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Abstract. We prove that if {un}n≥0 is a nondegenerate Lucas se-
quence, then there are only finitely many effectively computable positive
integers n such that |un| = f(m!), where f is either the sum-of-divisors
function, or the sum-of-proper-divisors function, or the Euler phi function.
We also give a theorem that holds for a more general class of integer se-
quences and illustrate our results through a few specific examples. This
paper is motivated by a previous work of Iannucci and Luca who addressed
the above problem with Catalan numbers and the sum-of-proper-divisors
function.

1. Introduction

Let {un}n≥0 be a Lucas sequence, i.e., a sequence given by u0 = 0, u1 = 1
and the binary linear recurrence

un = aun−1 + bun−2 for all n ≥ 2,

where a and b are non-zero coprime integers such that the discriminant ∆ :=
a2 + 4b 6= 0. Denote by α and β the roots of the characteristic polynomial
f(X) = X2 − aX − b and suppose without loss of generality that |β| ≤ |α|.
Note that α and β are distinct and non-zero. It is well known that the Binet-
type formula

un =
αn − βn

α− β
holds for all n ≥ 0.

A Lucas sequence {un}n≥0 is called degenerate if the quotient α/β of the
roots of f is a root of unity and nondegenerate otherwise. The divisibility
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properties of the integers un have been studied by Euler, Lagrange, Gauss,
Dirichlet and others (see [4, Chapter XVII]).

Some Lucas sequences are so important that they have special names. For
example, taking (a, b) = (1, 1), the sequence {un}n≥0 becomes the classical

Fibonacci sequence {Fn}n≥0 for which α = (1+
√
5)/2 and β = (1−

√
5)/2. If

(a, b) = (2, 1), then the Pell sequence {Pn}n≥0 appears for which α = 1+
√
2

and β = 1−
√
2.

Let m be a positive integer. Some of the most familiar arithmetic func-
tions in number theory are:

• the divisor-sum function σ(m), which sums the divisors of m. Its first
values appear as A000203 in the Sloane’s On-Line Encyclopedia of

Integer Sequences (OEIS) [21];
• s(m) denoting the sum of the aliquot parts of m, i.e., the sum of the
proper divisors of m, or equivalently, s(m) = σ(m)−m. The first few
values of s(m) are therefore 0, 1, 1, 3, 1, 6, 1, 7, 4, . . . (OEIS A001065);

• the Euler phi function φ(m), which represents the number of positive
integers ≤ m and coprime with m (OEIS A000010).

The study of arithmetic functions of a linearly recurrent sequence has
been a popular area of research. For example, in [10] it was shown that 1, 2,
and 3 are the only Fibonacci numbers whose Euler function is also a Fibonacci
number, while in [3] it was proved that if {un}n≥0 is a Lucas sequence with
b ∈ {±1}, then there are only finitely many effectively computable n such that
φ(|un|) is a power of 2, extending the previous works [8, 12] which dealt with
the above problem for the particular Lucas sequences of the Fibonacci and
Pell numbers. In [9] it was shown that the largest Fibonacci number whose
Euler function is a repdigit (i.e., numbers with only one distinct digit in its
decimal expansion) is F11 for which φ(F11) = 88, while in [11] it was proved
that there are no repdigits with two or more digits which are multiply perfect,
namely numbers who divide the sum of their divisors.

In 2007, Iannucci and Luca ([5]) looked for factorials whose sum of aliquot
parts is a Catalan number. In fact, they proved that the only solution in
positive integers (n,m) for the Diophantine equation Cn = s(m!) is the trivial
solution (1, 2). We recall that a Catalan number is a number of the form
Cn = 1

n+1

(

2n
n

)

for n ≥ 0 (OEIS A000108).
In this paper, we consider an equation similar to that of Iannucci and

Luca ([5]), but with members of Lucas sequences instead of Catalan numbers
and including other arithmetic functions. Specifically, we are interested in
studying the Diophantine equation

(1.1) |un| = f(m!),

in positive integers (n,m), where f is either the sum-of-divisors function, or
the sum-of-proper-divisors function, or the Euler phi function.
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We begin by mentioning that if {un}n≥0 is a degenerate Lucas sequence,
then it is known ([16, pp. 5–6]) that

(a, b) ∈ {(±2,−1), (±1,−1), (0,±1), (±1, 0)},
and in these cases {un}n≥0 is either periodic with values in {0,−1, 1}, or equal
to {n}n≥0, or equal to {(−1)n−1n}n≥0, so the problem (1.1) becomes trivial.
Thus, for the rest of the paper we assume that {un}n≥0 is a nondegenerate
Lucas sequence and so |α| > 1.

We prove the following result.

Theorem 1.1. Let {un}n≥0 be a nondegenerate Lucas sequence and con-

sider the Diophantine equation (1.1) where f ∈ {σ, s, φ}. Then max{n,m} is

bounded by an effectively computable number depending only on a and b.

As we shall see later, from the proof of Theorem 1.1, we can extract
some expressions which allow us to get upper bounds on the solutions of the
Diophantine equation (1.1). We will illustrate this method in Section 4 by
solving the equation (1.1) in some particular cases of the sequence {un}n≥0.

At the end of the paper we work in a more general setting of integer
sequences. We exploit some ideas developed in this work to prove, under some
technical conditions on the sequence {un}n≥0, the finiteness of the number of
solutions of equation (1.1).

2. Auxiliary results

In this section, we present some auxiliary results that are needed in the
proofs of the main theorems. We begin by collecting some facts that we need
about Lucas sequences. The first lemma gives us a good lower bound for |un|
in terms of |α| and can be deduced from [20, Lemma 3] (see also [19, Lemmas
1 and 2]).

Lemma 2.1. There exists a positive constant c such that

|un| ≥ |α|n−c log(n+1) for all n ≥ 1.

The proof of Lemma 2.1 depends upon an estimate for a linear form in
the logarithms of two algebraic numbers due to Baker, [1].

Let p be a prime number. Recall that if p ∤ b, then the integer

τ(p) := min{k ≥ 1 : p | uk}
exists and is called the rank of apparition of p in {un}n≥0. This has the
remarkable property that p | un if and only if τ(p) | n whenever n > 1 (see,
e.g., [15]).

For a non-zero integer k, the p-adic valuation of k, commonly denoted by
υp(k), is the highest exponent r such that pr divides k. The p-adic valuation
of Lucas sequences has been studied before by many authors. We first cite the
results presented by Lucas in 1878 of his massive journal paper [13], in which



20 E. F. BRAVO AND J. J. BRAVO

we find implicit interesting divisibility properties known nowadays in compact
form. The p-adic order of the Fibonacci numbers was completed characterized
by Lengyel in [7]. In 2016, Sanna ([18, Theorem 1.5]) gave simple formulas
for the p-adic order υp(un), in terms of υp(n) and the rank of apparition of p
in {un}n≥0, where {un}n≥0 is a nondegenerate Lucas sequence. It was proved
in [18] that

Theorem 2.2. If p ∤ b, then

υp (un) =































υp(n) + υp(up)− 1, if p | ∆, p | n,
0, if p | ∆, p ∤ n,

υp(n) + υp(upτ(p))− 1, if p ∤ ∆, τ(p) | n, p | n,
υp(uτ(p)), if p ∤ ∆, τ(p) | n, p ∤ n,

0, if p ∤ ∆, τ(p) ∤ n,

for each positive integer n.

The following property of the p-adic valuation of {un}n≥0 was also derived
by Sanna ([18, Lemma 3.2]) and we will be used later to find an upper bound
for υ2(un).

Lemma 2.3. If p ∤ b, then

υp(upτ(p)) ≥ υp(uτ(p)) + 1,

with equality if either p ≥ 5, or p = 3 and 3 ∤ ∆.

The next lemma is a consequence of Legendre’s formula whose proof can
be found in [14]. For a real number x, we denote by ⌊x⌋ the largest integer
less than or equal to x.

Lemma 2.4. For any integer r ≥ 1 and prime p, we have

r

p− 1
−
⌊

log r

log p

⌋

− 1 ≤ υp(r!) ≤
r − 1

p− 1
.

We finish this section with the following result on the prime counting
function π(x), which gives the number of primes p ≤ x. This result was found
by Rosser and Schoenfeld ([17, Corollary 3]) and will be used in the following
section to find a lower bound for the 2-adic valuation of f(m!).

Lemma 2.5. For x ≥ 20.5, we have that

π(2x)− π(x) > 3x/(5 logx).

3. Proof of Theorem 1.1

Suppose first that (n,m) is a positive integer solution of equation (1.1). If
m ≤ 50, then n has finitely many possibilities by Lemma 2.1, and thus there is
nothing to prove (In fact, the number of times that un assumes a given integer
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value is ≤ 4 by the main result in [6] (see also [2] for an improvement)). So,
we will assume that m > 50. The main idea of the proof is to compare the
2-adic valuation on both sides of (1.1).

Lemma 3.1. If m > 50, then

υ2(f(m!)) >
3m

10 logm
.

Proof. Since m! is divided exactly once by all primes p such that m/2 <
p ≤ m, it follows that

υ2(σ(m!)) ≥
∑

m/2<p≤m

υ2(p+ 1)

≥ π(m)− π(m/2)

>
3m

10 logm
for all m > 50,(3.1)

where in the last string of inequalities we used Lemma 2.5. Thus, the lemma
holds for f = σ. On the other hand, from Lemma 2.4 we get that

υ2(m!) ≥ m− logm

log 2
− 1 >

3m

10 logm
for m > 50.

Thus,

υ2(s(m!)) = υ2(σ(m!)−m!)

≥ min{υ2(σ(m!)), υ2(m!)}

>
3m

10 logm
for all m > 50,

where we used (3.1). So, the lemma also holds for f = s. Finally, if we put
ℓ = υ2(m!), we get υ2(φ(m!)) ≥ υ2(φ(2

ℓ)) = ℓ − 1 = υ2(m!) − 1. Using this
and Lemma 2.4 once again, we obtain

υ2(φ(m!)) ≥ m− logm

log 2
− 2 >

3m

10 logm
for m > 50.

Thus the lemma holds for f = φ as well. This completes the proof of the
lemma.

If 2 | b, then it is well known that 2 ∤ un for all n ≥ 1 and so υ2(f(m!)) =
υ2(un) = 0, which is impossible in view of Lemma 3.1. We must therefore
have that 2 ∤ b.

Lemma 3.2. If 2 ∤ b, then

υ2(un) ≤ υ2(u6n)− 1 for all n ≥ 1.

Proof. We prove the lemma by cases according to Theorem 2.2. Since
υ2(un) = υ2(f(m!)) ≥ 1 by Lemma 3.1, we have that the following cases are
only possible:
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• If 2 | ∆ and 2 | n, then υ2(un) = υ2(n)+υ2(a)−1. It also follows from
Theorem 2.2 that υ2(u6) = υ2(a). Thus, υ2(un) = υ2(u6n)− 1.

• If 2 ∤ ∆, τ(2) | n and 2 | n, then υ2(un) = υ2(n) + υ2(u2τ(2)) − 1.

Since 2 ∤ ∆ = a2 + 4b and b is odd, we get that a is odd, so τ(2) = 3.
Consequently, υ2(un) = υ2(u6n)− 1.

• Now assume that 2 ∤ ∆, τ(2) | n and 2 ∤ n. So, υ2(un) = υ2(uτ(2)).
In this case, we have that υ2(n) = 0 and τ(2) = 3 remains true.
Additionally, by Lemma 2.3, we get υ2(u3) ≤ υ2(u6)− 1. These facts
together imply that υ2(un) ≤ υ2(u6)− 1 = υ2(u6n)− 1.

Combining (1.1) and Lemmas 3.1 and 3.2 we deduce that

3m

10 logm
< υ2(u6n) for all m > 50 and n ≥ 1,

and so 2⌊3m/(10 logm)⌋ | u6n. In particular, 2⌊3m/(10 logm)⌋ ≤ |u6|n, and by
applying the log function, we obtain

(3.2)

⌊

3m

10 logm

⌋

≤ log(|u6|n)
log 2

for all m > 50 and n ≥ 1.

On other hand, by Lemma 2.1 we get

|α|n−c log(n+1) ≤ |un| = f(m!) ≤ σ(m!),

where c is a positive constant. But

σ(m!) = m!
∑

d|m!

1

d
< m!

m!
∑

k=1

1

k
< m!(1 + logm!).

Hence
|α|n−c log(n+1) < m!(1 + logm!).

Taking logarithms in the above inequality, we obtain that

(3.3) n <
2(logm! + log(1 + logm!))

log |α| for all n ≥ n0,

where n0 is a positive integer such that 2c log(n + 1) ≤ n for all n ≥ n0.
We now apply Stirling’s formula to obtain m! < (m/2)m, so that logm! <
m log(m/2), which itself implies that log(1 + logm!) < 2 logm. Then, we
deduce from (3.3) that

(3.4) n <
2m logm

log |α| for all n ≥ n0.

Substituting (3.4) in (3.2), we arrive at

(3.5)

⌊

3m

10 logm

⌋

<
log (2|u6|m logm/ log |α|)

log 2
,
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implying that m ≤ max{50, c1} for some effectively computable number c1
depending only on a and b. It then follows from (3.4) that max{n,m} is
bounded by an effectively computable number depending only on a and b.
This completes the proof of Theorem 1.1.

4. Some special examples

In this section, we determine all the solutions of the Diophantine equation
(1.1) when {un}n≥0 is either the Fibonacci sequence or the Pell sequence. We
also solve these equations for their companion sequences, namely, the Lucas
and Pell-Lucas sequences, respectively. We recall that the companion sequence

{vn}n≥0 of {un}n≥0 is the sequence which satisfies the same linear recurrence
relation as {un}n≥0 but with initial values v0 = 2 and v1 = a.

Better results can be obtained in these special cases for {un}n≥0 and
{vn}n≥0. Indeed, one can easily prove (by mathematical induction on n) that

(4.1) αn−2 ≤ un ≤ vn for all n ≥ 1,

and this provides a better lower bound for un than the one given in Lemma
2.1. Here, by using (4.1) we obtain the following alternative expression for
(3.4):

(4.2) n <
m logm

logα
+ 2,

which holds for all n ≥ 1. Hence, instead of (3.5) we are led to the alternative
inequality

(4.3)

⌊

3m

10 logm

⌋

<
log (u6m logm/ logα+ 2u6)

log 2
,

which holds for all m > 50.

4.1. The Fibonacci case. As mentioned before, if (a, b) = (1, 1), then

{un}n≥0 is the Fibonacci sequence {Fn}n≥0 and so α = (1 +
√
5)/2. In this

case (4.3) becomes
⌊

3m

10 logm

⌋

<
log (8m logm/ logα+ 16)

log 2
.

This inequality implies that m ≤ 290 and so n ≤ 3500 in view of (4.2). A
computational search of solutions of the corresponding equations in the above
range allows us to state the following result.

Theorem 4.1. We have that

• the only solutions in positive integers (n,m) for the equation

Fn = σ(m!)

are (1, 1), (2, 1), (4, 2).
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• the only solutions in positive integers (n,m) for the equation

Fn = s(m!)

are (1, 2), (2, 2).
• the only solutions in positive integers (n,m) for the equation

Fn = φ(m!)

are (1, 1), (2, 1), (1, 2), (2, 2), (3, 3), (6, 4).

4.2. The Pell case. With (a, b) = (2, 1) we obtain that {un}n≥0 is the

Pell sequence {Pn}n≥0 and therefore α = 1 +
√
2. Here, from (4.3) we get

⌊

3m

10 logm

⌋

<
log (70m logm/ logα+ 140)

log 2
.

In this case, we get that m ≤ 360 and then n ≤ 2410 by (4.2). The proof
of the following theorem is completed by using Mathematica for the above
range.

Theorem 4.2. We have that

• the only solutions in positive integers (n,m) for the equation

Pn = σ(m!)

are (1, 1), (4, 3).
• the only solution in positive integers (n,m) for the equation

Pn = s(m!)

is (1, 2).
• the only solutions in positive integers (n,m) for the equation

Pn = φ(m!)

are (1, 1), (1, 2), (2, 3).

4.3. The Lucas case. The Lucas sequence {Ln}n≥0 is defined by L0 = 2,
L1 = 1 and the recurrence relation Ln = Ln−1 + Ln−2 for all n ≥ 2. In 1997,
Lengyel ([7]) characterized the p-adic valuation of the Fibonacci and Lucas
numbers, as we said before. In particular, he proved that

υ2 (Ln) =











0, if n ≡ 1, 2 (mod 3),

2, if n ≡ 3 (mod 6),

1, if n ≡ 0 (mod 6).

If m > 50, then from Lemma 3.1 and Lengyel’s result above we get that

3m

10 logm
< υ2(f(m!)) = υ2(Ln) ≤ 2,

which is not possible. Thus, m ≤ 50. Inserting this upper bound on m into
inequality (4.2) (with α = (1 +

√
5)/2) we obtain that n ≤ 410. A quick

computer search in Mathematica reveals the solutions of our equations.
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Theorem 4.3. We have that

• the only solutions in positive integers (n,m) for the equation

Ln = σ(m!)

are (1, 1), (2, 2).
• the only solution in positive integers (n,m) for the equation

Ln = s(m!)

is (1, 2).
• the only solutions in positive integers (n,m) for the equation

Ln = φ(m!)

are (1, 1), (1, 2).

4.4. The Pell-Lucas case. The Pell-Lucas sequence {Qn}n≥0 is defined
by Q0 = 2, Q1 = 2 and the recurrence relation Qn = 2Qn−1 + Qn−2 for all
n ≥ 2. In this case, using the identity 8P 2

n −Q2
n = 4(−1)n+1, which holds for

all n ≥ 1, and noting that 4 | Q2
n but 8 ∤ Q2

n, we conclude that υ2(Qn) = 1
for all n ≥ 1. From this and using Lemma 3.1 once again, we obtain that

3m

10 logm
< υ2(f(m!)) = υ2(Qn) = 1,

which is not possible if m > 50. Thus, m ≤ 50, and then n ≤ 230 via (4.2)

with α = 1 +
√
2. Finally, by a computational search with Mathematica we

obtain the next theorem.

Theorem 4.4. We have that

• the Diophantine equation

Qn = σ(m!)

has no solutions in positive integers (n,m).
• the only solution in positive integers (n,m) for the equation

Qn = s(m!)

is (2, 3).
• the only solution in positive integers (n,m) for the equation

Qn = φ(m!)

is (1, 3).
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5. A general result

We finish this paper describing a general situation in which equation (1.1)
has finitely many solutions in positive integers n and m. In what follows, we
use the Landau symbol O with its usual meaning. For two sequences {an}n≥0

and {bn}n≥0 we denote an = O(bn) if there exists a positive constant K such
that |an| ≤ K|bn| for all sufficiently large n.

Theorem 5.1. Let {un}n≥0 be a sequence of integers such that

(i) υ2(un) = O(nC) for some constant C ∈ [0, 1), and
(ii) n = O(log |un|).

Let f ∈ {σ, s, φ} and consider the Diophantine equation

(5.1) |un| = f(m!)

in positive integers (n,m). Then the equation (5.1) has only a finite number

of solutions.

Proof. Suppose that (m,n) is an integer solution of equation (5.1) and
the assumptions (i) and (ii) are satisfied. Note that there is only a finite num-
ber of solutions with m ≤ 50 because {un}n≥0 grows at least exponentially.
So, we will assume that m > 50. As in previous sections, we shall compare
the 2-adic valuation on both sides of (5.1).

First, by Lemma 3.1 and the assumption (i), the inequality

(5.2)
3m

10 logm
< υ2(f(m!)) = υ2(un) ≤ K1n

C holds for all n ≥ n1,

for some positive constantK1 and some integer n1 ≥ 0. On the other hand, by
the assumption (ii), there exist some positive constant K2 and some integer
n2 ≥ 0 such that

(5.3) n ≤ K2 log |un| < K2(logm! + log(1 + logm!)) for all n ≥ n2,

which holds because |un| = f(m!) ≤ σ(m!) < m!(1 + logm!), as we have
seen earlier. As in the proof of Theorem 1.1, Stirling’s formula gives logm! +
log(1 + logm!) < m logm, which together with (5.3) implies that

(5.4) n < K2m logm for all n ≥ n2.

Combining (5.2) and (5.4), we obtain that

(5.5) m < K3(logm)K4

for all n ≥ max{n1, n2}, where K3 = (10K1K
C
2 /3)1/(1−C) and K4 = (1 +

C)/(1−C). Since C ∈ [0, 1), we have that K4 ≥ 1, and so (5.5) holds only for
finitely many m. One can in fact get an explicit upper bound on m in terms
of K3 and K4. Thus, by inequality (5.4), we obtain an upper bound for n.
Consequently, equation (5.1) has only a finite number of solutions. Theorem
5.1 is therefore proved.
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Remark 5.2. Let a ∈ {±2} and consider the sequence {un}n≥0 given by
u0 = 0, u1 = 1 and the binary linear recurrence un = aun−1 − un−2 for all
n ≥ 2. Here, we can easily see that {un}n≥0 is either equal to {n}n≥0 or to
{(−1)n−1n}n≥0, and so equation (5.1) is transformed into the equation n =
f(m!), which has infinitely many solutions in positive integers n and m. Note
that n = O(un) in both cases. These examples illustrate situations in which
the condition (ii) of Theorem 5.1 does not hold; however, it is usually satisfied
for linear recurrence sequences. For example sequences having exponential
growth. In these latter cases we only need to check whether (i) holds for
some constant C ∈ [0, 1).

We finish with the following corollary which describes the setting of the
Fibonacci and Pell sequences for which υ2(un) = O(υ2(n)).

Corollary 5.3. Let {un}n≥0 be a sequence of integers such that

(i) υ2(un) = O(υ2(n)), and
(ii) n = O(log |un|).

If f ∈ {σ, s, φ}, then the Diophantine equation |un| = f(m!) has only a finite

number of solutions in positive integers (n,m).

Proof. Note that υ2(un) = O(υ2(n)) = O(log n) = O(
√
n). Then the

result follows applying Theorem 5.1.
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