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EXTREMAL BEHAVIOUR OF ±1-VALUED COMPLETELY

MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS

Nikola Lelas

University of Belgrade, Serbia

Abstract. We investigate the classical Pólya and Turán conjectures
in the context of rational function fields over finite fields Fq. Related to
these two conjectures we investigate the sign of truncations of Dirichlet
L-functions at point s = 1 corresponding to quadratic characters over

Fq[t], prove a variant of a theorem of Landau for arbitrary sets of monic,
irreducible polynomials over Fq[t] and calculate the mean value of certain
variants of the Liouville function over Fq[t].

1. Introduction

Let λ(n) = (−1)Ω(n) denote the Liouville function, where Ω(n) is the
number of prime factors of integer n counted with multiplicity. Pólya ([7])
conjectured that

∑

n≤x λ(n) ≤ 0 for all x ≥ 2 and showed that this con-

jecture implies the Riemann hypothesis. Similarly, Turán ([11]) showed that
the Riemann hypothesis can be proven assuming a related conjecture that
∑

n≤x
λ(n)
n ≥ 0 for all x ≥ 0. Haselgrove ([3]) showed that both of these

conjectures are false, despite the extensive numerical data suggesting their
validity.

The fact that the Turán conjecture does not hold was used in [2] to exhibit
negative values of truncations to the Dirichlet L-functions at s = 1 associated
to quadratic characters. In particular, the authors prove following theorem.
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Theorem 1.1 ([2]). There exists a positive constant c such that for all

large x

− 1

(log log x)
3
5

≤ min
χ a quadratic

character

∑

n≤x

χ(n)

n
≤ − c

log x
.

Results from [2] can also be used in relation to partial sums of the Möbius
function over multiplicative semigroups of the natural numbers N = {1, 2, ...}
generated by arbitrary sets of primes. Let P be any set of primes (finite of
infinite) and let 〈P〉 denote the multiplicative semigroup generated by P .
That is the set of natural numbers, all of whose prime factors lie in P. In
[10] Tao proves that elementary bound

(1.1)

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈〈P〉
n≤x

µ(n)

n

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

holds for all sets of primes P and x ≥ 0. An important remark he makes
is that the lower bound of −1 can be improved by Theorem 2 of [2] to
(

1− 2 log(1 +
√
e) + 4

∫

√
e

1
log t
t+1 dt

)

log 2+ o(1) = −0.4553 · · ·+ o(1), the value
that is optimal except for the o(1) term.

Another important result proved in [10] is the Landau’s theorem for ar-
bitrary set of primes (also see [9] for the proof of this theorem in the more
general context of number fields).

Theorem 1.2 ([10]). Let P be any set of primes. Then

∑

n∈〈P〉

µ(n)

n
=
∏

p∈P

(

1− 1

p

)

.

For a given set of primes P one can also consider the generalization λP of
the Liouville function λ. It is defined by λP(n) = (−1)ΩP(n), where ΩP(n)
is the number of prime factors of integer n coming from P, counted with
multiplicity. Various properties of this function have been studied in [1]. In
particular, the authors calculate its mean value.

Theorem 1.3 ([1]). Let P be an arbitrary set of primes. Then the mean

value MP of λP exists and

MP =

{

∏

p∈P

p−1
p+1 if

∑

p∈P

1
p <∞,

0 otherwise.

In this paper we are interested in studying the mentioned problems in the
context of rational function fields over finite fields. Let q be an odd prime
power and let Fq[t] denote the set of polynomials in variable t over finite field
Fq. We use d(N) to denote the degree of polynomial N ∈ Fq[t] and define
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the norm of N as |N | = qd(N) if N 6= 0 and |0| = 0. We denote by M the
set of monic polynomials in Fq[t] and for any non-negative integer x we define
M≤x = {N ∈ M | d(N) ≤ x} .We call monic irreducible polynomials in Fq[t]
prime and denote the set of all prime polynomials by P .

The Liouville function is defined as λ(N) = (−1)Ω(N), where Ω(N) stands
for the number of prime factors of N ∈ Fq[t], counted with multiplicity. Note
that, similarly as the analogous function defined over the set of integers Z, the
function Ω(N) is completely additive, so λ(N) is completely multiplicative1.

We now state the variants of the Pólya and the Turán conjectures in the
context of Fq[t] as following:

Conjecture 1.4 (Variant of the Pólya conjecture). For all integers x ≥ 2
we have

∑

N∈M≤x

λ(N) ≤ 0.

Conjecture 1.5 (Variant of the Turán conjecture). For all integers x ≥
0 we have

∑

N∈M≤x

λ(N)

|N | ≥ 0.

Several function field analogues of the Pólya conjecture were studied by
Humphries in his master thesis [4]. In particular, he shows that that the
variant of the Pólya conjecture over Fq[t], as stated above, does not hold
(see [4, Proposition 6.8]). In this paper we provide the solution of the Turán
conjecture. Towards the solution we prove the more general result, that can
also be used to solve the Pólya conjecture.

Theorem 1.6. Let α 6= 1/2 be a real number and x a non-negative integer.

Then

∑

N∈M≤x

λ(N)

|N |α =

{

1−q1−α

1−q1−2α

(

1− qx(1/2−α)
)

+ qx(1/2−α), if x is even,
1−q1−α

1−q1−2α

(

1− q(x+1)(1/2−α)
)

, if x is odd.

Furthermore,

∑

N∈M≤x

λ(N)

|N |1/2 =

{

x
2 (1− q1/2) + 1, if x is even,
x+1
2 (1− q1/2), if x is odd.

Putting α = 0 in the previous theorem gives the mentioned result of
Humphries, while after putting α = 1 we obtain the solution of the Turán

1A function f : M → R is completely additive if f(MN) = f(M) + f(N) for all
M,N ∈ M. If f(MN) = f(M)f(N) holds for all M,N ∈ M, then f is called completely
multiplicative.
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conjecture. Since for all integers x ≥ 0 the function

α→ 1− q1−α

1− q1−2α

(

1− q(x+1)(1/2−α)
)

is non-negative when α ≥ 1, the more general result also follows.

Corollary 1.7. The variant of the Turán conjecture holds over Fq[t].
More generally, if α ≥ 1, then

∑

N∈M≤x

λ(N)

|N |α ≥ 0

for all positive integers x.

In the second part of this paper we are studying the truncations to L(1, χ),
where χ now stands for a quadratic character defined over Fq[t] (necessary
definitions are provided in the next section). Since the Turán conjecture holds
in this case, one can expect that such truncations are always non-negative.
That is exactly what we prove, along with the upper bound on the minumum
of truncations to L(1, χ), in similarity to Theorem 1.1.

Theorem 1.8. If x is an odd positive integer then

min
χ a quadratic

character

∑

N∈M≤x

χ(N)

|N | = 0

and if x is an even positive integer then

0 ≤ min
χ a quadratic

character

∑

N∈M≤x

χ(N)

|N | ≤ q−x/2.

Next we investigate the partial sums of the Möbius function over mul-
tiplicative semigroups of Fq[t] generated by sets of prime polynomials. The
Möbius function for N ∈ Fq[t] is defined as µ(N) = (−1)k if N = cP1P2 . . . Pk

for c ∈ F×
q and Pj distinct, prime polynomials in Fq[t], and µ(N) = 0 oth-

erwise. We denote by 〈A〉 the multiplicative semigroup generated by a set
(finite of infinite) of prime polynomials A over Fq[t]. That is the set that con-
tains constant polynomial 1 and the monic polynomials in Fq[t] whose prime
factors all lie in A.

We first provide the elementary bound, similar to (1.1). Note that, in
complete agreement to the previous results, we get that the partial sums are
always non-negative.

Proposition 1.9 (Elementary bound). For any set of primes A in Fq[t]
and non-negative integer x, we have

0 ≤
∑

N∈〈A〉
d(N)≤x

µ(N)

|N | ≤ 1.
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The lower bound of 0 in the previous result is the best possible, as it
is easy to find a set of primes A and a non-negative integer x such that
∑

N∈〈A〉
d(N)≤x

µ(N)
|N | = 0. For example, take A to be the set P of all primes and

x ≥ 1 an arbitrary integer. Then 〈A〉 = M, leaving us with
∑

N∈M
d(N)≤x

µ(N)
|N | .

Since by the Möbius inversion formula

∑

D|N
D∈M

µ(D) =

{

1, if N = 1,

0, if N ∈ M \ {1},

we can apply Proposition 4.1 (see Section 4 for details) to get that this sum
is equal to 0.

The second result we provide is the Landau’s theorem for an arbitrary set
of primes over Fq[t].

Theorem 1.10. Let A be any set of primes in Fq[t]. Then

(1.2)
∑

N∈〈A〉

µ(N)

|N | =
∏

P∈A

(

1− 1

|P |

)

.

Finally, we investigate the mean value of the generalized Liouville funcion
λA for a given set of prime polynomials A over Fq[t]. Let ΩA(N) denote the
number of prime factors of N ∈ Fq[t] coming from A counting multiplicity.
The Liouville funcion for A is defined as

λA(N) = (−1)ΩA(N).

Since ΩA(N) is completely additive, this function is completely multiplicative.
It can be alternatively defined as the completely multiplicative function such
that λA(P ) = −1 if prime P ∈ A and λA(P ) = 1 if P 6∈ A.

The mean value of a function f : M → R is defined as

lim
n→∞

1

qn

∑

N∈Mn

f(N),

where Mn = {N ∈ M | d(N) = n}, provided that the limit exists.

Theorem 1.11. Let A be any set of prime polynomials in Fq[t]. Then

the mean value of λA exists,

lim
n→∞

1

qn

∑

N∈Mn

λA(N) =

{

∏

P∈A
|P |−1
|P |+1 , if

∑

P∈A
1
|P | <∞,

0, otherwise.

Closely related to the calculation of the mean value of λA, we provide a
method to calculate the exact value of

∑

N∈Mn
λA(N) for a given finite set of

primes A. This is quite specific to the context of Fq[t] we are considering and
the analogous method over Z is unknown. The main reason for this difference
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is the fact that in the function field setting the generating Dirichlet series for
λA can be expressed as a rational function multiplied by the zeta function
over Fq[t]. One can see this expression after inserting the change of variables
u = q−s in (6.1) (see Section 6 for details). Since the zeta function over Fq[t]
is also a rational function in variable u (see (2.1)), it is not hard to find to
the coefficient of the generating Dirichlet series for λA with power un for a
fixed non-negative integer n, which containts the information about the sum
∑

N∈Mn
λA(N) we are interested in.

Theorem 1.12. Let A = {P1, P2, . . . , Pk} be a finite set of prime poly-

nomials and n a non-negative integer. Denote Ln =
∑

N∈Mn
λA(N) and for

all 1 ≤ ℓ ≤ k and 1 ≤ i1 < i2 < · · · < iℓ ≤ k define positive integers

di1,i2,...iℓ = d(Pi1) + d(Pi2) + · · ·+ d(Piℓ).

Order the elements of the set {di1,i2,...iℓ | 1 ≤ ℓ ≤ k, 1 ≤ i1 < i2 < · · · < iℓ ≤
k} in the ascending order as

D1 <D2 < · · · < Ds

and define the integers αj and βj, 1 ≤ j ≤ s as

αj = #{1 ≤ ℓ ≤ k, 1 ≤ i1 < i2 < · · · < iℓ ≤ k | di1,i2,...iℓ = Dj}
βj =

∑

1≤ℓ≤k
1≤i1<i2<···<iℓ≤k
di1,i2,...iℓ

=Dj

(−1)ℓ.

Then, depending on n we have the following linear recurrence relations for

Ln:

Ln = qn, 0 ≤ n <D1,

Ln + α1Ln−D1 = qn + β1q
n−D1 , D1 ≤ n <D2,

...

Ln + α1Ln−D1 + · · ·+ αjLn−Dj
= qn + β1q

n−D1 + · · ·+ βjq
n−Dj ,

Dj ≤ n < Dj+1,

...

Ln + α1Ln−D1 + · · ·+ αsLn−Ds
= qn + β1q

n−D1 + · · ·+ βsq
n−Ds , Ds ≤ n.

As an immediate consequence of the previous theorem, we can see that Ln

depends only on the degrees of polynomials in A. Furthermore, the obtained
system of recurrence relations in not difficult to solve in practice. First s− 1
recurrences are easily solved, as they are valid only in the limited ranges. For
the final relation, note that Ds is always equal to d(P1)+d(P2)+ · · ·+d(Pk),
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allowing us to rewrite this relation as

Ln + α1Ln−D1 + · · ·+ αsLn−Ds
= qn

k
∏

i=1

(

1− 1

|Pk|

)

.

This recurrence has a partial solution qn
∏k

i=1

(

|Pk|−1
|Pk|+1

)

and the characteristic

equation of the corresponding homogenous equation is

k
∏

i=1

(

Xd(Pk) + 1
)

= 0.

From these two facts one can obtain the formula for
∑

N∈Mn
λA(N) in the

range Ds ≤ n. Exact calculations in two concrete cases were carried out at
the end of Section 7.

2. Background on function fields

For a non-negative integer n we define

M>n = {N ∈ M | d(N) > n} .
The zeta function of Fq[t] is defined by

Z(s) =
∑

N∈M

1

|N |s =
∏

P∈P

(

1− 1

|P |s
)−1

, ℜ(s) > 1.

The number of polynomials in Mn is qn, so it follows

(2.1) Z(s) =
1

1− q1−s
,

providing the analytic continuation for Z(s) to the whole complex plane, with
a simple pole at s = 1.

The Dirichlet’s theorem on prime polynomials in arithmetic progressions
states that given two coprime polynomials A andM in Fq[t], d(M) ≥ 1, there
exist infinitely many prime polynomials P such that P ≡ A (mod M).

If P is a prime polynomial in Fq[t], then the Legendre symbol
(

N
P

)

is
defined as

(

N

P

)

=











1, if N is square modulo P, P ∤ N,

−1, if N is not square modulo P, P ∤ N,

0, if P |N.
The Jacobi symbol is defined by extending the Legendre symbol multiplica-
tively; if Q = P e1

1 P e2
2 . . . P ek

k is the prime factorisation of polynomial Q ∈ M,

then
(

N
Q

)

=
∏k

i=1

(

N
Pi

)ei
. This symbol satisfies the reciprocity formula analo-

gous to the classical law of quadratic reciprocity: ifM andN are two non-zero,
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relatively prime polynomials in Fq[t], then

(2.2)

(

M

N

)

=

(

N

M

)

(−1)
(q−1)

2 d(M)d(N).

The quadratic character χD corresponding to a polynomial D ∈ M is defined
as

χD(N) =

(

D

N

)

, for all N ∈ M.

The L-function associated to a quadratic character χD is defined by

L(s, χD) =
∑

N∈M

χD(N)

|N |s =
∏

P∈P

(

1− χD(P )|P |−s
)−1

.

This function is initially defined for ℜ(s) > 1, but it can be analytically
continued to an entire function, as it is a polynomial in q−s (see [8, Proposition
4.3] for details).

3. Proof of Theorem 1.6

The generating Dirichlet series for the Liouville function can be written
as

(3.1)
∑

N∈M

λ(N)

|N |s =

∞
∑

n=0

(

∑

N∈Mn

λ(N)

)

un,

where u = q−s. On the other hand, since the Liouville function is completely
multiplicative, that Dirichlet series has the Euler product expression

∏

P∈P

(

1 +
1

|P |s
)−1

=
∏

P∈P

1− 1
|P |s

1− 1
|P |2s

=
Z(2s)

Z(s)
=

1− qu

1− qu2
,

after using (2.1) and inserting the change of variables u = q−s. Expressing
1

1−qu2 as power series yields

(1− qu)

∞
∑

n=0

qnu2n =

∞
∑

n=0

qnu2n −
∞
∑

n=0

qn+1u2n+1.

Comparing this to (3.1) gives us

(3.2)
∑

N∈Mn

λ(N) =

{

qn/2, if n is even,

−q(n+1)/2, if n is odd.

We now turn to

∑

N∈M≤x

λ(N)

|N |α =

x
∑

n=0

(

∑

N∈Mn

λ(N)

)

q−nα.
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Using (3.2), it follows that the sum over even 0 ≤ n ≤ x is

1 + q1−2α + q2(1−2α) + · · ·+ q[x/2](1−2α).

Similarly, the sum over odd 0 ≤ n ≤ x is

−q1−α
(

1 + q1−2α + q2(1−2α) + · · ·+ q[(x−1)/2](1−2α)
)

.

If α 6= 1
2 we get

∑

N∈M≤x

λ(N)

|N |α =
1− q([x/2]+1)(1−2α)

1− q1−2α
− q1−α 1− q([(x−1)/2]+1)(1−2α)

1− q1−2α

=

{

1−q1−α

1−q1−2α

(

1− qx(1/2−α)
)

+ qx(1/2−α), if x is even
1−q1−α

1−q1−2α

(

1− q(x+1)(1/2−α)
)

, if x is odd.

If α = 1/2 we get

∑

N∈M≤x

λ(N)

|N |1/2 = [x/2] + 1− q1/2([(x− 1)/2] + 1)

and the result follows.

4. Positivity of truncations to L(1, χ)

We begin with an auxiliary result, after which we turn to the proof of
Theorem 1.8.

Proposition 4.1. Let f : M → R be a function and put g(N) =
∑

D|N
D∈M

f(D) for all N ∈ M. Then for all positive integers n we have

∑

N∈M≤n

f(N)

|N | =
1

qn

∑

N∈Mn

g(N).

Proof. We have
∑

N∈Mn

g(N) =
∑

N∈Mn

∑

D|N
D∈M

f(D)

=
∑

D∈M≤n

f(D)
∑

N∈Mn−d(D)

1

= qn
∑

D∈M≤n

f(D)

|D|

and the result follows.
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Previous proposition has an important immediate consequence. Suppose

that
∑

N∈M
|f(N)|
|N | < ∞. By Proposition 4.1, for any positive integer n we

can write

1

qn

∑

N∈Mn

g(N) =
∑

D∈M

f(D)

|D| +O





∑

D∈M>n

|f(D)|
|D|



 .

Convergence of
∑

N∈M
|f(N)|
|N | assures that the error term vanishes as n→ ∞,

thus showing that the mean values of g exists,

(4.1) lim
n→∞

1

qn

∑

N∈Mn

g(N) =
∑

D∈M

f(D)

|D| .

This result can be seen as the Fq[t]-analogue of the classical theorem of Wint-
ner. Note that the assumption of multiplicativity of g is not necessary for
(4.1). However, under that assumption, f must also be multiplicative, so we
can express the mean value of g in the form of Euler product

∏

P∈P

(

1− 1

|P |

)





∞
∑

j=0

g(P j)

|P |j



 .

More on this topic will be discussed in Section 6.

Proof of Theorem 1.8. We first note that if f : M → [−1, 1] is a com-
pletely multiplicative function, then g(N) =

∑

D|N
D∈M

f(D) is a non-negative

multiplicative function. Using this fact and Proposition 4.1 we get that for
every quadratic character χ and non-negative integer x

∑

N∈M≤x

χ(N)

|N | ≥ 0.

By the reciprocity law (2.2), for any fixed non-negative integer x we may find
an arithmetic progression modulo

∏

P∈P
d(P )≤x

P such that every prime Q lying in

that progression satisfies
(

P
Q

)

= −1. Dirichlet’s theorem on prime polynomials

in arithmetic progressions ensures that such polynomialQ exists, showing that
there exists a quadratic character ψ such that ψ(P ) = −1 = λ(P ) for all prime
polynomials P with d(P ) ≤ x. It follows that

∑

N∈M≤x

ψ(N)

|N | =
∑

N∈M≤x

λ(N)

|N | .

By Theorem 1.6, we have

min
χ a quadratic

character

χ(N)

|N | ≤
∑

N∈M≤x

λ(N)

|N | =

{

q−x/2, if x is even,

0, if x is odd,
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finishing the proof.

5. Partial sums involving the Möbius function

We begin this section by noting that the generating Dirichlet series of the
Möbius function µ can be expressed as

∑

N∈M

µ(N)

|N |s =
∏

P∈P

(

1− 1

|P |s
)

=
1

Z(s)
= 1− q1−s.

In particular, if follows that

(5.1)
∑

N∈M

µ(N)

|N | = 0,

which can be seen the Fq[t]-analogue of the classical result of von Mangoldt
([6]).

Proof of Proposition 1.9. LetA be the set of prime polynomials over
Fq[t] not contained in A. Using the Möbius inversion we can write

1N∈〈A〉 =
∑

D|N
D∈〈A〉

µ(D) =
∑

D|N
D∈M

µ(D)1D∈〈A〉,

where 1N∈S is the indicator function of subset S of M,

1N∈S =

{

1, if N ∈ S
0, if N 6∈ S.

After using Proposition 4.1 we get

(5.2) qx
∑

N∈〈A〉
d(N)≤x

µ(N)

|N | =
∑

N∈〈A〉
d(N)=x

1.

The right side is between 0 and qx, according to how many monic polynomials
of degree x are in 〈A〉. Thus, the result follows.

Proof of Theorem 1.10. We distinguish two different cases.

i) Suppose
∑

P∈A
1
|P | <∞. Then, from the monotone convergence theo-

rem we get that

∑

N∈〈A〉

1

|N | =
∏

P∈A

(

1 +
1

|P | − 1

)

is absolutely convegent. By the dominated covergence it further follows
that

∑

N∈〈A〉

µ(N)

|N | =
∏

P∈A

(

1− 1

|P |

)
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is conditionally convergent, giving the desired result.
ii) Suppose that

∑

P∈A
1
|P | = ∞. In this case we utilize the identity (5.2)

for a non-negative integer x,

qx
∑

N∈〈A〉
d(N)≤x

µ(N)

|N | =
∑

N∈〈A〉
d(N)=x

1 =
∑

N∈Mx

1N∈〈A〉.

Since
∑

P∈P
|1−1

P∈〈A〉|
|P | =

∑

P∈A
1
|P | = ∞, by Theorem 6.1 (see Section

6 for details) the mean value of 1N∈〈A〉 is 0, so the right side is o(qx).

If follows that
∑

N∈〈A〉
d(N)≤x

µ(N)

|N | = o(1),

finishing the proof.

6. The mean value of the Liouville function λA

The important piece of information in finding the mean value of λA for a
fixed set of prime polynomials A,

lim
n→∞

1

qn

∑

N∈Mn

λA(N),

will be the generating Dirichlet series for λA. Since λA is completely multi-
plicative, for ℜ(s) > 1 and any set A we have

(6.1)

∑

N∈M

λA(N)

|N |s =
∏

P∈P

(

1− λA(P )

|P |s
)−1

=
∏

P∈A

(

1 +
1

|P |s
)−1

∏

P 6∈A

(

1− 1

|P |s
)−1

=
∏

P∈A

(

1 + 1
|P |s

1− 1
|P |s

)−1
∏

P∈P

(

1− 1

|P |s
)−1

=
∏

P∈A

|P |s − 1

|P |s + 1
Z(s).

We can get some immediate information about the mean value of λA from
(4.1). However, in order to get the complete picture, we need the following
stronger result. It is a direct consequence of the general Halász type theorem
from [5, Theorem 1.4.1].
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Theorem 6.1 (Klurman). Suppose f : M → R is a multiplicative func-

tion taking values in [−1, 1].

• If
∑

P∈P
|1−f(P )|

|P | converges then the mean value of f exists and is equal

to

∏

P∈P

(

1− 1

|P |

)





∞
∑

j=0

f(P j)

|P |j



 .

• If
∑

P∈P
|1−f(P )|

|P | diverges then the mean value of f is equal to zero.

Note that
∑

P∈P
|1−λA(P )|

|P | = 2
∑

P∈A
1
|P | and, by (6.1),

∏

P∈P

(

1− 1

|P |

)





∞
∑

j=0

λA(P j)

|P |j



 =
∏

P∈A

|P | − 1

|P |+ 1
.

Thus, if
∑

P∈A
1
|P | < ∞, from Theorem 6.1 it follows that the mean value of

λA exists and is equal to
∏

P∈A
|P |−1
|P |+1 . Similarly, if

∑

P∈A
1
|P | = ∞, Theorem

6.1 shows that the mean value of λA is equal to zero. This proves Theorem
1.11.

7. Exact value of
∑

N∈Mn
λA(N)

Identity (6.1) can be used to obtain the exact value of
∑

N∈Mn
λA(N)

for a given finite set of primes A = {P1, P2, . . . , Pk} and a fixed non-negative
integer n. Rewrite (6.1) as

k
∏

i=1

(

1 +
1

|Pi|s
)

∑

N∈M

λA(N)

|N |s =

k
∏

i=1

(

1− 1

|Pi|s
)

Z(s)

and insert the change of variables u = q−s. The left side becomes

k
∏

i=1

(

1 + ud(Pi)
)

∞
∑

n=0

∑

N∈Mn

λA(N)ud(N) =

k
∏

i=1

(

1 + ud(Pi)
)

∞
∑

n=0

Lnu
n,

where Ln =
∑

N∈Mn
λA(N). Using (2.1), the right side becomes

k
∏

i=1

(

1− ud(Pi)
)

(1− qu)−1 =

k
∏

i=1

(

1− ud(Pi)
)

∞
∑

n=0

qnun.

We thus get the equality of power series

(7.1)

k
∏

i=1

(

1 + ud(Pi)
)

∞
∑

n=0

Lnu
n =

k
∏

i=1

(

1− ud(Pi)
)

∞
∑

n=0

qnun.
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Comparing the corresponding coefficients in this equality will give us the
recurrence relation for Ln. In order to do that we expand

k
∏

i=1

(

1 + ud(Pi)
)

= 1 +
∑

1≤ℓ≤k
1≤i1<i2<···<iℓ≤k

udi1,i2,...iℓ ,

where

di1,i2,...iℓ = d(Pi1) + d(Pi2) + · · ·+ d(Piℓ).

We order the elements of the set {di1,i2,...iℓ | 1 ≤ ℓ ≤ k, 1 ≤ i1 < i2 < · · · <
iℓ ≤ k} in the ascending order as D1 < D2 < · · · < Ds and define αj ,
1 ≤ j ≤ s as

αj = #{1 ≤ ℓ ≤ k, 1 ≤ i1 < i2 < · · · < iℓ ≤ k | di1,i2,...iℓ = Dj}.
If follows that

k
∏

i=1

(

1 + ud(Pi)
)

= 1 +

s
∑

j=1

αju
Dj .

Similarly,
k
∏

i=1

(

1− ud(Pi)
)

= 1 +

s
∑

j=1

βju
Dj ,

where

βj =
∑

1≤ℓ≤k
1≤i1<i2<···<iℓ≤k
di1,i2,...iℓ

=Dj

(−1)ℓ.

Returning to (7.1) we get

(7.2)

∞
∑

n=0

Lnu
n +

s
∑

j=1

∞
∑

n=0

αjLnu
n+Dj =

∞
∑

n=0

qnun +

s
∑

j=1

∞
∑

n=0

βjq
nun+Dj .

Finally, noting that
∑∞

n=0 αjLnu
n+Dj =

∑∞
n=Dj

αjLn−Dj
un and

∑∞
n=0 βjq

nun+Dj =
∑∞

n=Dj
βjq

n−Djun for all 1 ≤ j ≤ s and comparing the

coefficients on both sides of (7.2) yields Theorem 1.12.
We end this section with the examples of calculations of

∑

N∈Mn
λA(N)

in two concrete cases.

Example 7.1. A = {P} for some prime polynomial P
In this case s = 1, D1 = d(P ), α1 = 1, β1 = −1, so Theorem 1.12 gives us

Ln = qn, 0 ≤ n < d(P ),

Ln + Ln−d(P ) = qn − qn−d(P ), d(P ) ≤ n.
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After solving the obtained recurrence relation we get

∑

N∈Mn

λA(N) =











qn, 0 ≤ n < d(P ),

qn

(

1− 2
1−( −1

|P | )
[ n
d(P ) ]

|P |+1

)

, d(P ) ≤ n.

Example 7.2. A = {P,Q} for some prime polynomials P and Q of the
same degree m.

In this case s = 2, D1 = m, D2 = 2m, α1 = 2, α2 = 1, β1 = −2, β2 = 1,
so Theorem 1.12 gives us

Ln = qn, 0 ≤ n < m,

Ln + 2Ln−m = qn − 2qn−m, m ≤ n < 2m,

Ln + 2Ln−m + Ln−2m = qn − 2qn−m + qn−2m, 2m ≤ n.

After solving the obtained recurrence relations we get

∑

N∈Mn

λA(N) =























qn, 0 ≤ n < m,

qn − 4qn−m, m ≤ n < 2m,

qnVm + qn−m[ n
m ] (1− Vm) (−1)[

n
m ]−1

([

n
m

]

qm +
[

n
m

]

− 1
)

+4qn−m[ n
m ] (1− Vm)

[

n
m

]

(−1)[
n
m ], 2m ≤ n,

where Vm =
(

qm−1
qm+1

)2

.
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