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Vol. 56(76)(2021), 47 – 61

EXPLICIT CHARACTERIZATION OF THE TORSION

GROWTH OF RATIONAL ELLIPTIC CURVES WITH

COMPLEX MULTIPLICATION OVER QUADRATIC FIELDS

Enrique González–Jiménez

Universidad Autónoma de Madrid, Spain

Abstract. In a series of papers we classify the possible torsion struc-
tures of rational elliptic curves base-extended to number fields of a fixed
degree. In this paper we turn our attention to the question of how the
torsion of an elliptic curve with complex multiplication defined over the
rationals grows over quadratic fields. We go further and we give an ex-
plicit characterization of the quadratic fields where the torsion grows in
terms of some invariants attached to the curve.

1. Introduction

For over a century mathematicians have been enamored with the study
of elliptic curves. Of particular interest has been characterizing the possible
torsion structures of elliptic curves defined over a number field of fixed degree.
The set of possible groups (up to isomorphism) is denoted by Φ(d) and much
progress in understanding this set has been made in the last few decades.
Thanks to Merel ([27]), it is known that Φ(d) is finite. Beyond this, there
are only two cases published in the literature. The case when d = 1 was
proven by Mazur ([26]) and the case when d = 2 by Kamienny ([24]) and
Kenku and Momose ([25]). Recently, Derickx, Etropolski, van Hoeij, Morrow,
and Zureick-Brown have released an article [8] with a complete description of
Φ(3). As of now, the case when d > 3 remains open.

The purpose of this paper is somewhat different: we are interested in
studying how the torsion grows when the field of definition is enlarged. That
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is, we will restrict to the case when the field of definition of the elliptic curve
is actually Q, but considered over a larger number field. In this context,
the first problem is to characterize the set ΦQ(d) of possible groups (up to
isomorphism) that can appear as the torsion subgroup of an elliptic curve
defined over Q base extended to a field of degree d. The set ΦQ(d) has been
completely classified for d = 2, 3, 4, 5, 7 and for any positive integer d whose
prime divisors are greater than 7 (cf. [29, 4, 18, 13]). The case d = 6 has been
studied in [7, 23].

Another problem that we are interested in is understanding the behavior
of a particular torsion group G ∈ Φ(1) when we enlarge the base field Q. That
is, if E/Q is an elliptic curve such that E(Q)tors ≃ G, what groups (up to
isomorphism) are of the form E(K)tors as K runs over all number fields of
degree d? Let ΦQ(d,G) denote the subset of ΦQ(d) such that E runs through
all elliptic curves over Q such that E(Q)tors ≃ G. The set ΦQ(d,G) has been
determined for d = 2, 3, 4, 5, 7 and for any positive integer d whose prime
divisors are greater than 7 (cf. [21, 20, 17, 18, 13]). The case d = 6 has been
studied in [7].

In fact, we can refine the previous question even further. We start by
noting that if E is an elliptic curve defined over Q and K a number field such
that the torsion of E grows from Q to K, then of course the torsion of E
also grows from Q to any extension of K. With this in mind, we say that the
torsion growth over K is primitive if E(K ′)tors ( E(K)tors for any subfield
K ′ ( K. We denote by HQ(d,E) the list formed by E(Q)tors together with
the groups H such that there exists a number field K (up to isomorphism)
of degree dividing d such that E has primitive torsion growth over K and
E(K)tors ≃ H . We point out here that we are allowing two (or more) of the
torsion subgroups H to be isomorphic if the corresponding number fields are
not isomorphic. We call HQ(d,E) the set of torsion configurations (of degree
d) of the elliptic curve E/Q. We let HQ(d) denote the set of HQ(d,E) as E
runs over all elliptic curves defined over Q such that HQ(d,E) 6= {E(Q)tors}.
Finally, for any G ∈ Φ(1) we define HQ(d,G) as the set of lists HQ(d,E) where
E runs over all the elliptic curves defined over Q such that E(Q)tors ≃ G and
HQ(d,E) 6= {G}. Denote by hQ(d) the maximum of the cardinality of the sets
S when S ∈ HQ(d), in other words, hQ(d) gives the maximum number of field
extensions of degrees dividing d where there is primitive torsion growth. The
sets HQ(d,G) and HQ(d) and the integer hQ(d), have been determined for
d = 2, 3, 5, 7 and for any positive integer d whose prime divisors are greater
than 7 (cf. [22, 20, 13, 18]). The cases d = 4 and d = 6 have been studied in
[17] and [7] respectively.

Finally, once we have a complete classification of the sets ΦQ(d), ΦQ(d,G)
and HQ(d,G) for a fixed d, there is the much harder problem (cf. [21, Problem
2]).
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Problem 1.1. Let E be an elliptic curve defined over Q and d a posi-
tive integer. Is there a precise (and easy) description of which are the possible
number fields K of degree dividing d where the torsion growth over K is prim-
itive, ideally in terms of some invariant(s) of the curve?

In [19] the authors present a fast algorithm that takes as input an elliptic
curve defined over Q and an integer d and returns all the number fields of
degree dividing d where there is primitive torsion growth. But this algorithm
does not provide a solution to our problem since it does not compute the
number fields in terms of the invariants of the elliptic curve.

Ideally we would like an answer to this problem in complete generality.
As a first step towards that goal we describe completely the torsion growth of
elliptic curves with complex multiplication (CM) over Q base-extended to a
quadratic field. The case of base extending to cubic number fields is solved in
[15]. In an ongoing project [16], we will solve the problem for number fields
of low degree (d ≤ 23).

We define ΦCM(d), ΦCM
Q (d), ΦCM

Q (d,G), HCM
Q (d,G), HCM

Q (d), hCM
Q (d), to

be the sets and constants defined analogously to the ones above but restricted
to elliptic curves with complex multiplication.

The set ΦCM(1) was determined by Olson ([30]):

ΦCM(1) = {C1 , C2 , C3 , C4 , C6 , C2 × C2} .
To the best of the author’s knowledge1, the first classification of the quadratic
and cubic case was done by Clark in [5, Theorem 4]. Although it appears
for the first time in print in [6], where Clark, Corn, Rice, and Stankewicz
computed the sets ΦCM(d), for 2 ≤ d ≤ 13. In particular,

ΦCM(2) = ΦCM(1) ∪ {C7 , C10 , C2 × C4 , C2 × C6 , C3 × C3 } .
Moreover, Bourdon, Clark and Stankewicz ([2]) determine ΦCM(p) for any
prime p, and Bourdon and Pollack ([3]) generalize to ΦCM(d) for all odd d,
showing the answer explicitly for all odd d < 100.

The main results of this paper are the following.

Theorem 1.1. ΦCM

Q (2) = ΦCM (2) \ {C7 , C10}.
Theorem 1.2. Let G ∈ ΦCM(1). The sets ΦCM

Q (2, G) and HCM

Q (2, G)

appear in Table 1. In particular, hCM

Q (2) = 3.

Finally, we give an affirmative answer to Problem 1.1 for the case of elliptic
curves defined over Q with CM base changed to quadratic fields in terms of
what we define as the CM-invariants of the curve (see §2.4 for the definition).

1Müller, Ströher, and Zimmer in [28]; and Fung, Müller, Pethő, Ströher, Weis,
Williams, and Zimmer in [11, 31] determine all torsion subgroups of elliptic curves with
algebraic integer j-invariant over quadratic and cubic fields respectively. Note that elliptic
curves with CM form a subclass of elliptic curves with integral j-invariant. But they do
not identify the CM case within this larger classification problem.
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Table 1. ΦCM
Q (2, G) and HCM

Q (2, G) for G ∈ ΦCM(1).

G ΦCM

Q (2, G) \ {G} HCM

Q (2, G)

C1 { C3 } C3
C3 , C3

C2 { C4 , C6 , C2 × C2 , C2 × C6 }

C2 × C2
C2 × C6
C2 × C2 , C6
C2 × C6 , C6
C2 × C2 , C4 , C4

C3 { C3 × C3 } C3 × C3
C4 { C2 × C4 } C2 × C4
C6 { C2 × C6 } C2 × C6

C2 × C2 { C2 × C4 } C2 × C4
C2 × C4 , C2 × C4

Theorem 1.3. Let E be an elliptic curve defined over Q with CM and G =
E(Q)tors. Let k and cm its corresponding CM-invariants. Table 2 gives an
explicit description of torsion growth over quadratic fields of E depending only
on the integers k and cm. The 4th column gives a list of the form H1, . . . , Hn

and the 5th column gives
√
d1, . . . ,

√
dn such that E(Q(

√
di))tors ≃ Hi, for

i = 1, . . . , n.

Notation: Let n denote a positive integer, we will denote by Cn = Z/nZ
the cyclic group of order n. Given an elliptic curve E : y2 = x3 + Ax + B,
A,B ∈ K, and a number field K we denote by j(E) its j-invariant, by ∆(E)
the discriminant of that short Weierstrass model, and by E(K)tors the torsion
subgroup of the Mordell-Weil group of E over K.

2. Preliminary results

In this section we introduce some basic known facts that will be used in
the proofs of the above theorems.

2.1. Twists. Let E : y2 = x3 + Ax + B be an elliptic curve defined over
Q. Then any elliptic curve defined over Q isomorphic over Q to E has a short
Weierstrass model of the form:

(i) Ed : y2 = x3 + d2Ax + d3B if j(E) 6= 0, 1728,
(ii) Ed : y2 = x3 + dAx if j(E) = 1728,
(iii) Ed : y2 = x3 + dB if j(E) = 0,

where d is an integer in Q∗/(Q∗)n(E) and n(E) = 2 (resp. 4 or 6) if j(E) 6=
0, 1728 (resp. j(E) = 1728 or j(E) = 0) (cf. [32, X §5]). The elliptic curve
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Table 2. Explicit description of torsion growth over qua-
dratic fields of elliptic curves defined over Q with CM.

cm k such that E = Ek
cm

G HQ(2, E) \ {G} quadratics

3

1 C6 C2 × C6
√
−3

16,−432 C3 C3 × C3
√
−3

r2 (r 6= ±1,±4) − −
−27 C2 C2 × C6

√
−3

r3 (r 6= 1,−3) C2 × C2 , C6
√
−3,

√
r

2r3 (r 6= −6, 2) C1 C3, C3
√
2r,

√
−6r

6= r2, r3, 2r3 C3
√
k

12
1 C6 C2 × C6

√
3

3 C2 C2 × C6
√
3

6= 1, 3 C2 × C2, C6
√
3,
√
k

27
1 C3 − −

6= 1 C1 C3
√
k

4

−1
C2 × C2

C2 × C4, C2 × C4
√
−1,

√
2

−4 C2 × C4
√
2

−r2 (r 6= ±1,±2) − −
4 C4 C2 × C4

√
−1

r2 (r 6= ±2) C2 C2 × C2 , C4 , C4
√
−1,

√
2r,

√
−2r

6= ±r2 C2 × C2
√
−k

16
1, 2 C4 C2 × C4

√
2

6= 1, 2 C2 C2 × C2 , C4 , C4
√
2,
√
k,
√
2k

7 − C2 C2 × C2
√
−7

28 − C2 C2 × C2
√
7

8 − C2 C2 × C2
√
2

11 − C1 − −
19 − C1 − −
43 − C1 − −
67 − C1 − −
163 − C1 − −

Ed is called the d-twist of E, and in the particular case j(E) 6= 0, 1728 it is
called the d-quadratic twist of E.

2.2. Division polynomials. One of the main tools that we will use in this
paper are the division polynomials of an elliptic curve (cf. [34, §3.2]). Let
n be a positive integer and E be an elliptic curve, we define the primitive
n-division polynomial Ψn(x) recursively, by dividing the (classical) n-division
polynomial by the primitive m-division polynomial for all proper factors m



52 E. GONZÁLEZ–JIMÉNEZ

of n. Then Ψn(x) is characterized by the property that its roots are the x-
coordinates of the points of exact order n of E. Note that in general the
n-division polynomial is defined so that its roots are the x-coordinates of the
points of order dividing n, that is, the points in E[n].

2.3. Quadratic twists. Let E : y2 = x3 + Ax + B be an elliptic curve
defined over Q, d ∈ Q squarefree, E[d] : y2 = x3 + Ad2x + Bd3, and E(d) :
dy2 = x3 + Ax + B. Note that if j(E) 6= 0, 1728 then E[d] = Ed is its d-

quadratic twist, meanwhile if j(E) = 1728 then E[d] = Ed2

; and if j(E) = 0

then E[d] = Ed3

. We have the following isomorphisms:

E −→ E(d)

(x, y) 7→ (x, y/
√
d)

and
E(d) −→ E[d]

(x, y) 7→ (dx, d2y) .

In the special case of quadratic twists there are two interesting results
that will be useful in the sequel.

1. The composition of the above two maps gives an isomorphism between
E and E[d] such that if P = (α, β) ∈ E then P ′ = (dα, d3/2β) ∈ E[d].
In particular if P ∈ E[n] then P ′ ∈ E[d][n] for any positive integer
n. On the other hand, suppose that we have P = (α, β) ∈ E[n] with
α ∈ K, in particular α is a root of Ψn(x). In order to determine if
there exist an square free integer d such that P ′ ∈ E[d](K)[n] we only
need to check if there exists γ ∈ K such that α3 +Aα+B = dγ2.

2. If n is an odd integer: E(Q(
√
d))[n] ≃ E(Q)[n]⊕ E[d](Q)[n].

2.4. Elliptic curves over Q with CM. Thanks to the classical theory of
complex multiplication, there are only thirteen classes (up to Q-isomorphism)
of elliptic curves defined over Q with CM (cf. [33, A §3]). Each of these
thirteen j-invariants corresponds to an order R = Z+ fOK of conductor f in
a quadratic imaginary field K = Q(

√
−D), where OK is the ring of integer of

K. The thirteen possibilities are

(−D, f) ∈
{

(−3, 1), (−3, 2), (−3, 3), (−4, 1), (−4, 2), (−7, 1), (−7, 2)
(−8, 1), (−11, 1), (−19, 1), (−43, 1), (−67, 1), (−163, 1)

}

.

For the sake of simplicity we will denote by cm the absolute value of the
discriminant of the CM quadratic order R, that is cm = D · f2. Table 3 gives
a representative elliptic curve Ecm over Q for each cm.

Let E be an elliptic curve defined over Q with CM, by §2.1 we have that
E is Q-isomorphic to a curve Ek

cm
for some cm as in Table 3, and k an integer

in Q∗/(Q∗)n(E). Then k and cm are uniquely determined by E. We call them
the CM-invariants of the elliptic curve E.

3. Torsion over Q

Let E be an elliptic curve defined over Q with CM. In this section we
compute the torsion subgroup of E depending on its CM-invariants (cm, k).
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Table 3. Isomorphism classes of elliptic curves defined over
Q with CM.

cm Ecm : y2 = fcm(x) j(Ecm)
3 y2 = x3 + 1 0
12 y2 = x3 − 15x+ 22 24 · 33 · 53
27 y2 = x3 − 480x+ 4048 −215 · 3 · 53
4 y2 = x3 + x 26 · 33 = 1728
16 y2 = x3 − 11x+ 14 23 · 33 · 113
7 y2 = x3 − 2835x− 71442 −33 · 53
28 y2 = x3 − 595x+ 5586 33 · 53 · 173
8 y2 = x3 − 4320x+ 96768 26 · 53
11 y2 = x3 − 9504x+ 365904 −215

19 y2 = x3 − 608x+ 5776 −215 · 33
43 y2 = x3 − 13760x+ 621264 −218 · 33 · 53
67 y2 = x3 − 117920x+ 15585808 −215 · 33 · 53 · 113
163 y2 = x3 − 34790720x+ 78984748304 −218 · 33 · 53 · 233 · 293

Note that this is a well-known2 result but for the sake of completeness we
include here the details of the proofs since they are going to be useful for the
study of the torsion growth to quadratic fields.

Suppose that E has CM-invariants (cm, k), then E isQ-isomorphic to Ek
cm

.
Thanks to Olson’s classification of ΦCM(1), in order to determine E(Q)tors
we only need to study if the 2-, 3- and 4-division polynomials have rational
roots. Note that if the n-division polynomial of E has no rational roots, then
neither does the n-division polynomial of any quadratic twist of E. In the
cases where j(E) /∈ {0, 1728} there are only quadratic twists. In particular
it is only necessary to study the 2-, 3- and 4-division polynomials for Ecm.
In the following cases the n-division polynomial Ψn(x) refers to the elliptic
curve Ecm.

• cm ∈ {11, 19, 43, 67, 163}: E(Q)tors is trivial since Ψ2(x) and Ψ3(x) have
no rational roots.

• cm ∈ {7, 28, 8}: E(Q)tors ≃ C2 since Ψ2(x) has only one rational root
and, Ψ3(x) and Ψ4(x) have no rational roots.

• cm = 16: Ψ3(x) has no rational roots, but Ψ2(x) has only one rational
root. Let us check if there are points of order 4. Ψ4(x) has two rational roots
r1, r2 ∈ Q and f16(ri) = is2i for s1, s2 ∈ Q. That is, only for k = 1, 2 the
k-quadratic twist has points of order 4. Therefore Ek

16(Q)tors ≃ C2 for k 6= 1, 2
and Ek

16(Q)tors ≃ C4 for k = 1, 2.
• cm = 27: Ψ2(x) has no rational roots and Ψ3(x) has only one rational

2For example: the case cm = 3 was first computed by Fueter ([12]); the case cm = 4 in
[30, §3].
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root r ∈ Q. Now, f27(r) = s2 for some s ∈ Q. Therefore, Ek
27(Q)tors ≃ C3 if

k = 1 and Ek
27(Q)tors is trivial if k 6= 1.

• cm = 12: Ψ2(x) has only one rational root and Ψ4(x) has not rational
roots. Now, Ψ3(x) has only one rational root r ∈ Q and f12(r) = s2 for some
s ∈ Q. Therefore, Ek

12(Q)tors ≃ C6 if k = 1 and Ek
12(Q)tors ≃ C2 if k 6= 1.

Let us study the non-quadratic twists:
• cm = 4. In this case the elliptic curve E is Q-isomorphic to Ek

4 : y2 =
x3 + kx for some k ∈ Q∗/(Q∗)4. The point (0, 0) ∈ Ek

4 (Q) is of order 2 for
any k. Let us see if there are points of order 3: Ψ3(x) = 3x4+6kx2−k2, then

z = −1/3(3± 2
√
3)k are the roots of the polynomial Ψ3(

√
x), but z 6= x2 for

any x, k ∈ Q. Therefore there are no points of order 3 for any k. Now, let us
check the existence of points of order 4: Ψ4(x) = 2(x2 − k)(x4 + 6kx2 + k2).
Analogously to the previous case, the factor x4 + 6kx2 + k2 has no rational
roots for any k. But the first factor x2 − k has rational roots if k = r2 for
some r ∈ Q, in that case x = ±r. Then f4(±r) = ±2r3 is a rational square
if and only if r = ±2. Therefore we conclude that Ek

4 (Q)tors ≃ C4 if k = 4;
Ek

4 (Q)tors ≃ C2 × C2 if k = −r2; and Ek
4 (Q)tors ≃ C2 otherwise.

• cm = 3. In this case the elliptic curve E is Q-isomorphic to Ek
3 : y2 =

x3 + k for some k ∈ Q∗/(Q∗)6. It has points of order 2 if and only if k = s3

for some squarefree s ∈ Q. In this case it is not possible to have full 2-torsion
over Q since x3 + r3 = (x − r)(x2 + rx + r2) and x2 + rx + r2 is irreducible
over Q for any r ∈ Q. Let us study if there are points of order 3. We look
at the primitive 3-division polynomial Ψ3(x) = 3x(x3 + 4k). If x = 0 then
f3(0) = k. Therefore there is a rational point of order 3 with x-coordinate 0
if and only k = r2 for some r ∈ Q. If x3 + 4k = 0 then k = ±2r3 for some
squarefree r ∈ Q and x = ∓2r. Since f3(∓2r) = ±6r3, a similar argument to
the case x = 0 allows us to conclude r = ∓6. That is k = −432. We have
obtained that there are points of order 3 if and only if k = r2 or k = −432.
Therefore Ek

3 (Q)tors ≃ C6 if k = s3 and k = r2, that is k = 1; Ek
3 (Q)tors ≃ C3

if k = r2 6= 1 or k = −432; Ek
3 (Q)tors ≃ C2 if k = r3 6= 1; and Ek

3 (Q)tors is
trivial otherwise.

We have proved the following result.

Proposition 3.1. Let E be an elliptic curve defined over Q with CM.
Table 4 gives an explicit description of the torsion subgroup of E depending
only on its CM-invariants k and cm.

4. Torsion growth over quadratic fields

4.1. Proof of Theorem 1.1. Let H ∈ ΦCM(2) \ {C5, C7}. Table 2 shows
examples of elliptic curves E defined over Q with CM and quadratic fields K
such that E(K)tors ≃ H . Now, by Olson’s classification we know that there
are no elliptic curves with CM defined over Q with points of order 5 (resp.
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Table 4. Torsion of elliptic curves defined over Q with CM.

cm k Ek
cm

(Q)tors

3

1 C6
−432, r2 6= 1 C3

r3 6= 1 C2
6= r2, r3,−432 C1

12
1 C6

6= 1 C2
27

1 C3
6= 1 C1

4
4 C4

−r2 C2 × C2
6= 4,−r2 C2

16
1, 2 C4

6= 1, 2 C2

cm Ek
cm

(Q)tors
7

C228
8
11

C1
19
43
67
163

7) over Q. Finally, (2.) in §2.3 shows that there cannot be points of order 5
(resp. 7) over a quadratic field. Therefore C10, C7 /∈ ΦCM

Q (2).

Remark 4.1. Let K be a quadratic field, and let E be an elliptic curve
defined over K with CM by a quadratic order of discriminant −cm such that
E(K)tors /∈ {C1 , C2 , C3 , C4 , C6 , C2 × C2}. Bourdon, Clark and Stankewicz
([2, Theorem 1.4]) have proved that K is the quadratic field listed in Table 5,
and over that field E is isomorphic to Eα,β : y2 + (1 − α)xy − βy = x3 − βx2

where E0,0 : x3 + y3 = z3. In the last column we show whether the elliptic
curve Eα,β is a base change of an elliptic curve over Q to the quadratic field
K. In the affirmative case there always appear two elliptic curves defined over
Q. These elliptic curves are isomorphic over the quadratic field K. Note that
there is a typo in [2, Theorem 1.4] since the two elliptic curves in the above

table with cm = 12 are isomorphic over K = Q(
√
3), so there should appear

only one.

4.2. Proof of Theorems 1.2 and 1.3. The first part of Theorem 1.2 is to
determine the set ΦCM

Q (2, G). If G ∈ ΦCM(1), G 6= C2 × C2, Table 2 shows
examples of elliptic curves E defined over Q with CM and quadratic fields
K for any possible torsion structure in ΦQ(2, G) ∩ ΦCM

Q (2) (cf. [21, Theorem

2]). If G = C2 × C2, ΦQ(2, G) ∩ΦCM
Q (2) = {C2 × C2, C2 × C4, C2 × C6} (cf. [21,

Theorem 2]). Then to finish the first part of Theorem 1.2 we must prove that
if E is an elliptic curve defined over Q with CM such that E(Q)tors ≃ C2 ×C2
then the torsion cannot grow to C2×C6 over a quadratic field. By Proposition
3.1 (see Table 4), E should have cm = 4. But since there are no elliptic curves
in the family Ek

4 with points of order 3 over Q there cannot be points of order
3 over a quadratic field (by (2.) in §2.3).
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Table 5

K α β cm E(K)tors Base Change from Q?

Q(
√
−3) 0 0 3 C3 × C3 E16

3 and E−432
3

Q(
√
−1) − 1

8 0 4 C2 × C4 E4
4 and E−1

4

Q(
√
2) 1 + 3

4

√
2 0 4 C2 × C4 E−4

4 and E−1
4

Q(
√
2) − 1

32 0 16 C2 × C4 E1
16 and E2

16

Q(
√
2) 1+

√
2

8 0 8 C2 × C4 No

Q(
√
−7) −31+3

√
−7

512 0 7 C2 × C4 No

Q(
√
−7) −1+3

√
−7

32 0 7 C2 × C4 No

Q(
√
−3) − 2

9 − 1
3 3 C2 × C6 E1

3 and E−27
3

Q(
√
3) 1−

√
3

9
−2+

√
3

3 12 C2 × C6 E1
12 and E3

12

Q(
√
3) 4

9
1
3 12 C2 × C6 E1

12 and E3
12

Q(
√
−3) −1+

√
−3

2 −1 3 C7 No

Q(
√
−1)

√
−1

√
−1 4 C10 No

The second part of Theorem 1.2 is to determine HCM
Q (2, G) for any G ∈

ΦCM(1). Notice that this is a direct consequence of Theorem 1.3, then we
will prove Theorem 1.3 first. That is, we are going to justify all the entries in
Table 2 following a similar argument to the one in section §3.

For any elliptic curve E defined over Q with CM, Proposition 3.1 gives
an explicit description of G = E(Q)tors in terms of its CM-invariants. Now
thanks to the classification of ΦCM

Q (2, G) we know the possible torsion growth
over quadratic fields. In this case we only need to study if the 2-, 3- and
4-division polynomials have linear or quadratic factors.

Remember that if E has CM-invariants (cm, k), then E is Q-isomorphic
to Ek

cm
and in the cases where cm /∈ {3, 4} there are only quadratic twists. In

particular it is only necessary to study the 2-, 3- and 4-division polynomials
for Ecm. In the following cases Ψn(x) denotes the n-division polynomial of
Ecm.

• cm ∈ {11, 19, 43, 67, 163}: Ek
cm

(Q)tors ≃ C1 and, since ΦCM
Q (2, C1) =

{C1, C3}, there is no torsion growth over quadratic fields.
• cm ∈ {7, 28, 8}: Ek

cm
(Q)tors ≃ C2 and ΦCM

Q (2, C2) = {C2, C4, C6, C2 ×
C2, C2 × C6}. Similarly to the previous case there cannot be points of order 3
over quadratic fields, that is, neither torsion growth to C6 nor C2 × C6. Now
since the torsion over Q is C2 we have that the full 2-torsion is defined over
Q(

√

∆(Ecm)). In our cases we have Q(
√

∆(E7)) = Q(
√
−7), Q(

√

∆(E28)) =

Q(
√
7), and Q(

√

∆(E8)) = Q(
√
2). Finally let us check if there is torsion

growth to C4.
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• cm = 7: Ψ4(x) = 2(x2−126x−5103)(x2+567)(x2+126x+6237). The
second and third quadratic irreducible factors have squarefree part of
the discriminant equal to −7. Then a possible point of order 4 should
be defined over the field of definition of the full 2-torsion. But this is
impossible since C2 × C4 is not a subgroup of a group in ΦCM

Q (2, C2).
Now, α = 63+36

√
7 is a root of the first quadratic factor of Ψ4(x). We

have f7(α) =
√
7u(2233

√
7)2, where u = 8+3

√
7 is a fundamental unit

of the quadratic field Q(
√
7). Therefore f7(α) 6= dβ2 for any d ∈ Q

and β ∈ Q(
√
7). This proves that there are no points of order 4 over

any quadratic field.
• cm = 28: Ψ4(x) has only one irreducible factor of degree ≤ 2. One of
its roots is α = 14+

√
−7 and we have f28(α) = −7

√
−7(1+

√
−7)4/4.

Similarly to the previous case: f28(α) 6= dβ2 for any d ∈ Q and β ∈
Q(

√
−7) and there are no points of order 4 over quadratic fields.

• cm = 8: There is only one irreducible factor of Ψ4(x) of degree ≤ 2. In

this case its roots are defined over Q(
√
2). Since Q(

√

∆(E8)) = Q(
√
2)

we obtain that there are no points of order 4.

We have proved that there is only torsion growth to C2×C2 over Q(
√

∆(Ecm)).

• cm = 16: If k = 1, 2 then Ek
16(Q)tors ≃ C4. For these cases the torsion

only grows to C2×C4 over Q(
√

∆(E16)) = Q(
√
2) since ΦCM

Q (2, C4) = {C4, C2×
C4}. Now if k 6= 1, 2, then Ek

16(Q)tors ≃ C2. By (2.) at section §2.3) there
are not points of order 3 over quadratic fields since there are not points of
order 3 over Q for any quadratic twist of E16. Finally, let us study if there are
points of order 4 over some quadratic field. The factorization of the 4-division
polynomial in irreducible factors is: Ψ4(x) = 2(x−1)(x−3)(x4+4x3−42x2+
100x − 79). Now f16(1) = 4 and f16(3) = 8. Therefore there are points of

order 4 over the quadratic fields Q(
√
k) and Q(

√
2k). Since k 6= 1, 2, the

torsion subgroup over those quadratic fields is isomorphic to C4.
• cm = 27: If k = 1, then E1

27(Q)tors ≃ C3. Since ΦCM
Q (2, C3) = {C3, C3 ×

C3} the torsion can only grow to C3 × C3. But this can only happen over
Q(

√
−3). We compute that the torsion subgroup overQ(

√
−3) is C3 too. Then

there is no torsion growth for k = 1. Now suppose k 6= 1, then Ek
27(Q)tors ≃ C1

and ΦCM
Q (2, C1) = {C1, C3}. By (2.) in §2.3 with n = 3 we have that the torsion

growth to C3 over a quadratic field only over Q(
√
k).

• cm = 12: If k = 1, then E1
12(Q)tors ≃ C6 and ΦCM

Q (2, C6) = {C6, C2×C6}.
Thus the torsion only grows to C2 × C6 over Q(

√

∆(E1
12)) = Q(

√
3). Now if

k 6= 1, then Ek
12(Q)tors ≃ C2 and ΦCM

Q (2, C2) = {C2, C4, C6, C2 × C2, C2 × C6}.
We have that C2 × C2 is isomorphic to a subgroup of the torsion subgroup

over Q(
√

∆(E1
12)) = Q(

√
3). A similar argument to the case cm = 27 allows

us to determine that there are points of order 3 over Q(
√
k). Therefore if

k = 3, the torsion grows only to C2 × C6 over Q(
√
3). Finally, if k 6= 1, 3 we
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have torsion growth to C2 × C2 over Q(
√
3), and C6 over Q(

√
k). It remains

to check that there are no points of order 4 over quadratic fields. Ψ4(x) has
only one irreducible factor of degree ≤ 2. One of its roots is α = 2 +

√
−3

and we have f12(α) = −
√
−3(3 −

√
−3)2. Therefore: f12(α) 6= dβ2 for any

d ∈ Q and β ∈ Q(
√
−3). This proves that there are no points of order 4 over

any quadratic fields.

Finally we deal with the non-quadratic twists.
• cm = 4. We split the proof depending on the torsion over Q:

• Ek
4 (Q)tors ≃ C2 × C2 if k = −r2. We have ΦCM

Q (2, C2 × C2) = {C2 ×
C2, C2×C4}. Let us study if there are points of order 4 over a quadratic

field. Note that, since E−r2

4 is the r-quadratic twist of E−1
4 , it is enough

to study the factorization of the 4-division polynomial Ψ4(x) of E−1
4 .

The polynomial Ψ4(x) has the roots ±i, ±1 ±
√
2 and evaluating the

polynomial g(x) = x3 − x for these values we obtain:

g(i) = (i− 1)2 , g(1 +
√
2) = (2 +

√
2)2 , g(−1 +

√
2)− (2−

√
2)2.

Therefore there are points of order 4 over a quadratic fields if and only
if r = ±1 over Q(i),Q(

√
2) or r = ±2 over Q(

√
2). That is, over those

quadratic fields and the corresponding values of r we obtain that the
torsion subgroup is isomorphic to C2 × C4. For the rest of the values
of r there is no torsion growth over any quadratic field for the elliptic

curve E−r2

4 .
• Ek

4 (Q)tors ≃ C4 if k = 4. There is only one possibility to grow over a
quadratic field: C2 × C4 over Q(i), since ∆(E4

4 ) = −212.
• Ek

4 (Q)tors ≃ C2 if k 6= 4,−r2. By (2.) in §2.3 there are no points of
order 3 over quadratic fields since there are no points of order 3 over Q

for any value of k. First suppose k = r2. Then Er2

4 is the r-quadratic
twist of E4. Let us study if there are points of order 4 using the 4-
division polynomial of E4: Ψ4(x) = 2(x2 − 1)(x4 + 6x2 + 1). Since
f4(±1) = ±2 there are points of order 4 over a quadratic field only in
the case Q(

√
±2r). The last possibility for torsion growth is C2 × C2

over Q(
√
−1). This finishes the case k = r2. Finally we deal with the

general case: k 6= r2. We have C2×C2 is isomorphic to a subgroup of the
torsion subgroup over Q(

√
−k) since ∆(Ek

4 ) = −k(8k)2. To finish the
proof of this case we are going to prove that there are no points of order
4 over quadratic fields. We have Ψ4(x) = 2(x2−k)(x4+6kx2+k2). Let

us denote by g(x) the second factor, then z = (−3±2
√
2)k are the roots

of the polynomial g(
√
x), but z 6= x2 for any x ∈ Q(

√
2) and k ∈ Q.

The first factor have the roots x = ±
√
k, but (±

√
k)3 + k(±

√
k) =

±2
√
k
3
is never an square over Q(

√
k). We conclude that there is only

torsion growth over quadratic fields to C2 × C2 over Q(
√
−k).
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• cm = 3. Note that this case has been dealt by Dey3 ([9]) with a slightly
different approach. We split the proof depending on the torsion over Q:

• Ek
3 (Q)tors ≃ C6 if k = 1. The torsion only grows to C2 × C6 over the

quadratic field Q(
√

∆(E1
3 )) = Q(

√
−3).

• Ek
3 (Q)tors ≃ C3 if k = −432 or k = r2 6= 1. Here the torsion can only

grow to C3 × C3 over Q(
√
−3). We check that E−432

3 (Q(
√
−3))tors ≃

C3 × C3. Now suppose k = r2 6= 1. We must have all the roots of
Ψ3(x) = 3x(x3 + 4r2) defined over Q(

√
−3). Therefore r = 4s3, but

since k ∈ Q∗/(Q∗)6 the unique possibility is r = 4, i.e. k = 16. We
check that E16

3 (Q(
√
−3))tors ≃ C3 × C3. For the rest of the values the

torsion does not grow over quadratic fields.
• Ek

3 (Q)tors ≃ C2 if k = r3 6= 1. Note that in this case Ek
3 is the r-

quadratic twist of E3, therefore it is enough to study the n-division
polynomials Ψn(x) of E3. Since the torsion over Q is isomorphic to
C2, we could only have torsion growth C4, C6, C2 × C2, C2 × C6. Let us
check if there are points of order 4 over quadratic fields: The unique
factor of Ψ4(x) of degree ≤ 2 is g(x) = x2 + 2x − 2. We have that

α =
√
3−1 is a root of g(x). Then f3(α) = 3

√
3u, where u = 2−

√
3 is a

fundamental unit of the quadratic field Q(
√
3). Therefore f3(α) 6= rβ2

for any r ∈ Q and β ∈ Q(
√
3). In conclusion, there are no points

of order 4 over quadratic fields. Now we study if there are points of
order 3. We have Ψ3(x) = 4x(x3 + 4) and f3(0) = 1. Therefore there
are points of order 3 over Q(

√
r). Finally we have full 2-torsion over

Q(∆(E3)) = Q(
√
−3). We conclude that there are torsion growth to

C2 × C2 and C6 if k 6= −3; and C2 × C6 if r = −3.
• Ek

3 (Q)tors ≃ C1 if k 6= r2, r3,−432. We need to check only if there are
points of order 3 over quadratic fields. We have Ψ3(x) = 3x(x3 + 4k).

If x = 0 then y2 = k. Thus, the torsion grows to C3 over Q(
√
k). The

second factor x3 + 4k has roots over a quadratic field if and only if
k = 2r3. In that case the root is α = −2r and we have α3 + k = −6r3

is a square over a quadratic field only over Q(
√
−6r). Since k = 2r3

we must have r 6= 2,−6.

Remark 4.2. All the computations were done using Magma ([1]) and the
source code is available at the author’s webpage [14].
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3Note that there is a typo in Theorem 1(3) in [9] since it is necessary to add the case
c = −27 and d 6= −3 (in Dey’s notation).
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