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Abstract. All non-trivial point and block-primitive 1-(v, k, k) designs
D that admit the group G = PGL2(q), where q is a power of an odd prime,
as a permutation group of automorphisms are determined. These self-dual

and symmetric 1-designs are constructed by defining
{

|M|
|M∩Mg |

: g ∈ G
}

to be the set of orbit lengths of the primitive action of G on the conjugates
of M.

1. Introduction

In [12] (see also [17]) a systematic program to determine symmetric and
self-dual 1-designs admitting a prescribed primitive permutation group G has
been proposed. Hitherto, many interesting examples of 1-(v, k, k) designs
have been obtained from finite primitive permutation groups, see for example
[7, 12, 13, 17, 18, 19].

The said program is based on the following result, described in [12, Propo-
sition 1], corrected in [13] and later used in [17].

Result 1.1. Let G be a finite primitive permutation group acting on the
set Ω of size n. Let α ∈ Ω, and let ∆ 6= {α} be an orbit of the stabilizer
Gα of α. If B = {∆g | g ∈ G} and, given δ ∈ ∆, E = {{α, δ}g | g ∈ G},
then D = (Ω,B) forms a symmetric 1-(n, |∆|, |∆|) design. Further, if ∆ is a
self-paired orbit of Gα then Γ = (Ω, E) is a regular connected graph of valency
|∆|, D is self-dual, and G acts as an automorphism group on each of these
structures, primitive on vertices of the graph, and on points and blocks of the
design.
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We note that in [5] (see also [6]), Crnković and Mikulić generalized Re-
sult 1.1 by proposing a program of construction of 1-designs from finite prim-
itive permutation groups, which are not necessarily symmetric, and whose
point- and block-stabilizers are not necessarily conjugate.

In this paper, Result 1.1 is applied to all primitive permutation represen-
tations of G = PGL2(q), the projective general linear group, for q a power
of an odd prime. This paper is motivated by the results obtained in [16]
concerning the classification of all symmetric and self-dual 1-(v, k, k) designs
admitting PSL2(q) for q a power of an odd prime, acting as a point- and
block-primitive group of automorphisms of the designs. Since for q = 2m ≥ 4,
PGL2(q) is isomorphic to PSL2(q), the designs invariant under PGL2(q) for
q a power of 2 were examined in [7] and in [19]. Thus, when combined with
the results of [7] and of [19], this paper gives a complete account on all non-
trivial, symmetric and self-dual 1-(v, k, k) designs admitting G constructed
using Result 1.1.

The designs constructed in this paper are given in the following theorem
which is proved in the subsequent sections.

Theorem 1.2. Let D be a non-trivial symmetric and self-dual 1-(v, k, k)
design, and let G = PGL2(q), where q is a power of an odd prime, be a point-
and block-primitive automorphism group of D. Further, let M ≇ Cn

p ⋊ Cq−1

be a maximal subgroup of G. Then the following hold.

a) If M ∼= D2(q+1) then D has parameters:

(i) 1-
(

q(q−1)
2 , q + 1, q + 1

)

, or (ii) 1-
(

q(q−1)
2 , q+1

2 , q+1
2

)

.

b) If M ∼= D2(q−1) then D has parameters:

(i) 1-
(

q(q+1)
2 , 2(q − 1), 2(q − 1)

)

, (ii) 1-
(

q(q+1)
2 , q − 1, q − 1

)

, or (iii)

1-
(

q(q+1)
2 , q−1

2 , q−1
2

)

.

c) If M ∼= S4 then D has parameters:

(i) 1-
(

q3−q
24 , 24, 24

)

, (ii) 1-
(

q3−q
24 , 12, 12

)

, (iii) 1-
(

q3−q
24 , 8, 8

)

,

(iv) 1-
(

q3−q
24 , 6, 6

)

, or (v) 1-
(

q3−q
24 , 4, 4

)

.

d) If M ∼= PGL2(p) ≤ PGL2(q = pr), where r is an odd prime then D
has parameters:

(i) 1-
(

pr(p2r−1)
p3−p

, p3 − p, p3 − p
)

, (ii) 1-
(

pr(p2r−1)
p3−p

, p2 − 1, p2 − 1
)

, or

(iii) 1-
(

pr(p2r−1)
p3−p

, p(p± 1), p(p± 1)
)

.

The paper is organized as follows: in Section 2 we outline the background
and notation and give a brief overview on the group PGL2(q). In Section 3 we
describe the construction method used and give our results on all PGL2(q)-
invariant self-dual, symmetric and primitive 1-designs.
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2. Preliminaries

The notation for designs is as in [2]. An incidence structure D = (P ,B, I),
with point set P , block set B and incidence I is a t-(v, k, λ) design if v = |P|,
every B ∈ B is incident with exactly k points and every t distinct points are
together incident with λ blocks. The numbers that occur as the sizes of the
intersections of any two distinct blocks are known as intersection numbers
of the design D. The design is quasi-symmetric if any two blocks intersect
either in x or in y points, for non-negative integers x ≤ y. A design is called
self-orthogonal if the intersection numbers have the same parity as the block
size mod p, where p is the characteristic of the underlying field. The code
CF (D) of the design D over the finite field F is the subspace of FP spanned
by the incidence vectors of the blocks over F . Let vB denote the incidence
vector of a block B ∈ B, then CF (D) =

〈

vB|B ∈ B
〉

.
Let GF (q) denote the Galois field with q elements andX := GF (q)∪{∞},

where ∞ is a symbol not in GF (q). Then we can define a fractional linear
transformation T : X → X by

T : x 7→
αx + β

γx+ δ
, α, β, γ, δ ∈ GF (q),

such that αδ−βγ is a non-zero square in GF (q) and T (∞) = α
γ
, T (−δ

γ
) = ∞,

if γ 6= 0, T (∞) = ∞ if γ = 0 and T (x) ∈ GF (q) for all x ∈ GF (q) such
that γx + δ 6= 0. Then the set of all such fractional linear transformations
forms a group under composition known as the Projective General Linear
Group of degree 2 over GF (q) and denoted PGL2(q). The group PGL2(q) has
order q(q2 − 1). The structure of PGL2(q) is well known and can be found in
[4, 9, 15].

The following results give the description of the structures of the maximal
subgroups of PGL2(q) for q a power of an odd prime.

Proposition 2.1 ([1, Proposition 2.1] and [15, Corollary 2.3]). Let G =
PGL2(q), with q = pn > 3 for some odd prime p. Then the maximal subgroups
of G not containing PSL2(q) are:

(i) Cn
p ⋊ Cq−1, the stabilizer of a point of the projective line;

(ii) D2(q+1);
(iii) D2(q−1) for q 6= 5;
(iv) S4 for q = p ≡ ±3 (mod 8);
(v) PGL2(p) for q = pr where r is an odd prime.

More information concerning PGL2(q) can be obtained from PSL2(q)
since PGL2(p) is a subgroup of PSL2(p

2).
The elements of PGL2(q) are distinguished as follows.
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Lemma 2.2 ([4, Theorem 1]). Let g be a non-trivial element of PGL2(q)
of order d and with f fix points. Then either d | pn + 1 and f = 0, d = p and
f = 1, or d | pn − 1 and f = 2.

A subgroup A of a group G is a trivial intersection (TI) subgroup if for all
g ∈ G,A ∩ Ag = A or A ∩ Ag = {1A}. The group PGL2(q) has the following
trivial intersection subgroups.

Theorem 2.3 ([8, Chapter XII], [4, Theorem 2]). i) Let P be a Sy-
low p-subgroup of PGL2(q) of order p

n. Then every non-trivial element
of P has a single fix point and P is a TI-subgroup.

ii) Let H be a cyclic subgroup of PGL2(q) of order pn − 1. Then every
non-trivial element of H fixes two points. Further, there is no element
of PGL2(q)\H that fixes these points and so H is a TI-subgroup.

iii) Let K be a cyclic subgroup of PGL2(q) of order p
n+1. Then K contains

all elements that have no fix point in PGL2(q) and K is a TI-subgroup.

Remark 2.4 ([8, Chapter XII], [4, Theorem 2]). The group G has pn+1
subgroups of type P with p2n − 1 distinct fractional linear transformations

that fix a point, pn(pn+1)
2 subgroups of type H with pn(pn+1)(pn−2)

2 distinct

fractional linear transformations that fix two points and pn(pn−1)
2 subgroups

of type K with p2n(pn−1)
2 distinct fractional linear transformations that do

not fix any point.

Let M be a maximal subgroup of G, then G acts by conjugation on
the set M of all conjugates of M in G. We use this action of G on M to
construct primitive symmetric 1-designs admitting G as a permutation group
of automorphisms. This is based on the following result.

Theorem 2.5 ([20, Proposition 2.1]). Let G be a finite group with a max-
imal subgroup M . Then the action of G by conjugation on the set M of left
(right) cosets of M in G is primitive.

For a maximal subgroup M of a group G we adopt the definition of AM

given in [18], i.e.,
AM = {|M ∩Mg| : g ∈ G} .

Note that AM 6= ∅ since |M | ∈ AM for all g ∈ M .
The following lemma gives the lengths of the orbits when G acts on M.

Lemma 2.6. Let M be a set of conjugates of a maximal subgroup M (not
normal in G) and G be a finite permutation group that acts primitively on
M. Then the lengths of the orbits of this action are given by:

{

|M |

l
: l ∈ AM

}

,where AM is as defined above.

Proof. The proof follows from [18, Lemma 3.3], since M is maximal and
not normal in G, then NG(M) = M .
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Remark 2.7. It follows from Lemma 2.6 that in order to find the orbit
lengths for the action given in Result 1.1, one needs to explicitly determine
the set AM .

3. Constructing of symmetric 1-designs

In the sequel, for M a maximal subgroup of PGL2(q), where q = pn, p
is an odd prime and n ∈ N, as described in Proposition 2.1 we consider the
conjugacy class of maximal subgroups conjugate toM and determineAM with
a view to construct all PGL2(q)-invariant self-dual, primitive and symmetric
1-designs. We start by making the following observations on the conjugacy
classes of involutions of PGL2(q).

Remark 3.1. We shall consider the elements of G = PGL2(q) as permu-
tations on the set X := GF (q)∪{∞} and say that an element of X is of even
or odd type if as a permutation it has even or odd parity.

The group G has two conjugacy classes of involutions, one of even type
and another of odd type. In particular, it follows from [3, Section 2] that
for q ≡ 1 (mod 4) the centralizer of an involution of even type has order
2(q− 1), while the centralizer of an involution of odd type has order 2(q+1).
Furthermore, when q ≡ 3 (mod 4) the centralizer of an involution of even type
has order 2(q + 1), and that of an involution of odd type has order 2(q − 1).

Thus, when q ≡ 1 (mod 4), G has q(q+1)
2 involutions of even type, and q(q−1)

2

involutions of odd type, and when q ≡ 3 (mod 4), G has q(q−1)
2 involutions

of even type, and q(q+1)
2 involutions of odd type, respectively.

We note that for M ∼= Cn
p ⋊Cq−1, the set M has q+1 points on which G

acts 2-transitively. Under this action the designs constructed from M using
Result 1.1 are trivial and thus of no interest for classification purposes.

To this end we start by considering M to be a maximal subgroup iso-
morphic to the dihedral group D2(q±1) in G. We show in Theorem 3.4 that
for all g ∈ G\M , |M ∩ Mg| ∈ {2, 4} whenever M ∼= D2(q+1). Subsequently,
in Theorem 3.6 we prove that |M ∩Mg| ∈ {1, 2, 4} whenever M ∼= D2(q−1).
Observe that for M ∼= D2(q±1) and g ∈ G\M it was proved in [16, Lemma 3.5]
that every x ∈ M ∩ Mg is an involution. So, we need only to describe the
nature of the elements that occur in the intersections M ∩ Mg of size four,
and this is done in the next result.

Lemma 3.2. Let M ∼= D2(q±1) = 〈s, r : rq±1 = s2 = 1M , srs−1 = r−1〉 be

a maximal subgroup of G. Suppose that r
q±1
2 and sri have the same parity.

Then there exists g ∈ G\M such that M ∩ Mg = {r
q±1
2 , sri, sr

2i+q±1
2 , 1M},

where 1 ≤ i ≤ q ± 1.

Proof. Note that Remark 3.1 implies that all involutions with the same

parity in G are in the same conjugacy class. Thus for r
q±1
2 in M , there exists
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g ∈ G\M such that
(

r
q±1
2

)g

= sri ∈ M ∩Mg, for 1 ≤ i ≤ q ± 1. Note also

that sr
q±1
2 is in M and

(

sr
q±1
2

)g

= sg
(

r
q±1
2

)g

= sg(sri) = srjsri = r−jri, 1 ≤ j ≤ q ± 1.

This forces i − j = q±1
2 , and from this we obtain that r−jri is an involution,

so that
(

sr
q±1
2

)g

= r
q±1
2 ∈ M ∩ Mg. Hence for g ∈ G\M we must have

M ∩Mg = {r
q±1
2 , sri, sr

2i+q±1
2 , 1M}, where 1 ≤ i ≤ q± 1. Notice that 2i+q±1

2
is taken modulo q ± 1.

Before we prove the next theorem, we need the following lemma.

Lemma 3.3. Let k 6= 1, 2 be such that k divides q ± 1. Then the number

of elements in G of order k is equal to φ(k)q(q∓1)
2 where φ is the Euler’s phi-

function.

Proof. The proof is similar to that given for [16, Lemma 3.8]. However,
for the reader’s benefit we sketch the arguments here. Let H be a cyclic
subgroup of G of order q±1. By [8, pp. 242–243], NG(H) = D2(q±1). Further,
if S is a subgroup of H , then NG(S) = D2(q±1). Let k 6= 1, 2 be such that k
divides q ± 1. Then the number of elements in G of order k equals

[G : NG(S)]φ(k) =
q(q − 1)(q + 1)φ(k)

2(q ± 1)
=

φ(k)q(q ∓ 1)

2
.

We are now ready to determine the set AM starting with M ∼= D2(q+1).

Theorem 3.4. Let M ∼= D2(q+1) be a maximal subgroup of G. Then for
all g ∈ G\M , |M ∩Mg| ∈ {2, 4}.

Proof. We first note that the number of distinct conjugates of M in G

is q(q−1)(q+1)
2(q+1) = q(q−1)

2 . Thus the number of distinct intersections M ∩ Mg

equals q(q−1)
2 − 1 = (q−2)(q+1)

2 . From [16, Theorem 3.10] we have that if
{1G} 6= M ∩Mg ≤ M then M∩Mg ∼= C2 or M∩Mg ∼= C2×C2. We will show
that these are the only possibilities. The proof follows by a counting argument
on the types of involutions and the possible sizes of their intersections. To
this end we consider the following two cases:

Case 1: Suppose q + 1 ≡ 0 (mod 4). By Remark 3.1, G has q(q−1)
2 in-

volutions of even type and q(q+1)
2 involutions of odd type, respectively. From

this we infer that M has q+1
2 involutions of odd type, and q+1

2 +1 = q+3
2 invo-

lutions of even type. Therefore each involution of odd type in G is contained
in

(

q(q−1)
2

)

(

q+1
2

)

q(q+1)
2

=
q − 1

2
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distinct conjugates Mg of M. Similarly each involution of even type in G is
contained in

(

q(q−1)
2

)

(

q+3
2

)

q(q−1)
2

=
q + 3

2

distinct conjugates ofM . Now from Lemma 3.2 we observe that the involution

r
q+1
2 occurs in every intersection M ∩ Mg of size four. Notice further that

this is an involution of even type, since it has q+1
2 transpositions. Since the

preceding paragraph shows that an involution of even type is in q+3
2 distinct

conjugates of M in G we deduce that the number of intersections M ∩Mg of
size four is q+3

2 − 1.
To determine the number of intersections M ∩ Mg of size two we first

note that all involutions in intersections M ∩ Mg of size four are of even
type. Since there are q+1

2 intersections of size four, these must account for

2 × q+1
2 involutions of even type in M (notice that the involution r

q+1
2 that

occurs in all intersections M ∩Mg of size four is excluded). This shows that
each involution of even type in M occurs in two intersections M ∩Mg of size
four (since M has precisely q+1

2 involutions of even type after excluding the

involution r
q+1
2 ). Since the involutions of even type in G occur in q+3

2 distinct
conjugatesMg ofM we must have that the number of intersectionsM∩Mg of
size two consisting of involutions of even type from M equals

(

q+3
2 − 3

) (

q+1
2

)

.
Therefore, the total number of intersections M ∩ Mg of size two is

(

q−1
2 − 1

) (

q+1
2

)

, and these consist of involutions of odd type together with
(

q+3
2 − 3

) (

q+1
2

)

involutions of even type. Adding the (q+1)(q−3)
2 intersections

M ∩Mg of size two to the q+1
2 intersections M ∩Mg of size four we obtain

(q+1)(q−2)
2 which is the total number of distinct intersections M ∩Mg.

Case 2: Suppose q+1 ≡ 2 (mod 4). By Remark 3.1, in G there are q(q−1)
2

involutions of odd type and q(q+1)
2 involutions of even type respectively. Fur-

thermore, M has q+1
2 involutions of even type, and q+1

2 +1 = q+3
2 involutions

of odd type. Thus each involution of even type in G is in
(

q(q−1)
2

)

(

q+1
2

)

q(q+1)
2

=
q − 1

2

distinct conjugates of M , and each involution of odd type in G is in
(

q(q−1)
2

)

(

q+3
2

)

q(q−1)
2

=
q + 3

2

distinct conjugates of M .

Now, since q+1
2 is odd, it follows that the involution r

q+1
2 has an odd

number of transpositions. Hence it is an involution of odd type. Arguing as
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in Case 1, we obtain that the number of intersections M ∩ Mg of size four
equals q+3

2 − 1.
We now determine the number of intersections M ∩Mg of size two. Ob-

serve that by Lemma 3.2 the elements r
q±1
2 and sri are of the same parity.

By the preceding discussion we infer that these involutions are of odd type.

Furthermore, the element sr
2i+q±1

2 is an involution of even type since it is
the product of two involutions of odd type. Since there are q+1

2 intersections

M ∩Mg of size four, this accounts for q+1
2 involutions of odd type and q+1

2
involutions of even type, respectively in M . We have thus shown that each

involution of M except r
q±1
2 occurs in exactly one intersection M ∩Mg of size

four. The total number of intersections M ∩ Mg of size two is obtained by
adding

(

q+3
2 − 2

)

×
(

q+1
2

)

involutions of odd type to
(

q−1
2 − 2

) (

q+1
2

)

involu-
tions of even type. Hence, adding the total number of distinct intersections

M∩Mg of size four and size two respectively we obtain (q+1)(q−2)
2 as expected.

Therefore |M ∩Mg| ∈ {2, 4}, for all g ∈ G \M .

As an immediate consequence of Lemma 2.6 and Theorem 3.4 we deduce the
following.

Corollary 3.5. Let M = D2(q+1) be a maximal subgroup of G and M
be the set of conjugates of M in G on which G acts by conjugation. Then the
primitive action of G on M has one non-trivial orbit of length q+1

2 and q−3
2

orbits of length q + 1.

Proof. This follows directly from Lemma 2.6 and Theorem 3.4.

The following theorem determines the set AM when M ∼= D2(q−1).

Theorem 3.6. Let M ∼= D2(q−1) be a maximal subgroup of G. Then
|M ∩Mg| ∈ {1, 2, 4} for all g ∈ G\M .

Proof. The proof that there are intersections M ∩Mg of sizes two and
four, respectively follows using similar arguments to those given in the proof
of Theorem 3.4. So, we need only prove that there are intersections M ∩Mg

of size one. We note first that the number of distinct conjugates of M in G is
q(q−1)(q+1)

2(q−1) = q(q+1)
2 . So, the number of distinct intersections M ∩Mg equals

q(q+1)
2 − 1 = q(q+1)−2

2 . Recall that by [16, Theorem 3.10], we have that if
{1G} 6= M ∩ Mg then either M ∩ Mg ∼= C2 or M ∩ Mg ∼= C2 × C2. We
consider the following cases:

Case 1: Suppose q − 1 ≡ 0 (mod 4). Arguing as in Case 1 of Theorem
3.4, we can show that there are q−1

2 intersections M ∩ Mg of size four and
(q−1)(q−3)

2 intersections M ∩Mg of size two, respectively. But observe that

q − 1

2
+

(q − 1)(q − 3)

2
=

(q − 1)(q − 2)

2
<

q(q + 1)

2
− 1.
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So there exists g ∈ G\M such that M ∩Mg = {1G}.
Case 2: Suppose q − 1 ≡ 2 (mod 4). Arguing as in Case 2 of Theorem

3.4, it can be shown that there are q−1
2 intersections M ∩Mg of size four and

(q−1)(q−3)
2 intersections M ∩Mg of size two. Since

q − 1

2
+

(q − 1)(q − 3)

2
=

(q − 1)(q − 2)

2
<

q(q + 1)

2
− 1

we deduce that there exists g ∈ G\M such that M ∩Mg = {1G}.

We now deduce the following.

Corollary 3.7. Let M = D2(q−1) be a maximal subgroup of G and M
be the set of conjugates of M in G on which G acts by conjugation. Then
the primitive action of G on M has one non-trivial orbit of length q−1

2 , q−3
2

orbits of length q − 1 and one orbit of length 2(q − 1).

Proof. For the proof use Lemma 2.6 and Theorem 3.6.

In the following remark, we give a geometric description of the orbits
given in Corollary 3.7.

Remark 3.8. Since G = PGL2(q) acts naturally on the q + 1 points
of X := GF (q) ∪ {∞}, one can also obtain geometrically the orbit lengths
given in Corollary 3.7. It is known that G acts primitively on unordered
pairs of points of X i.e, X{2} of degree

(

q+1
2

)

. Let H be the stabilizer of a
pair {0,∞} as a point. While considering PSL2(2

m) ∼= PGL2(2
m), for some

m, Darafsheh in [7, Proposition 2] showed that H ∼= D2(q−1) and the or-

bits of H on X{2} are: {0,∞} of length 1, {{0, b} ∪ {∞, c} | b, c ∈ GF (q)∗}
of length 2(q − 1), {{λb, λc} | b, c, λ ∈ GF (q)∗} of length q − 1 and lastly
{{λ, λ(q − 1)} |λ ∈ GF (q)∗} of length q−1

2 .

In the following theorem, we prove that the 1-design D obtained by taking
for block set the images under G of the orbit of length 2(q − 1) is quasi-
symmetric and self-orthogonal.

Theorem 3.9. Let D be the 1-
(

q(q+1)
2 , 2(q − 1), 2(q − 1)

)

design obtained

by taking for blocks the images under G of the orbit of length 2(q − 1). Then
D is a quasi-symmetric and self-orthogonal design, with block intersection
numbers 4 and q − 1, respectively.

Proof. We first note that blocks of D are determined by the pair of
points of X{2} being stabilized by elements of a maximal subgroup M ∼=
D2(q−1). Notice that if the pair being stabilized by M is {0,∞}, then we have
a block of length 2(q − 1) given by

{{0, b} ∪ {∞, c} |b, c ∈ GF (q)∗}
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i.e, a set of all pairs in X{2} with each pair having exactly one element in
{0,∞}. However, if the point being stabilized by M is {a, b}, a, b ∈ GF (q)∗

then its block is defined by

{a, b} := {{a, α1} ∪ {b, α2} |α1, α2 ∈ X\{a, b}} .

Let a, b, c, d ∈ X such that {a, b}, {c, d} and {a, c} are blocks as defined above
where a 6= b 6= c 6= d. Then

{a, b} ∩ {c, d} = {{a, d} , {a, c} , {b, d} , {b, c}} .

Also,

{a, b} ∩ {a, c} = {{b, c} ∪ {i, a} | i ∈ X\{a, b, c}}

is of size 1+ (q+1− 3) = q− 1. Since q is a power of an odd prime, q− 1 ≡ 0
(mod 4) and so 2(q − 1) ≡ 0 (mod 2). Hence D is self-orthogonal.

Remark 3.10. a) The codes obtained from the binary row span of D
are isomorphic to the binary codes of the triangular graph, and have
been examined in [14] with a view to permutation decoding. Note that
the codes are self-orthogonal and doubly-even with parameters

[

q(q + 1)

2
, q − 1, 2(q − 1)

]

2

.

b) The design D in Theorem 3.9 is neither a 2-design, nor a t-design
for t ≥ 3. For a t-(v, k, λ) design, every s-subset of points (s ≤ t) is

contained in exactly λs =
(v−s)
(k−s)λs+1 blocks, for 0 ≤ s ≤ t− 1. Denote

λt = λ, λ0 (the total number of blocks) by b, and (if t ≥ 1) to denote
λ1 (the number of blocks containing a point) by r. Using the above
equality and the parameters for the design D in Theorem 3.9, we have

λ2 =
(2q − 2)(2q − 3)

q(q+1)
2 − 1

=
8q − 12

q + 2
.

Since for all q, λ2 is not an integer, the first part of the claim follows.
The second part of the claim follows by noticing that if D is a 3-design,
then it is a 2-design.

We now determine the set AM for M a maximal subgroup of PGL2(q)
isomorphic to S4.

Theorem 3.11. Let M ∼= S4 be a maximal subgroup of G = PGL2(q) for
q = p ≡ ±3 (mod 8). Then |M ∩Mg| ∈ {1, 2, 3, 4, 6, 24} for all g ∈ G.

Proof. Notice first that the number of distinct conjugates of M in G is
q(q2−1)

24 . So, the number of distinct intersections M ∩Mg equals q(q2−1)
24 − 1.

To show that |M ∩Mg| ∈ {1, 2, 3, 4, 6, 24}, we evaluate the possible sizes of
the intersections M ∩Mg recalling that M ∩Mg ≤ S4. We start by showing
that |M ∩Mg| /∈ {12, 8}. Suppose that |M ∩Mg| = 12. Then there must exist
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g ∈ G \M such that M ∩Mg ∼= A4. But this is a contradiction since we have
NG(A4) ∼= S4 by [11, Table on page 4 and Proposition 3.4].

Next, suppose that |M ∩ Mg| = 8. Then M ∩ Mg ∼= D8, and by [11,
Theorem 1.5] it follows that NG(D8) ∼= D16, and moreover D16 ≤ G only
if q = p ≡ ±1 (mod 8). Since D16 is not a subgroup of G for q = p ≡ ±3
(mod 8), this implies that there is no g ∈ G for which |M ∩Mg| = 8.

Now, for every g ∈ M we have |M ∩ Mg| = 24, so we must have that
24 ∈ AM .

If |M ∩ Mg| = 6, then M ∩ Mg ∼= S3. By [11, Theorem 1.5] we have
NG(S3) = D12. Since D12 is a subgroup of G if q = p ≡ ±1 (mod 6), and
since all primes q that satisfy q = p ≡ ±3 (mod 8) are congruent ±1 (mod 6),
there must exist g ∈ G such that M ∩Mg ∼= S3.

Recall that up to isomorphism S4 has only four subgroups of order 3.
This shows that there are only four distinct intersections M ∩Mg of size six.

Suppose now that |M ∩ Mg| = 4. Then either M ∩ Mg ∼= C2 × C2 or
M ∩ Mg ∼= C4. But [10, Theorem 1.3 (iv)] rules out the possibility that
M ∩Mg ∼= V4 since NG(V4) ∼= S4. Hence M ∩Mg ∼= C4.

Since S4 has six elements of order 4 and since by Lemma 3.3, G has
q(q ± 1) elements of order 4, i.e., q(q + 1) if q ≡ 1 (mod 4) and q(q − 1) if
q ≡ 3 (mod 4), we deduce that each element of order 4 in G is in

6
(

q3−q
24

)

q(q ± 1)
=

q ∓ 1

4

distinct conjugates Mg of M . Thus there are

6
(

q∓1
4 − 1

)

2
= 3

(

q ∓ 1

4
− 1

)

intersections M ∩Mg of size four.
Observe that S4 has eight elements of order 3, and four subgroups of order

3. Since by Lemma 3.3, G has q(q± 1) elements of order 3, and each element

of order 3 in G is in
8
(

q3−q

24

)

q(q±1) = q∓1
3 distinct conjugates of M we conclude that

there are 4( q∓1
3 − 1) intersections M ∩Mg containing an element of order 3.

From the above discussion we observe that four of these intersections have
order 6. So the number of intersections M ∩Mg of size three is 4( q∓1

3 −1)−4.
Finally, since S4 has 6 involutions of odd type, and 3 involutions of even

type, we infer that each involution of odd type in G is in

6
(

q3−q
24

)

q(q±1)
2

=
q ∓ 1

2
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conjugates Mg, i.e, q+1
2 if q ≡ 1 (mod 4) and q−1

2 if q ≡ 3 (mod 4) respec-
tively. Similarly, each involution of even type in G is in

3
(

q3−q
24

)

q(q±1)
2

=
q ∓ 1

4

distinct conjugates of M , namely q−1
4 , if q ≡ 1 (mod 4), and q+1

4 , if q ≡

3 (mod 4). Thus involutions of odd type are in 6
(

q∓1
2 − 1

)

intersections

M∩Mg, and involutions of even type are in 3
(

q∓1
4 − 1

)

intersectionsM∩Mg.
But recall that some of these intersections with involutions have cardinality six
or four. Subtracting the intersections M∩Mg of size six and four respectively,
from the total number of intersections M ∩Mg containing an involution we
obtain

[

6

(

q ± 1

2
− 1

)

+ 3

(

q ± 1

4
− 1

)]

−

[

3

(

q ± 1

4
− 1

)

+ 12

]

= 6

(

q ± 1

2
− 1

)

− 12

which is the number of intersections M ∩Mg of size two.
Since

(

6

(

q ± 1

2
− 1

)

− 12

)

+3

(

q ∓ 1

4
− 1

)

+

(

4

(

q ∓ 1

3
− 1

)

− 4

)

+4 <
q3 − q

24
−1,

there must exist g ∈ G such that M ∩Mg = {1G}.

Thus we have

Corollary 3.12. Let M ∼= S4 be a maximal subgroup of G and M be
the set of conjugates of M in G on which G acts by conjugation. Then the
primitive action of G on M has the following non-trivial orbit lengths:

a) one orbit of length four,

b) 1
2 ×

[

q±1
4 − 1

]

orbits of length six,

c) 1
2 ×

[

( q∓1
3 − 1)− 1

]

orbits of length eight,

d)
[

1
2 ×

(

q±1
2 − 1

)]

− 1 orbits of length twelve,

e)

(

q3−q

24 −1
)

−[(6( q±1
2 −1)−12)+3( q∓1

4 −1)+(4( q∓1
3 −1)−4)+4]

24 orbits of length
twenty four.

Proof. The proof follows by applying Lemma 2.6 and Theorem 3.11.

Finally, we consider the maximal subgroup PGL2(p) of PGL2(q = pr), where
r is an odd prime.

Theorem 3.13. Let M ∼= PGL2(p) ≤ PGL2(q = pr), where r is an odd
prime. Then |M ∩Mg| ∈ {1, p− 1, p, p+ 1, |M |} for all g ∈ G.
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Proof. If g ∈ M , then M ∩Mg = M . Every x ∈ M and consequently
every x ∈ G is in one of the subgroups of types P,H or K of G described in
Theorem 2.3. Since these are all TI-subgroups in G, there exists some g ∈ G
such that |M ∩Mg| ∈ {p, p± 1}.

By Remark 2.4, the subgroup M of G has p2 − 1 elements of order p and
G has p2r − 1 elements of order p. Each element of order p in G is in

pr(pr+1)(pr−1)
p(p−1)(p+1)

(

p2 − 1
)

p2r − 1
= pr−1

conjugates Mg. Thus the number of intersections M ∩Mg of size p is

(pr−1 − 1)(p2 − 1)

p− 1
= (pr−1 − 1)(p+ 1).

Direct calculations using Remark 2.4 show that M has p(p+1)
2 cyclic

subgroups of order p − 1. So M also has p(p+1)
2 elements of the form

x =

(

ω 0
0 ω−1

)

, where ω is a primitive root in GF (p), and x generates a

cyclic group of order p − 1. Further, G has pr(pr+1)
2 elements that generate

cyclic subgroups of order p− 1. Thus each x ∈ G is in

pr(pr+1)(pr−1)
p(p−1)(p+1)

(

p(p+1)
2

)

pr(pr+1)
2

=
pr − 1

p− 1

conjugates of M . From Remark 2.4, we have that M has p(p+1)(p−2)
2 elements

of order p− 1. Hence
(

pr−1
p−1 − 1

)(

p(p+1)(p−2)
2

)

p− 2
=

p2(p+ 1)(pr−1 − 1)

2(p− 1)

of the intersections M ∩Mg are of size p− 1.

It follows by using Remark 2.4 that M has p(p−1)
2 elements that generate

cyclic subgroups of order p + 1 while G has pr(pr−1)
2 elements that generate

cyclic subgroups of order p+1. Each of the elements of G that generate cyclic
subgroups of order p+ 1 occur in

pr(pr+1)(pr−1)
p(p−1)(p+1)

(

p(p−1)
2

)

pr(pr−1)
2

=
pr + 1

p+ 1

conjugates of M . Once again use of Remark 2.4 shows that M has p(p−1)
2

elements of order p+ 1. From this we deduce that
(

pr+1
p+1 − 1

)(

p2(p−1)
2

)

p
=

p2(p− 1)(pr−1 − 1)

2(p+ 1)
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of the intersections M ∩Mg are such that |M ∩Mg| = p+1. Since for a fixed

M the number of intersections M ∩Mg is pr(pr+1)(pr−1)
p(p−1)(p+1) − 1 and since

1 + (pr−1 − 1)(p+ 1) +
p2(p+ 1)(pr−1 − 1)

2(p− 1)
+

p2(p− 1)(pr−1 − 1)

2(p+ 1)

= 1 +
(pr−1 − 1)(p4 + p3 + 2p2 − p− 1)

p2 − 1

<
pr(pr + 1)(pr − 1)

p(p− 1)(p+ 1)
,

there must exist a g ∈ G such that M ∩Mg = {1G}.

Corollary 3.14. Let M = PGL2(p) be a maximal subgroup of G and
M be the set of conjugates of M in G on which G acts by conjugation. Then
the primitive action of G on M has the following non-trivial orbit lengths:

a) pr−1−1
p−1 orbits of length p2 − 1,

b)
p(pr−1−1)

2(p−1) orbits of length p(p+ 1),

c)
p(pr−1−1)

2(p+1) orbits of length p(p− 1),

d)

[

pr(pr+1)(pr−1)
p(p−1)(p+1)

]

−

[

1+
(pr−1−1)(p4+p3+2p2−p−1)

p2−1

]

p(p2−1) orbits of length p(p2 − 1).

Proof. The proof follows by Lemma 2.6 and Theorem 3.13.

The preceding lemmas, theorems and corollaries give the proof of Theo-
rem 1.2 stated in Section 1.
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