly
investigated as an optimization problem in static environments
(without nodes’ mobility) to ensure various QoS criteria
such as response time, resource usage efficiency, network
consumption minimization [18], [19], [20], [21], [22]. The
energetic problem has also been investigated in few works.
In [23], authors try to minimize mobile nodes’ energy con-
sumption, time, and execution costs by transferring their tasks
to complementary computation devices. This approach can
induce excessive usage of bandwidth and increases the energy
consumption of other nodes. Work in [24] address the IoT to
Fog nodes assignment problem with Genetic Algorithm (GA)
and Broadcast Incremental Power (BIP) algorithm to reduce

mobile nodes energy consumption under delay constraints.
The approach does not consider the energy consumption of
Fog, cloud nodes, and the network. In [25], authors use a
Discrete Particle Swarm Optimization approach to minimize
the infrastructure energy consumption and applications delay
violations in a static Fog environment.

Although mobility is a key point to consider in the Fog, only
few works investigate it. Authors in [26] consider the influ-
ence of nodes mobility for applications’ scheduling problem;
however, mobility information is not used by the algorithms
and the mobility scenario is only based on increasing and
decreasing the number of connected nodes and does not
consider any mobility model. Authors in [27] propose an
Integer Linear Program to minimize the makespan while
considering a random waypoint mobility model. This model
neglects the temporal and spatial data. In [28], authors propose
to dynamically re-schedule the placement of Virtual Network
functions (VNF) to minimize end-to-end latency of users
and the number of migrations. Compared to our work, this
approach is only based on latency violation metric. None
of these works introduces the mobility information in the
placement modeling and algorithm.

The mobility aspect has been widely addressed in the
field of Mobile Cloud Computation (MCC) through migration
strategies, where most of the work tries to find a compromise
between reducing the cost of the migration process and guaran-
teeing the quality of service requirements of applications/users
often represented by latency. Most of the work identified is
based on 1-D or 2-D Markov decision process models (CDM).
The objective is to produce a set of migration decisions, taking
into account the position of mobile nodes: [29], [30], [31].

Other works such as [32] use a theoretical approach to ad-
dress the problem of long-term optimization at any given time
with Lyapunov’s optimization approach. These approaches are
time and money consuming methods and are not appropriate
to deployment on real systems.

The other category of approaches that could be used to
address mobility is based on forecasting and learning methods.

Authors in [33] propose the SEGUE framework for migra-
tion decisions and use the ARIMA method to predict system
QoS. In [34], authors propose a MAPE framework and a
Genetic Algorithm for delay-triggered services migration in
the Fog. This work focuses only on the delay metric and
does not consider the energy cost of migrations. The main
drawback of prediction methods is the high consumption of
computing resources and the prediction time, which is difficult
to apply online. In addition, the accuracy of the predictions
is directly impacted by the quality of the data used. In [7],
we proposed a placement strategy that minimizes the average
energy consumption of infrastructures and QoS violations of
applications through a certain time window in order to avoid
the complexity induced by migration process. However, in
some scenarios where services are state-full, migration is
necessary. Moreover, static placement is not convenient in a
long term as undeniably mobility through time will impact
negatively applications response time and infrastructure’s en-
ergy consumption. This work comes to extend the previous
cited work by proposing a framework with fast placement
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strategies and a replacement that will migrate services using a
mobility-aware genetic algorithm. We also propose a mobility
model in order to estimate future locations of IoT objects.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this part, we present the mathematical formulation of Fog
infrastructures and IoT applications. Then, we state the multi-
objectives placement problem, we present the formulas to
estimate energy consumption, QoS violation metric, migration
time and energy costs.

A. IoT Applications Model

We consider a set of IoT applications A =
{a0, .., ai, .., aA−1} designed in a distributed manner.
Each application ai ∈ A has a class type Υi which can be:
Mission Critical (MC), Real Time (RT), Streaming (ST) and
Best Effort (BE), having respectively priority level ψi of 0,
1, 2, and 3 and response delay requirement φi of 20 ms, 50
ms, 15 ms and 3000 ms.

An application ai has a set of size ni of communicating
data-dependent services represented with a directed graph
Gi = (Si,Ei). Each service sij ∈ Si is defined by: (1) its
requested CPU instij in (MIPS), (2) its RAM rami

j in (MB),
(3) its deployment technology tecij (either a virtual machine, a
container, OSGi plugin, Java Virtual Machine or a combination
of them). We consider two specific nodes in the graph Gi that
represent respectively sensor sending service (source node)
and actuator receiving service (sink node).

Each directed edge eijj′ ∈ Ei, from service sij to service sij′
represents a data dependency between sij and sij′ and carries
dataijj′ , the volume of data sent from sij to sij′ in (KB).

B. Fog Infrastructure Model

We consider a hierarchical Fog infrastructure described by a
non directed graph G = (M,L) and shown in Figure 2, where
M is the set of nodes, and L the set of direct links between
them.

Each physical node mk ∈ M is defined by:
(1) a category ηk ∈ {IoT, Fog, Cloud}, (2) a
maximum and available capacities at instant t
vectors Ωk =< cpumaxk ,memmax

k , diskmaxk >,
Ωtk =< cputk,mem

t
k, disk

t
k > . Parameters units of

elements are respectively in MIPS, MB and MB, (3) the
electrical computing power at rest pcmink and its maximum
dynamic power pcmaxk , which is the power consumed by
the machine at the maximum of its CPU workload, (4)
the electrical power of communication of its interfaces at
rest pnmink and the maximum dynamic power pnmaxk , (5)
a 2D coordinates and a coverage zone vector at time t,
∆t
k =< xtk, y

t
k, r

t
k >.

Nodes have additionally characteristics depending on their
type: (1) IoT nodes have computation and storage capacities
and a set of sensors H0

k and actuators H1
k components. IoT

nodes move according to a probability mobility model ϑk
(e.g. Manhattan model [35]), and have a set of requested
applications Atk at time t. The coverage zone is fixed to rtk = 0.

Fig. 2. Physical Topology representation highlighting the system’s variables.

Let U be the subset of M with only IoT nodes, (2) Fog nodes
have the ability to connect IoT nodes to external network
through access point equipment and have computation and
storage capacity through a server cloudlet device. (3) Cloud
nodes are considered as a limitless source of computation with
data centers nodes. The coverage zone is fixed to rtk = 0.

Each network link lnkk′ ∈ L between two nodes mk and
mk′ has the following characteristics: (1) ntkk′ : represents link
technology, (2) bwtkk′ representing the bandwidth at instant t
which is defined by the number of bytes per second that a
physical link is able to send from its source to its destination.
It is measured in MB/s, (3) lctkk′ representing the latency at
instant t. It is measured in milliseconds (ms) and is the time
elapsed between the sending and arrival of a data packet from
the mk machine to the mk′ machine. The latency depends on
the state of the network at the time the packet is sent.

C. Problem Statement

We consider the time window WT = [0, T − 1] of T
homogeneous time slots and a set of mobile IoT nodes U
requesting applications At at instant time t. Each IoT node
u ∈ U has a set Atu of requested applications and Ntu is the
set of all services in Atu.

The objective is to find a placement for IoT services that
minimize energy consumption and delay violations over a
certain time interval [ti, tf ] ⊂ [0, T − 1].

We consider the binary decision variable xutijk defined by
Eq (1) as follows:

xutijk =


1, if the service j of application i requested by node u

is placed on machine k at time t.
0, otherwise.

(1)

For sake of simplicity but without loss of generality, we
made the following assumptions on our system:

(1) The motion of a node is negligible during a time step
i.e. the node can change position only at the beginning or
at the end of a time step. (2) The duration of a service is
longer than the duration of the study time window. (3) If two
IoT objects mu and mu′ request an application ai, each object
will have its own instances of the services of ai. (4) According
to the specifications established for 5th generation networks, a
user will always be covered by the network and will therefore
always have access to a base station. From there, it is assumed
that each IoT mu object is connected by being attached to only
one base station at a time and for each time step t ∈ [0, T−1].
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(5) Communications between IoT objects and their services
are uniformly distributed over the WT time window which is
divided into T time slots.

In the following we present the formulas for energy con-
sumption estimation, delay violations estimation, migration
time of a service and energy consumed by the migration of a
service.

1) Energy Consumption: The first metric we consider is the
sum of computation and network energy consumption during
time interval of [ti, tf ]. As the energy model does not impact
our resolution approach, we have chosen, similarly to work
[36] a linear model but other models could also be used. The
total energy consumption of the network and the computation
is defined by Eq (2) as follows :

f1(ti, tf ) = fC(ti, tf ) + fN (ti, tf ) (2)

1.1) The computation part is estimated according to the
following equation:

fC(ti, tf ) =

tf∑
t=ti

∑
mu∈U

∑
ai∈At

u

∑
sij∈Si

∑
mk∈M

xutijkα
ut
ijkγ

c
k (3)

where αutijk is the computation time of service instance sij
associated to the IoT user node mu and placed on node mk at
instant time t. As the placement is made at the beginning
and will remain unchanged, the computation cost is time
independent. Placing service sij on node mk depends on the
maximum processing capacity of the physical node cpumaxk in
MIPS, the amount of MIPS allocated to other services placed
on the machine mk and the amount of requested MIPS of
service sij . The computation of αutijk is defined by Eq (4) as
follows:

αutijk =
instij +

∑
u∈U

∑
ai∈A

ti
u

∑
sil∈Si−{s

i
j}
instilx

ut
ilk

cpumaxk

(4)

We define γck from Eq (3) as the computation power of the
node mk. It represents the difference between node maximum
and minimum power consumption γck = Pcmaxk − Pcmink .

1.2) The communication part is estimated according to the
following equation:

fN (ti, tf ) =

tf∑
t=ti

∑
mu∈U

∑
mk′′∈M−{mu}

P t
uk′′+

∑
ai∈At

u

∑
sij∈Si

∑
mk∈M

xuijkx
u
ij′k′βut

ijj′,kk′γn
kk′

(5)

where βutijj′,kk′ defines the communication time between ser-
vice instances sij and sij′ placed respectively on nodes mk

and mk′ at time t for user node mu. The communication
time βutijj′,kk′ varies over time, because it is impacted by
the fluctuation of latency between the mobile node and its
processing services placed on the infrastructure. There are two
possible causes for this fluctuation:

1) The IoT node does not host services; then the latency
variation is due to the communication between sensors

and their destination services and actuators and their
source services.

2) The IoT node hosts services; then the communication
latency between those services and other services will
vary over time depending on the localization of the IoT
node’s.

The computation of βutijj′,kk′ is presented by Eq (6) as
follows:

βut
ijj′,kk′ =

1

tf − ti

dataijj′

bwt
kk′

+ lctkk′ (6)

We define γnkk′ from Eq (5) as the communication power
constant between node k and node k′ and is computed
as follows: γnkk′ = Pnmaxk + Pnmaxk′ − Pnmink − Pnmink′ ,
where Pnmax and Pnmin are respectively the maximum and
minimum power consumption of nodes network interfaces.

Considering a set of locations (point of interest or zones)
and Access points nodes in a 2D area, a mobility model
associated to an object u, P tur is the probability that the object
u will be in point of interest r at time t and it is deduced from
its mobility model ϑu.

This work considers macroscopic mobility models with
the Weighted Waypoints Model (WWP) [37] from the liter-
ature and a proposed History transition matrix model (HTM).
However, even with microscopic models, it is possible to
deduce macroscopic characteristics and then use the proposed
formulas and placement approaches.
P tuz is the probability that an IoT node u is under the

coverage zone of a Fog node z at time t and it is deduced
by calculating the Euclidean distance between each point of
interest and Access point. Then, under the assumption that
each point of interest is attached to one and only one Access
point, we associate the point of interest to their closest Access
point.

2) Delay Violations : The second considered metric is the
QoS violation metric defined in Eq (7) by the average number
of applications delay violations in time interval [ti, tf ]:

f2(ti, tf ) =
1

tf − ti

tf∑
t=ti

∑
u∈U

∑
ai∈A

wu
i (t) (7)

where wui (t) is the average sum of counted delay violations
for each pair of object/application. It is defined by Eq (8) as
follows:

wui (t) =

{
1, if dui (t) > dmaxi

0, else
(8)

For each application ai and object mu at time t, the
estimated response time of application ai for the object mu

corresponds to the time between the sending of one data packet
from the sensor of node u and its corresponding action on the
actuator.

The delay depends on the position of the IoT nodes and
the placement of the used services. For each instance of the
application ai ∈ A requested by an IoT user node u ∈ U, we
compute the dui (t) according to the possible position of the
user at time t as defined in Eq (9):
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dui (t) =
∑
j∈Si

∑
k∈M

xutijkα
ut
ijk

+
∑

mk′′∈M−{mu}

P tuk′′
∑
j,j′∈Si

∑
k,k′∈M

xutijkx
ut
ij′k′β

ut
ijj′,kk′

(9)

The maximum response delay dmaxi of the application ai
varies according to its class type Υi.

3) Migration of a Service: In this section, we consider
that the Fog infrastructure allows service migrations between
nodes. We therefore propose formulas for estimating the time
and energy consumed by the migration process. The formulas
that we define thereafter are generic and independent of any
technology, algorithm or migration strategy. We consider that
all migrations start at the same time and run on a dedicated
network.

a) Service Migration Time Estimation : We can intu-
itively deduce that the time due to the migration of a service
depends mainly on its memory size and the bandwidth of the
link connecting the source node to the destination node.

Several works in the literature [38], [39], [40] have proposed
a linear model for estimating the migration time, considering
the memory size of the service and the bandwidth of the
transmission channel. Establishing a model for the power
consumption of the migration is not part of the objective of
our work. We use a high level generic model independent of
the type of migration used and the nature of the services to
be migrated.

Considering that a service sij , placed on the physical node
mk, is going to be migrated to the node mk′ at time tr called
revaluation time, the migration time tijmig(tr) of this service is
estimated according to Eq (10). We approximate the migration
time with the transfer time, which according to several works
in the literature represents most of the migration time. The
migration time of a service is computed as follows:

∀sij , t
ij
mig(tr) =

rami
j

bwtrkk′
+ lckk′ (10)

The migration time of an application ai defined by timig is
estimated by the maximum transfer time of its services. The
maximum migration time of the services of a given application
is the time when the whole application remains inaccessible
and is defined by Eq (11). From this time, we can deduce the
degradation of the quality of service. We recall that lckk′ and
bwtrkk′ respectively represent the latency and bandwidth of the
link between nodes mk and mk′ . The RAM requirement of
the sij service is defined by rami

j .
The total migration time tmig defined by Eq (12) is the max-

imum value of application migration times and is computed
as follows:

∀ai, timig(tr) = max
sij∈Si
{tijmig(tr)} (11)

tmig(tr) = max
ai∈A
{timig(tr)} (12)

b) Service Migration Energy Consumption Estimation:
Let Mmig be the set of source and destination machine pairs
for the deduced service migrations between the placement
solution at the moment tr−τ and the new solution given at
tr.

The τ depends on the chosen revaluation strategy (it can
be periodic or estimated by learning strategies or according
to a certain management policy). It is assumed that the active
power of the machines remains constant during the migration
time.

Similar to works in the literature [41], we estimate the power
consumed during the migration as the power consumed by the
data transfer between the source and destination machines. We
assume that the transfers between the source and destination
machines of the different migrations are done in parallel. We
define the total migration time tmaxmig , as the longest time taken
between two machines.

Let yuijkk′ be a binary variable equal to 1 if the service sij of
the application ai used by the object mu migrates from the
machine mk to the machine mk′ at time tr and is equal to 0
otherwise.

The formula in Eq (13) presents the estimated energy
consumption of the service migration triggered at time tr and
is computed as follows:

Emig(tr) =
∑

(k,k′)∈Mmig

γnkk′
1

bwtrkk′

∑
mu∈U

∑
i∈Au

∑
j∈Si

yuijkk′ram
i
j

(13)
We recall that γnkk′ is the power consumed for the exchange

of one byte between machines mk and mk′ .
The formula in Eq (14) defines the migration cost function

at time tr according to the consumed energy and the number
of delay violations.

G(tr) = f3(tr) + f4(tr) (14)

We define respectively f3(tr) and f4(tr) as the normalized
functions of Emig(tr) and tmig(tr). The functions f3(tr) and
f4(tr) are computed in Eq (15) and Eq (16) as follows:

f3(tr) =
Emig(tr)− Emin
Emax − Emin

(15)

f4(tr) =
tmig(tr)− tmin
tmax − tmin

(16)

where Emax is the sum of the energy of all the machines at
their maximum use during T time steps. Emin is the sum of
the energy of the machines during a time slot when machines
are without any workload. tmin = 0 is the time if no migration
is triggered. tmax is set to the duration of the time window.

4) Objective Function: Considering that the placement
remains the same between [tr, tr+τ ] where tr+τ is the known
next re-evaluation time, the first function we consider is the
combined sum of energy consumption and delay violation of
the placement on the interval [tr, tr+τ ] as defined by Eq (17)
as follows:

F (tr, tr+τ ) = f1(tr, tr+τ )[1 + f2(tr, tr+τ )] (17)
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The objective function H is the sum of the function F in
time interval [tr, tr+τ ] and the migration cost defined by G at
time slot tr and is defined by Eq (18) as follows:

H(tr, tr+τ ) = F (tr, tr+τ ) +G(tr) (18)

IV. HISTORY-BASE TRANSITION MATRIX MOBILITY
MODEL (HTM)

With the advancement of location acquisition technologies
such as the Global Position Systems (GPS), there is a growing
need to analyze the huge amount of GPS data. Application
management systems should be able to extract meaningful
information from the huge amount of location data collected
and stored. In this part, we propose a mobility model that can
be applied to any type of mobile objects that can be geolocated
on a 2D surface. This model uses the objects’ position data.
It is ideal in urban areas and smart city environments and is
adapted for readjustment over time.

1) Model Principle: We propose a macroscopic mobility
model. It is based on the assumption that dynamic human-
driven environments such as smart cities are less subject to ran-
domness and have recurrent mobility behaviors. Considering
the power of connectivity and coverage provided by networks
such as 4G-LTE and 5G, it is mostly superfluous to consider
fine-grained mobility models that give precise geographical
positions at any given time in order to provide the services
demanded by mobile objects.

The proposed model determines the movements of classes
of IoT objects according to time slots and their movements
between well-defined regions within an observable mobility
zone.

2) Methodology: We assume that we have an observable
area of known size. We consider the smallest square that
can contain the entire area. The main steps of the model are
summarized as follows: (1) Define human-scale time intervals
of a day divided into several time slots. (2) Subdivide the
area into several small zones according to the specificity of
the connection network. Each zone must be covered by at
least one access point. (3) Create transition matrices for each
moving object mu and for each Ix interval of each observable
dx day of the data set. An element pzij of the transition
matrix MZuIxdx

thus gives the probability that an object moves
to a zone zj knowing that it is in the zone zi. (4) Retrieve
the macroscopic information of the zones: average density
by object class and object flow. (5) Calculate and update the
information of the objects and their user profile: the granularity
and update of the mobility models of the objects is done
according to their user profile. i.e. the type of applications
they request and the frequency of requests per time interval
during the day as well as the type or class of IoT objects. (6)
Detect objects that have the same user profile and/or mobility
behavior over the course of a day to reduce the number of
matrices to be used for prediction.

3) Time Intervals and Mobility Zones: We consider a time
window of 24 hours subdivided according to a typical day

of activities into 4 time slots, where generally the mobil-
ity behavior of individuals doesn’t know significant changes
in each slot. I1 =]6am, 12pm], I2 =]12pm, 6pm], I3 =
]6pm, 12am], I4 =]12am, 6am]. The times of greatest activity
and mobility are considered to occur during the first 3 hours
of each interval and behaviors are generally relatively different
from one interval to another.

Considering the environment of a smart city, the last I4
interval will generally present off-peak hours (with no appli-
cation requests) that can be exploited to update the matrices
and establish a new zone breakdown if necessary. The follow-
ing classes of mobile IoT objects are considered: pedestrian
objects (M1) (smartphone, wearable), vehicles (M2) and the
rest of the objects (M3).

We consider at time t0 the smallest square covering the
geographical area under study z0. In the initial state, the
mobility area considered z0 is subdivided into smaller areas
z0 = {z01, ..., z0n(z0)}. The number of zones initially created
n(z0) is calculated according to the smallest radio range (the
smallest radius of coverage) r0min = mink∈M{r0k} of the Fog
nodes present in z0 and the area of the zone z0. The number
of zones n(z0) is estimated by Eq (19) as follows:

n(z0) =
sup(z0)

(r0min)2
(19)

A. Creation of Transition Matrices between Mobility Zones
Instead of having a central system that receives the history

of node movements and zone information to compute the
transition matrices of each object, it is proposed that the zone
topology information is known by each zone and can be done
through literature topology discovery methods such as [42].
Following this, each zone controller can communicate the
topology information to the mobile nodes so that the mobile
nodes can compute their transition matrix independently.

Similar to the computing infrastructure, a hierarchical con-
trol system is considered. If the mobile node does not have
sufficient computing capacity, its position history is saved in
its nearest Fog Gateway and its transition matrix is computed
there. If the gateway does not have sufficient computing
capacity, the process goes up to a higher level node (in our
case the Cloud). It is assumed that the controller is chosen
among the Fog nodes according to its computing power or
its popularity (the greatest number of users connected during
the day). We would like to draw the attention of the reader
that consistency, message sequencing and synchronization in
distributed systems does not falls in our work, so we consider
an ideal situation where information arrives at the right time.

Assuming that the behavior of mobile nodes is relatively
different between intervals, we need at least one transition
matrix per time interval. To create the matrices, the history of
the positions is browsed. Then, by considering each zone as
an origin, we count the average number of times that every
node was in the origin zone z0q zone and moved to a zone
z0p within the corresponding time slot. Then, the values are
averaged and the transition probabilities are deduced for each
time interval. Figure 3 illustrates the matrices of an IoT object
mu for a day dx.
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Fig. 3. Illustration of transition matrices for an object during one day.

B. Readjusting and Reducing Transition Matrix size

Starting from the principle that the environment is dynamic
and large scale, in order to be able to use this method in a
real system in a reasonable time, it is important to reduce
the number of states (number of zones) of the transition
matrices and/or the number of transition matrices, at the
expense of the quality of the information and the accuracy of
the displacement. This loss may not be important considering
that with 5G networks the user will always have access to his
services and the requested applications are not critical and do
not have important QoS constraints (Best Effort applications).

We propose two approaches to reduce the number of matri-
ces: (1) reduction by object class (M1, M2, M3)- the reduction
of the number of matrices is done by averaging the matrices by
object class, (2) reduction by user profiles (C1, C2, C3, C4)-
this approach makes it possible to state whether it is important
or not to lose precision for mobility information according to
the category of application used. If the application is critical
(MC), the matrices are not reduced (merged). If applications
are Best Effort, the mobility information is less relevant then
the number of matrices is reduced. This method is interesting
when the usage of certain applications depends on the path
that the mobile node will take.

The proposed mobility model has a number of advantages:
(1) the model is easy to use and applicable to any geolo-
catable mobile node, (2) the model can be easily enhanced or
customized by integrating additional matrix reduction policies,
(3) if we have very specific models, we can always generate
values from this model and switch back to this approach (with
loss of information of course), (4) since this approach uses
the notion of zones, it can be directly used by the service
placement methods that we present in the section V.

The HTM mobility model also has certain limitations and
drawbacks: (1) the method only proposes to reduce the number
of matrices and not the number of states (zones), (2) reducing
the number of matrices leads to a loss of information, which
can degrade the quality of the model estimation, (3) the
model considers only macroscopic mobility information, (4)
the method generates additional communication costs due to
the exchange of mobility information such as position history,
(5) zones are created initially and statically according to the
network characteristics of the Fog nodes.

Fig. 4. IoT services placement Framework combing fast on-line placement
heuristics and a Mobility-aware Genetic Algorithm for migrations.

V. PLACEMENT AND MIGRATION STRATEGIES

In this section we present the proposed placement frame-
work and the used placement strategies to solve the previous
described problem.

A. General Placement Overview

Upon the arrival of an application set, the proposed frame-
work uses a fast heuristic to place as fast as possible services.
Then, at some specific moments, placements are reevalu-
ated using a Mobility-aware Genetic Algorithm (MGA) and
services can be moved from one machine to another via
migration. The placement system is described in figure 4.
Solutions are timestamped by the time step at which this
solution was chosen. In addition, costs are calculated on sub-
intervals that do not overlap in [0, T − 1].

B. Online Placement Heuristics

We propose three simple and fast heuristics for the online
placement of services at the arrival of applications. Each
heuristic considers one dimension of the problem to place
services: applications classes, infrastructure computation state
and users objects information: (1) Application Class Greedy
Heuristic (AGH) considers the priority level of the application
class for service placement as described in the Pseudo algo-
rithm 1, (2) Infrastructure Greedy Heuristic (IGH), described
in the Pseudo algorithm 2, places services according to the
workload of physical nodes, (3) User based Greedy Heuristic
(UGH) places services according to information about user
nodes (IoT objects). The approach is presented by the Pseudo
algorithm 3. The UGH heuristic uses the Round Robin prin-
ciple with priority over all the IoT objects that have requested
an application.

C. Placement Re-evaluation Strategies

1) The Mobility-aware Genetic Algorithm (MGA): Genetic
Algorithm (GA) is an evolutionary based optimization ap-
proach, efficiently used for NP-hard problems resolution [43].
It has shown its efficiency in static Fog environments place-
ment problems [19]. We propose to apply the GA method with
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Algorithm 1 Applications Class based Greedy Heuristic

1: Sort the applications At by increasing order of their
priorities.

2: Sort the services of each application by data dependency,
then by increasing order of CPU demands.

3: while All applications ai ∈ A are not placed do
4: while All services sij of the application ai are not placed

do
5: Sort nodes by increasing order of their available

computation capacities.
6: If ai is of priority 0 or priority 1, place all services

in IoT nodes, then Fog then Cloud (first fit).
7: If ai is of priority 2 then place small services

(according to CPU demand) in the Fog and bigger
services in the cloud.

8: If ai is of priority 3 place all the services in the
Cloud.

9: end while
10: end while

Algorithm 2 Infrastructure State based Heuristic

1: Retrieve the state of the infrastructure, saved during the
previous placement.

2: Select an application randomly from the inbound set and
choose services randomly.

3: while All applications ai ∈ A are not placed do
4: while All services sij of the application ai are not placed

do
5: Sort the list of Fog nodes in ascending order of their

available CPU capacity (Total CPU used / Maximum
CPU of the machine)

6: Place the service sij in the first node with sufficient
capacity.

7: end while
8: end while

Algorithm 3 Users based Greedy Heuristic

1: Create application lists by application class.
2: Order IoT objects (users) in descending order of the

number of applications in each list.
3: Let the current priority list be the highest priority list
4: while All non-empty applications lists do
5: while All applications ai ∈ A from the current priority

list are not placed do
6: Order the Fog nodes in ascending order of distance

from the IoT object.
7: while All services sij from application ai are not

placed do
8: Place sij on the first node with sufficient computing

capacity.
9: end while

10: Apply the RR selection on the current list to choose
the next application to place.

11: end while
12: Let the current priority list be the next list.
13: end while

Algorithm 4 Mobility-aware Genetic Algorithm (MGA)

1: Retrieve the positioning probabilities for each mobile node
mu ∈ U at time tr+τ according to its mobility model ϑu.

2: Uniformly generate the initial population size Psize and
calculate the fitness of each chromosome defined by the
sum of Eq (17) in time interval [tr, tr+τ ] and Eq (14) at
time tr.

3: while The number of generations σ3 is not reached do
4: while The size of the next generation does not reach

σ2Psize individuals do
5: On (100 ∗ σ2)% of the population apply 1-way

tournament selection to select parents c1, c2.
6: Apply Crossover on c1, c2 and get the chromosome

c3 by taking the first genes from c1 and the rest from
c2.

7: Apply the mutation on c3 with the probability σ1.
8: Calculate the fitness of c3 defined by Eq (18) and the

mobility information part is detailed by Eq (5).
9: Add c3 to the next generation population.

10: end while
11: Keep (100 ∗ (1 − σ2))% of the best individuals in the

population and inject them into the new generation.
12: Increment the number of generations (µ).
13: end while

a probabilistic objective function enhanced by nodes mobility
information. A chromosome c is a vector representing the
placement solution.

Each vector element is indexed by the service Id sij and
gives the node Id mk that will host the service. IoT users nodes
are sorted by the increasing number of requested applications.
The applications of each user node are sorted by the increasing
priority values, and services of each application are sorted by
increasing CPU demand. Through experiments we have chosen
the following parameters values: mutation rate σ1 = 0.01,
crossover rate σ2 = 0.8, population size Psize = 20, number
of generations σ3 = 20 and a 1-way tournament selection.
The fitness of chromosomes is computed according to Eq (18)
where the mobility model is used. For each user node u that
requested an application at time slot t0 and for each time step
t of the time window, we get the mobility information of u.
The mobility information P tuk is the probability that the user
node u is under the coverage zone of Fog node k. MGA is
presented in Pseudo Algorithm (4).

2) Re-evaluation Time Approaches: After the fast place-
ment of applications by the heuristics, the placement is re-
evaluated either periodically at each time step with the Periodic
Mobility-aware Genetic Algorithm of periodicity equal to 1
(PMGA-1) or at times when the rate of application delay
violations exceeds a certain threshold, variable according
to their classes, with the QoS-Mobility Genetic Algorithm
(QMGA). In our case, the violation rate of MC, RT, ST and
BE applications has been set respectively at 10%, 30%, 40%
and 100%.
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Fig. 5. City of San Francisco subdivided into four mobility zones used by the
HTM mobility model.

VI. RESULTS

In this section, we present validation experiments for the
proposed mobility model and for the placement framework.

A. Validation of the Mobility Model

The model previously proposed in section IV is validated
with a set of cab mobility data for the City of San Francisco
provided by the CRAWDAD project [11]. Initially, we use
these data alone. Then, we add synthetic pedestrian mobility
data to test our matrix reduction strategies described in IV-B.
As data is often vehicle-specific to validate our model, we use
a synthetic model that groups three categories of IoT objects.
The set of data collected in the city of San Francisco during
30 consecutive days [11] gathers the positions (longitude and
latitude) of 500 cabs as well as their instantaneous speeds. The
data are sent at different frequencies during the day. We add
information on time slots, zones and user profiles to initial
data. The z0 zone of San Francisco represented by figure 5
has a sup(z0) area of 120km2 and is subdivided into 4 zones.

For these experiments, we considered the first 24 days
of data to create the transition matrices between the zones
and we estimated the positions of the mobile nodes over the
last 6 days (convention of 80% of the data for the model
and 20% for the tests [44]). The aim is to check whether
the matrices produced represent the movements of the users
over the remaining six days. Under the hypothesis that the
movements are independent from one day j to one day j+ 1,
the six remaining days are considered as 6 different instances
of the 25th day.

Figure 6a shows the average success rate of estimating the
positions of each vehicle over the last six days. The average
success rate of the estimate over all 500 vehicles is 74%.

Figure 6b presents the average estimation success rate over
the last 6 days by moving object and for the two matrix
reduction strategies, object classes and user profiles. We notice
that the reduction strategy by object classes gives better
estimates.

B. Validation of the Placement Approaches

In this section, we present the performance of the placement
strategies in a dynamic environment by considering the impact
of (1) mobility, (2) the number of IoT objects and application
classes.

Fig. 6. Average success rates for positions estimations. a) Average success
rate of vehicle position estimation per vehicle and for the last 6 days of the
San Francisco data set. b) Position prediction success rate by object for the
San Francisco dataset (with the addition of the synthetic pedestrian data) with
matrix reduction.

The experiments were performed on an extended version of
the MyiFogSim simulator [45]. We consider the scenario of
the city of San Francisco where a fixed number of pedestrians
and vehicles move within the z0 zone. Pedestrian smart-
phones/wearables and vehicles are the two considered classes
of mobile IoT objects in the system.

Pedestrians move between well-defined locations called
”points of interest” according to the Weighted Waypoints
mobility model (WWP) in the literature [37] and the model
used to estimate vehicle movements is the previously presented
HTM. The area is subdivided into 6 small zones, each con-
taining a Fog node.

Each IoT object uses applications interacting with its sen-
sors and actuators which can be of Mission Critical (MC),
Real-Time (RT), Streaming (ST) or Best Effort (BE) class.
The size of the studied area and the computing infrastructure
gathering the Fog and Cloud nodes were determined. The time
window is set to a 24-hour day with a time step of 15 min.

The proposed placement method is compared to: (1) Short-
est Access Point migration Server Cloudlet (SAP) is a mi-
gration method whose initial placement strategy is to place
object services on the closest Fog nodes if their capacity allows
it. If capacity is insufficient, they are placed in the Cloud.
Subsequently, at each time step and if there is a movement of
objects, their services are migrated to the nearest Fog node if
its capacity is sufficient, otherwise the services remain at their
initial location. (2) K-Users Shortest Access Point migration
Server (KSAP) consists of applying the same placement and
migration approach as SAP on only K randomly selected
mobile objects. The minimum value of the K parameter is 0
and gives a policy without migrations. The maximum value of
K is the number of mobile objects and gives the SAP strategy.
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After experiments with different values of K, we present the
configuration that gives the most advantageous results for the
method with K equals to 50% of the IoT objects. (3) Penguins
Search Optimization Algorithm (PeSOA) [46] is a method
inspired by the behavior of penguins searching for food in
ice floes. The Penguin Search Aware Application Provisioning
(PsAAP) method proposed in the literature for the placement
of services in the Fog [47] aims to maximize the use of
resources. We use this method with the same fitness as the
MGA for placement system comparisons with reevaluation.
The PeSOA method is known to be effective in dynamic
environments [47], [46]. Our objective is to see if it would be
more interesting to use another meta-heuristic for reevaluation
knowing that until now this performance comparison has not
been performed in the literature.

1) Impact of the Mobile Environment on Placement Meth-
ods: The objective of this part of the experiments is to see
the impact of mobility on placement methods using the metrics
defined above. The mobility environment here can be divided
in two ways: (1) the ”degree” of mobility of the environment,
which determines in a global way between an environment
with nodes that are often in movement against an environment
where objects are much less active over time. (2) the mobility
model used for pedestrians and vehicles.

a) Impact of Degree of Mobility on Placement Methods:
In this sub-section, we will see the behavior of the methods
according to the degree of mobility of the nodes.

For this, we consider three scenarios: the base scenario
”normal mobility” where the IoT objects move according to a
model at each time step, and two other scenarios, ”fast mobil-
ity” and ”slow mobility” where the objects move respectively
twice as fast and twice as slow compared to the base scenario.
The following parameters, which could impact the results and
interpretations regarding the influence of mobility, were set
as follows: (1) homogeneous mobility model by using only
the WWP pedestrians model, (2) the number of IoT objects
is fixed to 500 smartphones, (3) considering one application
per IoT object where an application can have between 3 and 5
services, (4) applications arrival rate λ is following a Poisson
law of parameter λ = card(U)

T (T is the number of time steps
and card(U) is the number of IoT objects). This ratio implies
that the average time between arrivals is T

card(U) , (5) the time
window over a day is divided into 96 time steps.

Figure 7a shows the number of migrations for each degree
of mobility and for each method. By observing the number
of migrations of the methods from one scenario to another,
we notice that the number of migrations of all methods is
proportional to the degree of mobility.

In other words, the more frequently the nodes move, the
more migrations occur. We notice that the number of migra-
tions of SAP and KSAP methods is quite high whatever the
scenario and that the difference from one scenario to another
depends on the degree of mobility of the nodes.

The meta-heuristics Periodic Mobility-aware Genetic Algo-
rithm of periodicity 1 (PMGA-1), QoS-Mobility aware Genetic
Algorithm (QMGA) and Penguins Search Optimization Algo-
rithm (PeSOA) remain quite stable. Even if the number of
migrations increases from the slowest to the fastest scenario,

this increase remains negligible compared to the KSAP and
SAP methods. Considering mobility information, the methods
place the services in such a way as to reduce the average cost
of fitness Eq (18).

It can be noticed that the QMGA approach gives the lowest
migration rate in the ”slow” scenario compared to PeSOA
and PMGA-1 approaches. However, the trend is reversed
by increasing the degree of mobility. QMGA only starts if
a certain threshold of time violation is exceeded. A faster
environment leads to more trips and therefore more violations
of sensitive applications.

It is noticeable that even if the number of PMGA-1 and
PeSOA migrations increases with the degree of mobility, this
increase remains less important compared to QMGA. On
average, the number of migrations of the PMGA-1 method
is respectively 3% and 17% higher compared to the PeSOA
and QMGA approaches. Finally, as a general remark, we can
see that the average number of migrations triggered by meta-
heuristics remains quite low compared to the total number
placed in the infrastructure (< 18% of the total number of
services).

Figure 7d presents the fitness values for each degree of
mobility and for each method. It can be seen that the fitness
values increase proportionally with the degree of mobility. It
can also be seen that KSAP and SAP methods have the highest
values. These methods have the only objective of bringing
the services closer to the IoT objects and the large number
of migrations they induce generates an additional energy
cost. For meta-heuristics, we notice that the performances
of QMGA and PMGA-1 are quite close. QMGA performs
better in the ”fast” scenario. For the other scenarios, PMGA-
1 is more efficient. This can be justified by the fact that
in a faster environment, QMGA is restarted more frequently
(more violations) and at more relevant times than PMGA-
1 (only if the threshold of time violations is exceeded).
PeSOA performs worse than QMGA and PMGA-1 methods.
PeSOA runs periodically like PMGA-1, so these results are the
consequence of the exploratory behavior of the method, which
is less efficient than the genetic algorithm. It is also noticed
that PeSOA works better in slow environment compared to
other methods that do not seem to be negatively impacted. On
average over all scenarios, PMGA-1 reduces fitness by 61%,
48%, 15 % and 3 % compared to SAP, KSAP, PeSOA and
QMGA methods respectively. The close results of the QMGA
and PMGA-1 methods can be explained by the fact that
PMGA-1 periodic triggering generates an additional energy
cost due to a higher number of migrations, but it compensates
by finding placement that reduce the average cost of energy
consumption of the services. QMGA is triggered more rarely
and therefore reassesses previous placement solutions less
frequently.

We can conclude from the previous results that the launch-
ing moments of the re-evaluation policy are crucial and must
take into account the degree of mobility of the environment.

b) Impact of the Mobility Model on Placement Methods:
In this sub-section we will see the behavior of the methods
according to the node mobility model.

We place ourselves in the ”normal mobility” scenario and
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(a) Number of migrations per mobility degree (b) Number of migrations per mobility model (c) Number of migrations per application class

(d) Fitness values per mobility degree (103) (e) Fitness Values per mobility model (f) Fitness values per application class

Fig. 7. Migrations and fitness values for each placement/migration method considering: degrees and models of mobility and applications classes.

we consider the two models WWP (for pedestrians) and HTM
(for vehicles) with 250 IoT objects and one application per
object.

Figure 7b shows the number of migrations for each mobility
model and for each method. It can be seen that the model
does not influence the number of migrations regardless of
the placement approach. We notice that for the two models
used (WWP and HTM), the average number of migrations of
the meta-heuristics is quite similar and that the trends of the
methods remain the same from one model to another. It can be
deduced that the model has little impact on the performance of
the methods. The figure 7e presents the fitness value for each
mobility model and for each method. We notice that the meta-
heuristics QMGA and PMGA-1 are more performant with
the HTM model. This can be justified by the advantageous
breakdown of zones where we have one Fog node per zone
and where in this scenario the HTM estimates were more
accurate than the WWP. The PeSOA, on the other hand, gives
better results with the WWP model. Performance comparisons
between methods remain the same regardless of the model. On
average PMGA-1 minimizes fitness by 2%, 18%, 42% and
67% compared to QMGA, PeSOA, KSAP and SAP methods.

2) Impact of Application Classes on Policies: Figure 7c
shows the number of migrations per application class for
each method. We notice that the SAP and KSAP approaches
have the same migration behaviors whatever the application
class. For the rest of the methods, we see that the number of
migrations of MC and RT classes is higher compared to ST
and BE applications. We also see that it is more important
for the PMGA-1 and QMGA methods compared to PeSOA
method.

The figure 7f shows the fitness values according to the
application classes. We notice that meta-heuristic methods are
more efficient for the minimization of Best Effort (BE) classes
which, having no strong QoS constraints, are more flexible

for placement. We also notice that fitness values are more
important for RT and ST applications which consume more
computing resources and at the same time need to be close
to the objects because of their response time constraint. This
leads to a lot of migrations and service placements distributed
between the Cloud (for computationally intensive applications)
and between Fog/IoT nodes (to be as close as possible to the
IoT nodes).

3) Impact of the Number of IoT Objects on Methods:
Figures 8a, 8b and 8c show respectively the values of the
computation and communication energy consumption and the
number of delay violations by number of mobile objects
for each method. We can observe that meta-heuristics are
more efficient in minimizing computation energy consumption
compared to KSAP and SAP migration strategies. PMGA-
1 minimizes energy consumption by 83%, 71%, 37%, 14%
compared to SAP, KSAP, PeSOA and QMGA approaches.

For the energy of communication, we notice that due to
its larger number of migrations, PMGA-1 is the best place-
ment approach compared to QMGA and PeSOA. PMGA-1
minimizes on average the communication energy by 3% and
29% compared respectively to QMGA and PeSOA methods
while it increases the communication energy by 13% and 6%
compared respectively to SAP and KSAP migration methods.
It is noticeable that for the minimization of the number of
time violations the PMGA-1 and QMGA methods have similar
performance and are close to the performance results of the
SAP method and are on average better than the KSAP method
for this objective. PMGA-1 minimizes time violations by
11%, 0.5%, 41% compared respectively to KSAP, QMGA and
PeSOA approaches while it increases the violations by 5%
compared to SAP migration strategy.

Figure 8d shows the average method execution time as a
function of the number of moving objects. It can be seen that
the fastest approach is PeSOA, that is on average 3 times and

84 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 2, JUNE 2021



(a) Computation energy consumption (b) Network energy consumption (c) Number of delay violations (d) Resolution time

Fig. 8. Average values of energy consumption, delay violations and resolution times for each placement/migration method per increasing number of mobile
nodes.

1.5 times faster than PMGA-1 and QMGA methods.

TABLE I
CHOICE OF STRATEGY ACCORDING TO EACH OBJECTIVE FOR VARIOUS

MOBILITY DEGREES AND APPLICATIONS CLASSES.

Mobility degrees Applications classes
Objectives Slow Medium Fast MC RT ST BE
Energy PMGA-1 >

QMGA >
PeSOA

PMGA-1 >
QMGA >
PeSOA

PMGA-1 ≈
QMGA >
PeSOA

PMGA-1 >
QMGA >
PeSOA

QMGA ≈
PMGA-1 >
PeSOA

QMGA ≈
PMGA-1 >
PeSOA

PeSOA >
PMGA-1 >
QMGA

QoS QMGA >
PeSOA >
PMGA-1

QMGA >
PMGA-1 >
PeSOA

QMGA >
PMGA-1 >
PeSOA

QMGA >
PMGA-1 >
PeSOA

QMGA >
PMGA-1 >
PeSOA

QMGA >
PMGA-1 >
PeSOA

-

Time QMGA >
PeSOA >
PMGA-1

QMGA >
PeSOA >
PMGA-1

QMGA ≈
PeSOA >
PMGA-1

QMGA >
PeSOA >
PMGA-1

QMGA >
PeSOA >
PMGA-1

QMGA >
PeSOA >
PMGA-1

QMGA >
PeSOA >
PMGA-1

VII. CONCLUSION AND FUTURE WORKS

In this work, we presented an extension of the model and the
problem of placing IoT applications in the Fog by integrating
the mobility of IoT objects. Then, we proposed a mobility
model to estimate IoT objects future locations and a placement
system integrating migration and mobility information. Finally,
we presented experimental results that validate the proposed
mobility model and the performance of the placement meth-
ods. Table I summarizes the experiments for the evaluation of
placement strategies by comparing performances of PMGA-
1, QMGA and PeSOA methods for the objectives: Energy,
QoS and execution time and with different degrees of mobility
and applications classes. The notation x > y implies that on
average the x method performs better than the y method and
the notation x ≈ y implies that the methods are on average of
equivalent performance. We notice that for fast environments
and critical application classes the QMGA method is better
for power and QoS. For slower environments, PMGA-1 is
better for energy minimization. For non-critical applications
the methods are more or less equivalent. Concerning the
resolution time, the QMGA method is the least expensive,
followed by PeSOA and PMGA-1. As future work, we plan
to study other estimation and prediction approaches such
as the integrated auto-regressive moving average methods
(ARIMA), which are adequate for time series and which would
improve the presented mobility model. We also plan to use
learning approaches in order to reduce the costs of using
placement methods and to estimate the times when migration
or replacement of services is necessary.
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