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Abstract. Let p and q be two positive prime integers. In this pa-
per we obtain a complete characterization of division quaternion algebras
HK(p, q) over the composite K of n quadratic number fields.

1. Introduction

Let F be a field with char(F ) 6= 2 and let a, b ∈ F\{0}. The general-
ized quaternion algebra HF (a, b) over the field F is the algebra having basis
{1, i, j, k} and multiplication table:

· 1 i j k

1 1 i j k
i i a k aj
j j −k b −bi
k k −aj bi −ab

If x = x11 + x2i+ x3j + x4k ∈ HF (a, b), with xi ∈ F , the conjugate x of
x is defined as x = x11− x2i− x3j − x4k, and the norm of x as n(x) = xx =
x2
1 − ax2

2 − bx2
3 + abx2

4.
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Quaternion algebras turn out to be central simple algebras over F (i.e.
associative and noncommutative algebras without two sided ideals whose cen-
ter is precisely F ) of dimension 4 over F . Recall that the dimension d of a
central simple algebra A over a field F is always a perfect square, and its
square root n is defined to be the degree of A.

The theory of central simple algebras (in particular quaternion algebras
and cyclic algebras) has strong connections with algebraic number theory,
combinatorics, algebraic geometry, coding theory, computer science and signal
theory.

If the equations ax = b, ya = b have unique solutions for all a, b ∈ A, a 6=
0, then the algebra A is called a division algebra. If A is a finite-dimensional
algebra, then A is a division algebra if and only if A has no zero divisors
(x 6= 0, y 6= 0 ⇒ xy 6= 0). In the case of generalized quaternion algebras there
is a simple criterion that guarantees them to be division algebras: HF (a, b)
is a division algebra if and only if there is a unique element of zero norm,
namely x = 0.

Let L be an extension field of F, and let A be a central simple algebra
over F . We recall that A is said to split over L, and then L is called a splitting
field for A, if A⊗F L is isomorphic to a matrix algebra over L. For example,
every quaternion algebra over C (or over any algebraically closed field) splits,
and a quaternion algebra HR(α, β) over R splits if and only if α > 0 or β > 0.

Several results are known about the splitting behavior of quaternion alge-
bras over specific fields ([10, 15, 5, 6, 20]). Explicit conditions which guarantee
that a quaternion algebra splits over the field of rationals numbers, or else is
a division algebra, were studied in [3]. In [22] the second author studied the
splitting behavior of some quaternion algebras over some specific quadratic
and cyclotomic fields. Moreover, in [23] the second author found some suffi-
cient conditions for a quaternion algebra to split over a quadratic field.

Traditionally, in order to decide whether a quaternion algebra is division
algebra or else it splits, either we look for the primes which ramify in the
algebra or otherwise we appeal to Hasse’s norm theorem which allows us to
reduce the problem to the computation of local Hilbert symbols ([24, 25]).
Very recently Goldstein and Schacher ([11]) tried to combine these two tech-
niques.

Throughout this paper, all the fields are tacitly assumed to be of charac-
teristic not 2.

In this paper we adopt the former approach, i.e., we study the ramification
of certain integral primes, and we obtain a nice characterization of quaternion
division algebrasHK(p, q) solely in terms of quadratic residues, assuming that
p and q are positive primes and K is a composite of n quadratic number fields.

The structure of this paper as follows. In Section 2 we state some results
about quaternion algebras and quadratic fields which we will need later. In
Section 3 we collect some results about quaternion algebras over quadratic
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fields which were proved in a previous paper of ours ([1]). In Section 4 we
find some necessary and sufficient conditions for a quaternion algebra over a
biquadratic field to be a division algebra. In Section 5 we extend the previous
results to any composite of n quadratic number fields. In the last section we
compare our approach with the classical ones, from a computational point of
view.

The main result of this paper is the next theorem, which will be proved
at the end of Section 5. In this theorem, ( ·

p
) is the Legendre symbol. We

recall the definition of the Legendre symbol in the preliminaries section.

Main Theorem (Classification over the composite of n quadratic fields).
Let d1, . . . , dn be distinct squarefree integers not equal to one, multiplicatively
independent over Q, with n ≥ 2. Let p and q be distinct odd positive prime
integers such that p does not divide di and q does not divide di (i = 1, . . . , n).
Let K = Q(

√
d1, . . . ,

√
dn) and Ki = Q(

√
di) (i = 1, . . . , n), with discriminant

∆Ki
. Then the quaternion algebra HK(p, q) is a division algebra if and only

if one of the following conditions holds:

(i) p and q are odd and distinct, and
(p
q
) = −1, and

p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and

(
∆K1

p
) = . . . = (

∆Kn

p
) = 1 or (

∆K1

q
) = . . . = (

∆Kn

q
) = 1;

(ii) q = 2, and
p ≡ 3 (mod 8) or p ≡ 5 (mod 8), and

either (
∆K1

p
) = . . . = (

∆Kn

p
) = 1 or d1, . . . , dn ≡ 1 (mod 8);

(iii) p and q are odd, with p ≡ q ≡ 3 (mod 4), and
• ( q

p
) 6= 1, and

• either (
∆K1

p
) = . . . = (

∆Kn

p
) = 1 or d1, . . . , dn ≡ 1 (mod 8);

or
• (p

q
) 6= 1, and

• either (
∆K1

q
) = . . . = (

∆Kn

q
) = 1 or d1, . . . , dn ≡ 1 (mod 8).

2. Preliminaries

In this section we recall some basic facts about quadratic and biquadratic
fields, as well as some important results concerning quaternion algebras. Un-
less otherwise stated, when we say a prime integer we mean a positive prime

integer. If a is an integer and p is an odd prime integer, we denote with
(

a
p

)

the Legendre symbol of a modulo p. We recall that

(
a

p

)

=







1, if p does not divide a and a is a quadratic residue mod p;

−1, if p does not divide a and a is a quadratic nonresidue mod p;

0, if p |a.
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Let us recall first the decomposition behavior of an integral prime ideal
in the ring of integers of quadratic number fields ([12, Chapter 13]).

Theorem 2.1 (Decomposition of primes in quadratic fields). Let d 6= 0, 1
be a square free integer. Let OK be the ring of integers of the quadratic field
K = Q(

√
d) and ∆K be the discriminant of K. Let p be an odd prime integer.

Then, we have:

(i) p is ramified in OK if and only if p|∆K . In this case pOK = (p,
√
d)2;

(ii) p splits totally in OK if and only if (∆K

p
) = 1. In this case pOK =

P1 · P2, where P1 and P2 are distinct prime ideals in OK ;
(iii) p is inert in OK if and only if (∆K

p
) = −1;

(iv) the prime 2 is ramified in OK if and only if d ≡ 2 (mod 4) or d ≡ 3

(mod 4). In the first case 2OK = (2,
√
d)2, while in the second case

2OK = (2, 1 +
√
d)2;

(v) the prime 2 splits totally in OK if and only if d ≡ 1 (mod 8). In this
case 2OK = P1 ·P2, where P1, P2 are distinct prime ideals in OK , with

P1 = (2, 1+
√

d
2 );

(vi) the prime 2 is inert in OK if and only if d ≡ 5 (mod 8).

We recall that the discriminant ∆K of a quadratic field K = Q(
√
d) is

∆K =

{

4d, if d ≡ 2 or 3 (mod 4);

d, if d ≡ 1 (mod 4)

(see [12, p.189]).
Now, let d1 and d2 be two distinct squarefree integers not equal to one.

It is well known that K = Q(
√
d1,

√
d2) is a Galois extension of Q with Galois

group isomorphic to the Klein 4-group. There are three quadratic subfields of
K, namely Q(

√
d1), Q(

√
d2) and Q(

√
d3), where d3 = lcm(d1, d2)/ gcd(d1, d2).

The next result concerning prime ideals which split completely in composita
of extensions of the base field is quite general; we state it only in the case
of our interest, i.e. for biquadratic number fields ([19, p. 46]), which are the
composita of two quadratic number fields.

Theorem 2.2 (Splitting of primes in biquadratic fields). Let d1 and
d2 be two distinct squarefree integers not equal to one, and let d3 =
lcm(d1, d2)/ gcd(d1, d2). Let OK denote the ring of integers of the biquadratic
field K and OKi

the ring of integers of the quadratic subfield Ki =
Q(

√
di), i = {1, 2, 3}. Let p be a prime integer. Then p splits completely

in OK if and only if p splits completely in each OKi
(i = {1, 2, 3}).

Next, let K be a number field and let OK be its ring of integers. If v is
a place of K, let us denote by Kv the completion of K at v. We recall that a
quaternion algebra HK(a, b) is said to ramify at a place v of K - or v is said
to ramify in HK(a, b) - if the quaternion Kv-algebra Hv = Kv ⊗HK(a, b) is
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a division algebra. This happens exactly when the Hilbert symbol (a, b)v is
equal to −1, i.e. when the equation ax2 + by2 = 1 has no solutions in Kv.
We recall that the reduced discriminant DHK(a,b) of the quaternion algebra
HK(a, b) is defined as the product of those prime ideals of the ring of integers
OK of K which ramify in HK(a, b). The following splitting criterion for a
quaternion algebras is well known ([3, Corollary 1.10]).

Proposition 2.3. Let K be a number field and let a, b∈K such that a
and b are totally positive in K. Then, the quaternion algebra HK(a, b) is split
if and only if its discriminant DHK(a,b) is equal to the ring of integers OK of
K.

If OK is a principal ideal domain, then we may identify the ideals of OK

with their generators, up to units. Thus, in a quaternion algebra H over
Q, the element DH turns out to be an integer, and H is split if and only if
DH = 1.

The next proposition gives us a geometric interpretation of splitting ([10,
Proposition 1.3.2]).

Proposition 2.4. Let K be a field. Then, the quaternion algebra
HK(a, b) is split if and only if the conic ax2 + by2 = z2 has a rational point
in K, i.e. there are x0, y0, z0 ∈ K such that ax2

0 + by20 = z20.

The next proposition due to Hasse relates the norm group of extensions
of the base field to the splitting behavior of a quaternion algebra ([10, Propo-
sition 1.1.7]).

Proposition 2.5. Let F be a field. Then, the quaternion algebra HF (a, b)

is split if and only if a is the norm of an element of F (
√
b).

Fortunately, for the quaternion algebras it is true the following ([10,
Proposition 1.1.7]).

Proposition 2.6. Let K be a field and let α, β ∈ K\{0}. Then the
quaternion algebra HK(α, β) is either split or a division algebra.

In particular, this tells us that a quaternion algebra HQ(a, b) is a division
algebra if and only if there is a prime p such that p|DHQ(a,b).

We end up this section with two statements following from the classical
Albert-Brauer-Hasse-Noether theorem. Proofs of specific formulations of this
theorem can be found in [18, 7].

Theorem 2.7. Let HF be a quaternion algebra over a number field F and
let K be a quadratic extension of F. Then there is an embedding of K into
HF if and only if no prime of F which ramifies in HF splits in K.

Proposition 2.8. Let F be a number field and let K be a quadratic
extension of F . Let HF be a quaternion algebra over F . Then K splits HF

if and only if there exists an F -embedding K →֒ HF .
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3. Division quaternion algebras over quadratic number fields

In this section we collect some results which will be used often in the rest
of this paper. The following lemma appears in the nice book of Alsina and
Bayer ([3, Lemma 1.21]).

Lemma 3.1. Let p and q be two primes, and let HQ(p, q) be a quaternion
algebra of discriminant DH .

(i) if p ≡ q ≡ 3 (mod 4) and ( q
p
) 6= 1, then DH = 2p;

(ii) if q = 2 and p ≡ 3 (mod 8), then DH = pq = 2p;
(iii) if p or q ≡ 1 (mod 4), with p 6= q and (p

q
) = −1, then DH = pq.

The following results were proved in our paper [1].

Proposition 3.2. Let p and q be two distinct odd primes, with p or q ≡ 1
(mod 4) and (p

q
) = −1. Let K = Q(

√
d) and let ∆K be the discriminant of

K. Then the quaternion algebra H
Q(

√

d)(p, q) is a division algebra if and only

if (∆K

p
) = 1 or (∆K

q
) = 1.

Proposition 3.3. Let p be an odd prime, with p ≡ 3 (mod 8). Let

K = Q(
√
d) and let ∆K be the discriminant of K. Then H

Q(
√

d)(p, 2) is a

division algebra if and only if (∆K

p
) = 1 or d ≡ 1 (mod 8).

Proposition 3.4. Let p and q be two odd prime integers, with p ≡ q ≡ 3
(mod 4) and ( q

p
) 6= 1. Let K = Q(

√
d) and let ∆K be the discriminant of K.

Then the quaternion algebra H
Q(

√

d)(p, q) is a division algebra if and only if

(∆K

p
) = 1 or d ≡ 1 (mod 8).

Lemma 3.5. Let p ≡ 5 (mod 8) be a prime integer. Then the discriminant
of the quaternion algebra HQ(p, 2) is equal to 2p, and therefore HQ(p, 2) is a
division algebra.

4. Division quaternion algebras over biquadratic number fields

Let us start with a proposition that will be useful in this section.

Proposition 4.1. Let a and b be distinct nonzero integers and let p be
an odd prime.

(i) if a and b are quadratic residues modulo p, then lcm(a, b)/ gcd(a, b) is
also a quadratic residue modulo p;

(ii) if a and lcm(a, b)/ gcd(a, b) are quadratic residues modulo p, then b is
a quadratic residue modulo p.

Proof. Since a and b are both quadratic residues modulo p it follows

that (ab
p
) = 1. Let c = lcm(a,b)

gcd(a,b) = ab
gcd(a,b)2 . We have now (gcd(a,b)

2

p
) = 1 and
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(ab
p
) = (gcd(a,b)

2

p
)( c

p
) = 1. Therefore ( c

p
) = 1, so lcm(a,b)

gcd(a,b) is a quadratic residue

modulo p.
The proof of the second case is similar to the proof of the first case.

Let K/L be an extension of number fields. If a quaternion algebra HL(p, q)
splits, then the quaternion algebra HK(p, q) splits as well. If the quaternion
algebra HL(p, q) is a division algebra then the quaternion algebra HK(p, q)
could still be a division algebra or else split.

We consider now a division quaternion algebra HQ(
√

d1)
(p, q) over a base

field L = Q(
√
d1), and try to find some conditions which guarantee that it is

still a division algebra over the biquadratic field K = Q(
√
d1,

√
d2).

Proposition 4.2. Let d1 and d2 be distinct squarefree integers not equal
to one. Let p and q be distinct odd prime integers such that (p

q
) = −1, and p or

q is congruent to one modulo 4. Let K = Q(
√
d1,

√
d2) and let Ki = Q(

√
di)

(i = 1, 2), with discriminant ∆Ki
. Then the quaternion algebra HK(p, q) is a

division algebra if and only if (
∆K1

p
) = (

∆K2

p
) = 1 or (

∆K1

q
) = (

∆K2

q
) = 1.

Proof. Let us assume that HK(p, q) is a division algebra. Hence the
quaternion algebras HQ(p, q), HK1

(p, q), HK2
(p, q) must all be division alge-

bras.
Let K3 = Q(

√
d3) be the third quadratic subfield of K, where d3 =

lcm(d1,d2)
gcd(d1,d2)

, with discriminant ∆K3
. Since HK(p, q) is a division algebra, it

follows that HK3
(p, q) must be a division algebra as well. Proposition 3.2

tells us that one of the following conditions must be verified:

(i) (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1;

(ii) (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1;

(iii) There are i, j ∈ {1, 2, 3} , i 6= j such that (
∆Ki

p
) = (

∆Kj

p
) = 1 and

there is l ∈ {1, 2, 3} , l 6= i, l 6= j such that (
∆Kl

q
) = 1. Then di and

dj are quadratic residues modulo p. From Proposition 4.1 it follows

that d1, d2, d3 are quadratic residues modulo p, so (
∆K1

p
) = (

∆K2

p
) =

(
∆K3

p
) = 1;

(iv) There are i, j ∈ {1, 2, 3} , i 6= j such that (
∆Ki

q
) = (

∆Kj

q
) = 1 and there

is l ∈ {1, 2, 3} , l 6= i, l 6= j such that (
∆Kl

p
) = 1. From Proposition 4.1

it follows that (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1.

Conversely, let us assume that (
∆K1

p
) = (

∆K2

p
) = 1. By Proposition 4.1 it

follows that (
∆K3

p
) = 1. By Theorem 2.1(ii) it follows that p splits in each

OKi
. According to Theorem 2.2, p must split in OK as well. Since (

∆K1

p
) = 1,

Proposition 3.2 tells us that HK1
(p, q) must be a division algebra, and that p
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must ramify in HK1
(p, q). By Theorem 2.7, Proposition 2.8 and Proposition

2.6, the quaternion algebra HK(p, q) must be a division algebra.

If (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1, the same argument shows that HK(p, q)

must be a division algebra.

Proposition 4.3. Let d1 and d2 be distinct squarefree integers not equal
to one. Let p an odd prime integer, such that p ≡ 3 (mod 8). Let K =
Q(

√
d1,

√
d2), and let Ki = Q(

√
di) (i = 1, 2), with discriminant ∆Ki

. Then

the quaternion algebra HK(p, 2) is a division algebra if and only if (
∆K1

p
) =

(
∆K2

p
) = 1 or d1, d2 ≡ 1 (mod 8).

Proof. Let us assume that HK(p, 2) is a division algebra. Then the
quaternion algebras HQ(p, 2), HK1

(p, 2), HK2
(p, 2) are division algebras as

well.
Let K3 = Q(

√
d3) be the third quadratic subfield of K, where d3 =

lcm(d1,d2)
gcd(d1,d2)

, with discriminant ∆K3
. Since HK(p, q) is a division algebra, it

follows that HK3
(p, q) must be a division algebra as well.

Let DH be the discriminant of the quaternion algebraHQ(p, q). According
to the hypothesis and to Lemma 3.1(ii), we must have DH = 2p. Proposition
3.3 tells us that one of the following conditions must be verified:

(i) (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1;

(ii) d1, d2, d3 ≡ 1 (mod 8);

(iii) There are i, j ∈ {1, 2, 3} , i 6= j such that (
∆Ki

p
) = (

∆Kj

p
) = 1 and there

is l ∈ {1, 2, 3} , l 6= i, l 6= j such that dl ≡ 1 (mod 8). Then, di and
dj are quadratic residues modulo p. From Proposition 4.1 it follows

that d1, d2, d3 are quadratic residues modulo p, so (
∆K1

p
) = (

∆K2

p
) =

(
∆K3

p
) = 1;

(iv) There are i, j ∈ {1, 2, 3} , i 6= j such that di, dj ≡ 1 (mod 8) and there

is l ∈ {1, 2, 3} , l 6= i, l 6= j such that (
∆Kl

p
) = 1. Since d3 = lcm(d1,d2)

gcd(d1,d2)

it follows that d1, d2, d3 ≡ 1 (mod 8).

Let us now prove the converse. If (
∆K1

p
) = (

∆K2

p
) = 1 the argument is the

same used in the proof of sufficiency of Proposition 4.2.
If d1, d2 ≡ 1 (mod 8), it follows easily that d3 ≡ 1 (mod 8). According

to Proposition 3.3, the algebras HK1
(p, 2), HK2

(p, 2) and HK3
(p, 2) are all

division algebras and 2 ramifies there. From Theorem 2.1 it follows that 2
splits completely in K1, K2 and K3, and from Theorem 2.2 we can conclude
that 2 splits completely in K. Finally, from Theorem 2.7, Proposition 2.8 and
Proposition 2.6, it follows now that HK(p, 2) is a division algebra.

Proposition 4.4. Let d1 and d2 be distinct squarefree integers not equal
to one. Let p and q be distinct odd prime integers, with p ≡ q ≡ 3 (mod 4)
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and ( q
p
) = −1. Let K = Q(

√
d1,

√
d2), and let Ki = Q(

√
di) (i = 1, 2), with

discriminant ∆Ki
. Then the quaternion algebra HK(p, q) is a division algebra

if and only if (
∆K1

p
) = (

∆K2

p
) = 1 or d1, d2 ≡ 1 (mod 8).

Proof. The proof is similar to the proof of Proposition 4.3.

Proposition 4.5. Let d1 and d2 be distinct squarefree integers not equal
to one. Let p an odd prime integer, such that p ≡ 5 (mod 8). Let K =
Q(

√
d1,

√
d2), and let Ki = Q(

√
di) (i = 1, 2), with discriminant ∆Ki

. Then

the quaternion algebra HK(p, 2) is a division algebra if and only if (
∆K1

p
) =

(
∆K2

p
) = 1 or d1, d2 ≡ 1 (mod 8).

Proof. The proof is similar to the proof of Proposition 4.3.

After gluing the last three proposition together, we obtain the first sig-
nificant result of this paper.

Theorem 4.6 (Classification over biquadratic fields). Let d1 and d2 be
distinct squarefree integers not equal to one. Let K = Q(

√
d1,

√
d2), and let

Ki = Q(
√
di) (i = 1, 2) with discriminant ∆Ki

. Let p and q be two positive
primes. Then the quaternion algebra HK(p, q) is a division algebra if and only
if one of the following conditions holds:

(i) p and q are odd and distinct, and
(p
q
) = −1, and

p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and

(
∆K1

p
) = (

∆K2

p
) = 1 or (

∆K1

q
) = (

∆K2

q
) = 1;

(ii) q = 2, and
p ≡ 3 (mod 8) or p ≡ 5 (mod 8), and

either (
∆K1

p
) = (

∆K2

p
) = 1 or d1, d2 ≡ 1 (mod 8);

(iii) p and q are odd, with p ≡ q ≡ 3 (mod 4), and
• ( q

p
) 6= 1, and

• either (
∆K1

p
) = (

∆K2

p
) = 1 or d1, d2 ≡ 1 (mod 8);

or
• (p

q
) 6= 1, and

• either (
∆K1

q
) = (

∆K2

q
) = 1 or d1, d2 ≡ 1 (mod 8).

Proof. The theorem follows easily from the four propositions above,
after taking into account Lemma 3.1 and Lemma 3.4.

Let us point out that in the first case of the classification theorem we have a
manifest symmetry, i.e. by Legendre’s statement of the quadratic reciprocity
law p is a quadratic residue modulo q if and only if q is a quadratic residue mod
p, while in the third case the setting is asymmetrical, i.e., again by Legendre’s
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statement of the quadratic reciprocity law, p is a quadratic residue modulo q
if and only if q is not a quadratic residue modulo p.

5. Division quaternion algebras over the composite of n
quadratic fields

In this section we show how to apply the technique of proof shown in
the previous section to classify quaternion algebras over the composite of n
quadratic fields.

Let d1, . . . , dn be distinct integers not equal to one. We say that d1, . . . , dn
are multiplicatively independent over Q if the equation dx1

1 · · · dxn
n = 1 in the

indeterminates x1, . . . , xn admits no rational solution distinct from (0, . . . , 0).
When d1, . . . , dn are distinct squarefree integers not equal to one it is

easily seen that d1, . . . , dn are multiplicatively independent over Q if, once
d1, . . . , dn are written as products of prime powers di = p

e1,i
1 · · · pek,i

k then
the vectors of exponents (e1,i . . . ek,i) are linearly independent mod 2. In this
case it can be shown [16, p. 267-268] that K = Q(

√
d1, . . . ,

√
dn) is a Galois

extension of Q with Galois group Z2 × · · · × Z2
︸ ︷︷ ︸

n times

.

Let us start with the smallest case, that is with n = 3. Hence we take
a quaternion algebra HQ(

√

d1,
√

d2)
(p, q) over the base field L = Q(

√
d1,

√
d2),

and we try to find some conditions which guarantee that it is still a division
algebra over the field K = Q(

√
d1,

√
d2,

√
d3).

Let us recall the following well known theorem ([26, p.360]).

Theorem 5.1. Suppose that p is a prime of Q which splits completely in
each of two fields F1 and F2. Then p splits completely in the composite field
F1F2.

As a consequence, if p splits completely in a field F , then p also splits
completely in the minimal normal extension of Q containing F. We obtain the
following result.

Proposition 5.2. Let d1, d2 and d3 be distinct squarefree integers not
equal to one, multiplicatively independent over Q. Let p and q be distinct
odd prime integers such that (p

q
) = −1, p does not divide di and q does

not divide di, (i = 1, 2, 3) and p or q is congruent to one modulo 4. Let
K = Q(

√
d1,

√
d2,

√
d3) and let Ki = Q(

√
di) (i = 1, 2, 3), with discriminant

∆Ki
. Then the quaternion algebra HK(p, q) is a division algebra if and only

if (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or (

∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1.

Proof. If HK(p, q) is a division algebra, then, according to Proposition
4.2:

• HQ(
√

d1,
√

d2)
(p, q) is a division algebra, and this is equivalent to

(
∆K1

p
) = (

∆K2

p
) = 1 or (

∆K1

q
) = (

∆K2

q
) = 1;
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• HQ(
√

d1,
√

d3)
(p, q) is a division algebra, and this is equivalent to

(
∆K1

p
) = (

∆K3

p
) = 1 or (

∆K1

q
) = (

∆K3

q
) = 1;

• HQ(
√

d2,
√

d3)
(p, q) is a division algebra, and this is equivalent to

(
∆K2

p
) = (

∆K3

p
) = 1 or (

∆K2

q
) = (

∆K3

q
) = 1.

Therefore, one of the following conditions must be satisfied:

(i) (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1;

(ii) (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1;

(iii) there are i, j ∈ {1, 2, 3} , i 6= j such that (
∆Ki

p
) = (

∆Kj

p
) = 1 and

there is l ∈ {1, 2, 3} , l 6= i, l 6= j such that (
∆Ki

q
) = (

∆Kl

q
) = 1 and

(
∆Kj

q
) = (

∆Kl

q
) = 1. It results that (

∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1;

(iv) there are i, j, k ∈ {1, 2, 3} , i 6= j 6= k 6= i such that (
∆Ki

p
) = (

∆Kj

p
) = 1

and (
∆Kj

p
) = (

∆Kl

p
) = 1. It results that (

∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1.

Conversely, let us suppose that (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1. Since

(
∆K1

p
) = (

∆K2

p
) = 1, from Theorem 2.2 it follows that p splits in Q(

√
d1,

√
d2).

Since (
∆K3

p
) = 1, from Theorem 2.1 it follows that p splits in Q(

√
d3). Ac-

cording to Theorem 5.1, p must split in K. According to Proposition 4.2,
HQ(

√

d1,
√

d2)
(p, q) is a division algebra and p ramifies in HQ(

√

d1,
√

d2)
(p, q). By

Theorem 2.7, Proposition 2.8 and Proposition 2.6, the quaternion algebra
HK(p, q) must be a division algebra.

If (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1, the same argument shows that HK(p, q)

is a division algebra.

We can generalize now Proposition 4.2 and Proposition 5.2.

Proposition 5.3. Let n be a positive integer, n ≥ 2 and let d1, d2, . . . , dn
be distinct squarefree integers not equal to one, multiplicatively independent
over Q. Let p and q be distinct odd prime integers such that (p

q
) = −1, p does

not divide di and q does not divide di (i = 1, . . . , n), and p or q is congruent
to one modulo 4. Let K = Q(

√
d1,

√
d2, . . . ,

√
dn) and let Ki = Q(

√
di) (i =

1, . . . , n), with discriminant ∆Ki
. Then the quaternion algebra HK(p, q) is

a division algebra if and only if (
∆K1

p
) = (

∆K2

p
) = · · · = (

∆Kn

p
) = 1 or

(
∆K1

q
) = (

∆K2

q
) = · · · = (

∆Kn

q
) = 1.

Proof. The proof is by mathematical induction over n, for n > 2. The
inductive step is based on the same argument that we used to go from Propo-
sition 4.2 to Proposition 5.2.

Proposition 5.4. Let d1, d2 and d3 be distinct squarefree integers not
equal to one, multiplicatively independent over Q. Let p be an odd prime
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integer such that p does not divide di, i = 1, 2, 3, p ≡ 3 (mod 8). Let
K = Q(

√
d1,

√
d2,

√
d3) and let Ki = Q(

√
di) (i = 1, 2, 3), with discrimi-

nant ∆Ki
. Then the quaternion algebra HK(p, 2) is a division algebra if and

only if (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or d1, d2, d3 ≡ 1 (mod 8).

Proof. If HK(p, 2) is a division algebra, then HQ(
√

d1,
√

d2)
(p, q) is a di-

vision algebra and this is equivalent with (
∆K1

p
) = (

∆K2

p
) = 1 or d1, d2 ≡ 1

(mod 8); HQ(
√

d1,
√

d3)
(p, q) is a division algebra and this is equivalent with

(
∆K1

p
) = (

∆K3

p
) = 1 or d1, d3 ≡ 1 (mod 8); HQ(

√

d2,
√

d3)
(p, q) is a division

algebra and this is equivalent with (
∆K2

p
) = (

∆K3

p
) = 1 or d2, d3 ≡ 1 (mod 8)

(according to Proposition 4.3). Considering these we can have one of the
following cases:

(i) (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1;

(ii) d1, d2, d3 ≡ 1 (mod 8);

(iii) there are i, j ∈ {1, 2, 3} , i 6= j such that (
∆Ki

p
) = (

∆Kj

p
) = 1 and there

is l ∈ {1, 2, 3} , l 6= i, l 6= j such that di, dl ≡ 1 (mod 8) and dj , dl ≡ 1
(mod 8). It results that d1, d2, d3 ≡ 1 (mod 8);

(iv) there are i, j, k ∈ {1, 2, 3} , i 6= j 6= k 6= i such that (
∆Ki

p
) = (

∆Kj

p
) =

1 and (
∆Ki

p
) = (

∆Kl

p
) = 1 and dj , dl ≡ 1 (mod 8). It results that

(
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1.

Conversely, if (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1, then the argument is the

same used in the proof of suffciency of Proposition 5.2.
If d1, d2, d3 ≡ 1 (mod 8), applying to Proposition 4.3, it results that the

quaternion algebra HQ(
√

d1,
√

d2)
(p, q) is a division algebras and 2 ramifies this

algebra. According to Theorem 2.1 it follows that 2 splits completely in
K1, K2 and K3. From Theorem 2.2 it follows that 2 splits completely in
Q(

√
d1,

√
d2). Using this and the fact that 2 splits completely in K3, applying

Proposition 5.1, we conclude that 2 splits completely in K. According to
Theorem 2.7, Proposition 2.8 and Proposition 2.6, it follows now thatHK(p, 2)
is a division algebra.

The following two propositions can be proven in a similar way and we present
them without proofs.

Proposition 5.5. Let d1, d2 and d3 be distinct squarefree integers not
equal to one, multiplicatively independent over Q. Let p, q be two odd prime
integers such that p does not divide di, i = 1, 2, 3, p ≡ q ≡ 3 (mod 4), ( q

p
) 6= 1.

Let K = Q(
√
d1,

√
d2,

√
d3) and let Ki = Q(

√
di) (i = 1, 2, 3), with discrimi-

nant ∆Ki
. Then the quaternion algebra HK(p, q) is a division algebra if and

only if (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or d1, d2, d3 ≡ 1 (mod 8).
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Proposition 5.6. Let d1, d2 and d3 be distinct squarefree integers not
equal to one, multiplicatively independent over Q. Let p be an odd prime
integer such that p does not divide di, i = 1, 2, 3, p ≡ 5 (mod 8). Let
K = Q(

√
d1,

√
d2,

√
d3) and let Ki = Q(

√
di) (i = 1, 2, 3), with discrimi-

nant ∆Ki
. Then the quaternion algebra HK(p, 2) is a division algebra if and

only if (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or d1, d2, d3 ≡ 1 (mod 8).

If we take into account the results obtained in Proposition 5.2, Proposition
5.4, Proposition 5.5, Proposition 5.6, we obtain the following classification
theorem.

Theorem 5.7 (Classification over the composite of three quadratic fields).
Let d1, d2, d3 be distinct squarefree integers not equal to one, multiplicatively
independent over Q. Let K = Q(

√
d1,

√
d2,

√
d3), and let Ki = Q(

√
di) (i =

1, 2, 3), with discriminant ∆Ki
. Let p and q be two positive primes. Then

the quaternion algebra HK(p, q) is a division algebra if and only if one of the
following conditions holds:

(i) p and q are odd and distinct, and
(p
q
) = −1, and

p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and

(
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or (

∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1;

(ii) q = 2, and
p ≡ 3 (mod 8) or p ≡ 5 (mod 8), and

either (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or d1, d2, d3 ≡ 1 (mod 8);

(iii) p and q are odd, with p ≡ q ≡ 3 (mod 4), and
• ( q

p
) 6= 1, and

• either (
∆K1

p
) = (

∆K2

p
) = (

∆K3

p
) = 1 or d1, d2, d3 ≡ 1 (mod 8);

or
• (p

q
) 6= 1, and

• either (
∆K1

q
) = (

∆K2

q
) = (

∆K3

q
) = 1 or d1, d2, d3 ≡ 1 (mod 8).

Proof. The theorem follows easily from the propositions above, after
taking into account Lemma 3.1 and Lemma 3.4.

We have now all the ingredients needed to prove our Main Theorem, stated
in Section 1.

Proof of the Main Theorem. By mathematical induction over n, for
n ≥ 2, we can generalize Propositions 5.4, 5.5 and 5.6 to obtain the sought
classification of the division quaternion algebras over the composite of n qua-
dratic fields.
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6. Final remarks

The task of deciding whether a quaternion algebra over a number field is
a division algebra is computationally a feasible one, thanks to the facilities
included in computational algebra packages like Magma ([14]), Pari, Sage,
etc; however, different approaches lead to very different execution times.

A naive way to check if a quaternion algebra is a division algebra is to
show that a norm equation has no solution, thanks to Proposition 2.5 and
Proposition 2.6. The problem of determining whether a norm equation over
an extension of number fields has a solution has been extensively investigated
in the past, both over arbitrary and over specific extensions of number fields
([2, 8, 9, 21]). Algorithms included in Magma, Pari and Sage allow one to find
out whether a norm equation has or not at least a solution, and, sometime, to
find a sought solution. However in the general case this is not an easy task.

Let us consider first the apparently efficient approach based on Proposi-
tion 2.5. For this purpose we wrote two small functions in SAGE, release 8.1,
to test the efficiency of this method, and we used them to test an increasing
number of cases (100 - 1000 - 10000 - 100000) of quaternion algebras.

In order to construct the cases to check, we considered r unordered couples
{p, q} of positive primes p and q, for increasing values of p and q starting from
2, and for K = Q(

√
d1,

√
d2), we took approximately an equal number r

of unordered couples {±d1,±d2} of squarefree integers, for increasing values
of d1 and d2 starting from 1, omitting the trivial cases which would give
K = Q(

√
t) or K = Q.

We ran our tests on a 2.6 Ghz - i7 quad core - mac mini (late 2012),
equipped with 8 GB of RAM. The running time is shown in the second column
of Table 1. The value ”n.a” means that the computation was taking too long
and hence we forced the termination of the program.

A different approach to check if a quaternion algebra is a division algebra,
based on Proposition 2.3, is to show that the discriminant ideal of the algebra
is not equal to the full ring of integers of the base field. Again we wrote two
small functions in SAGE to test the efficiency of this approach. The running
time is shown in the third column of Table 1.

# of algebras Norm approach Discriminant approach Our approach
100 2501 1044 4
1000 43329 9428 42
10000 n.a. 97049 384
100000 n.a. 1000279 3818

Table 1. Running time in ms. required to test HQ(
√

d1,
√

d2)
(p, q).

The approach described in this paper does not require one to solve norm
equations over relative extensions of number fields, neither to compute the
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discriminant of quaternion algebras defined over an arbitrary number field. In
fact, all we need is to compute a few Legendre symbols and the discriminants
of quadratic extensions of Q involved, which is a very easy task: indeed, for a
nonzero square free integer d, the discriminant of the quadratic field Q(

√
d) is

d if d is congruent to 1 modulo 4, otherwise 4d. We wrote two small functions
in SAGE to test the efficiency of our approach. The running time is shown in
the fourth column of Table 1.
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